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PHY2403H Quantum Field Theory. Lecture 12: Klein-Gordon Green’s
function, Feynman propagator path deformation, Weightmann function,
Retarded Green’s function. Taught by Prof. Erich Poppitz

DISCLAIMER: Very rough notes from class, with some additional side notes. These are notes for the UofT
course PHY2403H, Quantum Field Theory, taught by Prof. Erich Poppitz, fall 2018.

1.1 Green’s functions for the forced Klein-Gordon equation.

The problem were were preparing to do was to study the problem of “particle creation by external
classical source”.

We continue with a real scalar field, free, massive, but with an interaction with a source

(1.1)Sint =
∫

d4xj(x)φ(x).

Modern application: think of φ has some SM field and think of j as due to inflaton (i.e. cosmological
inflation interaction) oscillation. In the inflationary model, the process of “reheating” creates all the
matter in the universe. We won’t be talking about inflation, but will be considering a toy model that
has some similar characteristics to the inflationary theory.

The equation of motion that we end up with is

(1.2)
(
∂µ∂µ + m2) φ = j,

and we wish to solve this using Green’s function techniques.

Definition 1.1: Klein-Gordon Green’s function.

The QFT conventions for the Klein-Gordon Green’s function is(
∂µ∂µ + m2)G(x− y) = −iδ4(x− y).

As usual, we assume that it is possible to find a solution φ by convolution

(1.3)φ(x) = i
∫

d4yG(x − y)j(y).
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Check:

(1.4)

(
∂µ∂µ + m2) φ(x) = i

(
∂µ∂µ + m2) ∫ d4yG(x − y)j(y)

= i
∫

d4y(−i)δ4(x − y)j(y)

= j(x).

Also, as usual, we take out our Fourier transforms, the power tool of physics, and determine the
structure of the Green’s function by inverting the transform equation

(1.5)G(x − y) =
∫ d4 p

(2π)4 e−ip·(x−y)G̃(p).

Operating with KG gives

(1.6)
(
∂µ∂µ + m2)G(x) =

∫ d4 p
(2π)4

(
(−ipµ)(−ipµ) + m2) e−ip·(x−y)G̃(p).

This must equal

(1.7)−iδ4(x − y) = −i
∫ d4 p

(2π)4 e−ip·(x−y),

or
(1.8)

(
m2 − pµ pµ

)
G̃(p) = −i.

The Green’s function in the momentum domain is

(1.9)G̃(p) =
i

p2 − m2 .

The inverse transform provides the spatial domain representation of the Green’s function

(1.10)
G(x) =

∫ d4 p
(2π)4 e−ip·x i

(p0)2 − p2 − m2

=
∫ d3 p

(2π)3 eip·x
∫ dp0

2π
e−ip0x0 i

(p0 − ωp)(p0 + ωp)
.

In the p0 plane, we have two poles at p0 = ±ωp. There are 4 ways to go around the poles, the
retarded time deformation that we used to derive the Green’s function for the harmonic oscillator, as
sketched in fig. 1.1, the advanced time deformation sketched in fig. 1.2, and mixed deformations.

We will evaluate the integral using the “Feynman propagator” contour sketched in fig. 1.3. Why
we use the Feynman contour, and not the retarded contour can be justified by how well this works
for the perturbation methods that will be developed later.

Consider each contour in turn.
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Figure 1.1: Retarded time deformations and contours.

Figure 1.2: Advanced time deformation.

Figure 1.3: Feynman propagator deformation path.

3



Figure 1.4: Feynman propagator contour for t > 0.

Case I. x0 > 0 For this case, we use the lower half plane contour sketched in fig. 1.4, which vanishes
for =(p0) < 0, x0 > 0, where −i(i=(p0)x0) < 0.

Here we pick up just the pole at p0 = ωp, and take a negatively oriented path

(1.11)

GF =
∫ d3 p

(2π)3 eip·x
∫ dp0

2π
e−ip0x0 i

(p0 − ωp)(p0 + ωp)

=
∫ d3 p

(2π)3 eip·x(−2πi)

(
e−ip0x0

2π

i
p0 + ωp

)∣∣∣∣∣
p0=ωp

=
∫ d3 p

(2π)3 eip·x−2πi
2π

ie−ip0x0

2ωp

=
∫ d3 p

(2π)3 eip·x e−iωpx0

2ωp
.

