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Spherical gradient, divergence, curl and Laplacian

Unit vectors  Two of the spherical unit vectors we can immediately write by inspection.
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¢ = —eysinf +epcos¢
We can compute 8 by utilizing the right hand triplet property
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SeCyp SeSp Co
= &1 (CoCy) + e (CaSy) + 3 (=50 (S3+C3))

= e1cos0cos¢ +ercosfsing — ezsinf.

Here I've used Cy = cos0,Sy = sin¢g, - - - as a convenient shorthand. Observe that with i = e;e»,
these unit vectors admit a small factorization that makes further manipulation easier
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It should also be the case that fég?) = I, where I = ejepe3 = eqp3 is the R3 pseudoscalar, which is
straightforward to check
i‘(:)cia = (elei‘P sinf + e3 cos 9) (cos fee'® — sin 9e3> ere’?
= (sin 0 cos® — cosfsinf + ez e’? (cos2 0 + sin? 9)) ere'? (1.4)
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This property could also have been used to compute 8.



Gradient  To compute the gradient, note that the coordinate vectors for the spherical parameteriza-
tion are
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= rSpeqe’?
= rsin0¢.

Since these are all normal, the dual vectors defined by x/ - x; = 5{;, can be obtained by inspection
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X = ene?
The gradient follows immediately
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or

(1.8)

More information on this general dual-vector technique of computing the gradient in curvilinear
coordinate systems can be found in [2].



Partials  To compute the divergence, curl and Laplacian, we'll need the partials of each of the unit

vectors dt/d6, 0t /d¢, 90 /96,98 /9¢, I /3.
The 8 partials are
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The ¢ partials are
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The t partials are were computed as a side effect of evaluating xg, and x4, and are

oF .
59

of .
% - SQ¢

In summary

Q)
S
1l
>

U Qv
< SN
D D = =
Il 1] 1]

wn
O L&
N -

[o5)
S
Il

(e}

[o5)
<
>

—£Sg — 0C,.

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)



Divergence and curl.  The divergence and curl can be computed from the vector product of the spher-
ical coordinate gradient and the spherical representation of a vector. That is

VA=V -A+VAA=V -A+IV x A. (1.16)

That gradient vector product is

VA= (far + gag + r‘é’aq,) (FA, + 040 + Ay)
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o . . R R
t s, dg (EA; +0Ag + P Ay)

.
= (9,A, + $09, Ay + £¢9, A
( 6+ 2o, Ap) (1.17)
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The scalar component of this is the divergence

V- -A=09A + % + %agAg + % (SgAr + CgAg + 8¢A¢)
0

A 1 1 1
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which can be factored as
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The bivector grade of V A is the bivector curl
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This gives
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(1.21)

This and the divergence result above both check against the back cover of [1].

Laplacian ~ Using the divergence and curl it’s possible to compute the Laplacian from those, but we
saw in cylindrical coordinates that it was much harder to do it that way than to do it directly.
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All the bivector factors are expected to cancel out, but this should be checked. Those with an 0
factor are
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and those with a 8¢ factor are
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and those with a ¢t factor are
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This leaves 1
V2 =0, + ar¢+ a99¢+ cgae¢+ 252a¢¢¢ (1.26)

This factors nicely as
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which checks against the back cover of Jackson. Here it has been demonstrated explicitly that this
operator expression is valid for multivector fields ¢ as well as scalar fields 1.
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