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Vector Area

One of the results of this problem is required for a later one on magnetic moments that I’d like to do.

Exercise 1.1 Vector Area. ([/] pr. 1.61)

a:fda, (1.1)
S

1s sometimes called the vector area of the surface S'.

The integral

. Find the vector area of a hemispherical bowl of radius R.
. Show that a = 0 for any closed surface.
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3. Show that a is the same for all surfaces sharing the same boundary.
4

. Show that !
== X dl, 1.2
a 5 9§ r (1.2)
where the integral is around the boundary line.
5. Show that
9§(c~r)dl:axc. (1.3)

Answer for Exercise 1.1



Part 1.
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= R%e; (1 - (1)) /2
= 7TR263.

Part 2. As hinted in the original problem description, this follows from
deVT = SETda, (1.5)
simply by setting 7" = 1.

Part 3. Suppose that two surfaces sharing a boundary are parameterized by vectors x(u, v), X(a, b) respec-
tively. The area integral with the first parameterization is
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In the last step a j, k index swap was performed for the last term of the second integral. The first integral is



zero, since the integrand is symmetric in j, k. This leaves
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However, this is the area integral with the second parameterization, proving that the area-integral for any
given boundary is independant of the surface.

Part 4.  Having proven that the area-integral for a given boundary is independent of the surface that it is
evaluated on, the result follows by illustration as hinted in the full problem description. Draw a “cone”, tracing
a vector X’ from the origin to the position line element, and divide that cone up into infinitesimal slices as
sketched in fig. 1.1.

Figure 1.1: Cone configuration.

The area of each of these triangular slices is

—x'xdl'. (1.8)
Summing those triangles proves the result.

Part5.  As hinted in the problem, this follows from

fVTxda=—§le. (1.9)

Set T = ¢ - r, for which
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