Case II. x0 < 0 For x0 < 0 we use an upper half plane contour with the same deformation around
the poles. This time

(1.12)

GF =
∫ d3 p

(2π)3 eip·x
∫ dp0

2π
e−ip0x0 i

(p0 − ωp)(p0 + ωp)

=
∫ d3 p

(2π)3 eip·x(+2πi)

(
e−ip0x0

2π

i
p0 − ωp

)∣∣∣∣∣
p0=−ωp

=
∫ d3 p

(2π)3 eip·x +2πi
2π

ie−ip0x0

−2ωp

=
∫ d3 p

(2π)3 eip·x eiωpx0

2ωp
.
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We’ve obtained a piecewise representation of the Green’s function, where the only difference is the
sign of the iωpx0 exponential.

We can combine eq. (1.11) eq. (1.12) by using Θ functions

(1.13)
∫ d3 p

(2π)32ωp
eip·x

(
e−iωpx0

Θ(x0) + eiωpx0
Θ(−x0)

)
.

The first integral (without the Θ factor) is the Weightmann function

(1.14)D(x) =
∫ d3 p

(2π)32ωp
e−ip·x

∣∣∣
p0=ωp

.

For the second integral, we make a change of variables p→ −p leaving

(1.15)

∫ d3 p
(2π)32ωp

eip·x+iωpx0 →
∫ d3 p

(2π)32ωp
e−ip·x+iωpx0

=
∫ d3 p

(2π)32ωp
e−ip·x

= D(−x),

so
GF(x) = Θ(x0)D(x) + Θ(−x0)D(−x) (1.16)

1.2 Matrix element representation of the Weightmann function.

Recall that the Weightmann function also had a matrix element representation

(1.17)D(x) = 〈0| φ(x)φ(0) |0〉 .

This can be shown by expansion.

(1.18)〈0| φ(x)φ(0) |0〉 = 〈0|
∫ d3 p

(2π)3
1√
2ωp

(
ape−ip·x + a†

peip·x
)∣∣∣

p0=ωp

∫ d3q
(2π)3

1√
2ωq

(
a†

q + aq

)
|0〉

Since aq |0〉 = 0 = 〈0| a†
p, eq. (1.18) reduces to

(1.19)

〈0| φ(x)φ(0) |0〉 = 〈0|
∫ d3 p

(2π)3
d3q

(2π)3
1√
2ωp

1√
2ωq

(
apa†

qe−ip·x
)∣∣∣

p0=ωp
|0〉

= 〈0|
∫ d3 p

(2π)3
d3q

(2π)3
1√
2ωp

1√
2ωq

((
apa†

q +
[

ap, a†
q

])
e−ip·x

)∣∣∣
p0=ωp

|0〉

= 〈0|
∫ d3 p

(2π)3
d3q

(2π)3
1√
2ωp

1√
2ωq

((
(2π)3δ3(p − q)

)
e−ip·x

)∣∣∣
p0=ωp

=
∫ d3 p

(2π)3
e−ip·x

2ωp

∣∣∣∣
p0=ωp
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1.3 Retarded Green’s function.

Claim: Retarded Green’s function (bumps up contour) can be written

(1.20)DR(x) = θ(x0)(D(x)− D(−x)).

Proof: The upper half plane contour (x0 < 0) is zero since it encloses no poles. For the lower half
plane contour we have

(1.21)

DR(x)|x0 >0 = i
∫ d3 p

(2π)3 eip·x
∫ dp0

2π
e−ip0x0 i

(p0 − ωp)(p0 + ωp)

= i
∫ d3 p

(2π)3 eip·x (−2πi)
2π

(
e−iωpx0 i

2ωp
+ eiωpx0 i

−2ωp

)
=
∫ d3 p

(2π)3 eip·x 1
2ωp

(
e−iωpx0 − eiωpx0

)
= D(x)− D(−x).

What does the field look like in terms of the propagator? Assuming that φ0 satisfies the homoge-
neous equation, we have

(1.22)
φ(x) = φ0(x) + i

∫
d4yDR(x − y)j(y)

= φ0(x) + i
∫

d3ydy0Θ(x0 − y0)
(

D(x − y)− D(y − x)
)

j(y)

Imagine that we have a windowed source function j(y0, y), as sketched in fig. 1.5.

Figure 1.5: Finite window impulse response.

(1.23)φ(x)|x0 >tafter
= φ0(x) + i

∫
d4y

(∫ d3 p
(2π)32ωp

e−ip·(x−y) j(y)−
∫ d3 p

(2π)32ωp
eip·(x−y) j(y)

)
define

(1.24)j̃(p) =
∫

d4yeip·y j(y),
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which gives

(1.25)φ(x)|x0 >tafter
= φ0(x) + i

∫ d3 p
(2π)3

1
2ωp

(
e−ip·x j̃(p)− eip·x j̃(−p)

)∣∣∣
p0=ωp

.

We will interpret this in the next lecture, and start in on Feynman diagrams.
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