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Generalizing Ampere’s law using geometric algebra.

The question I’d like to explore in this post is how Ampere’s law, the relationship between the line integral of
the magnetic field to current (i.e. the enclosed current)

(1.1)
�
∂A

dx ·H =
∫

A
n̂ · J,

generalizes to geometric algebra where Maxwell’s equations for a statics configuration (all time derivatives
zero) is

(1.2)∇F = J,

where the multivector fields and currents are

(1.3)
F = E + IηH
J = η (cρ − J) + I (cρm −M) .

Here (fictitious) the magnetic charge and current densities that can be useful in antenna theory have been
included in the multivector current for generality.

My presumption is that it should be possible to utilize the fundamental theorem of geometric calculus for
expressing the integral over an oriented surface to its boundary, but applied directly to Maxwell’s equation.
That integral theorem has the form

(1.4)
∫

A
d2x∂F =



∂A

dxF,

where d2x = da ∧ db is a two parameter bivector valued surface, and ∂ is vector derivative, the projection of
the gradient onto the tangent space. I won’t try to explain all of geometric calculus here, and refer the interested
reader to [1], which is an excellent reference on geometric calculus and integration theory.

The gotcha is that we actually want a surface integral with ∇F. We can split the gradient into the vector
derivative a normal component

(1.5)∇ = ∂ + n̂(n̂ · ∇),

so
(1.6)

∫
A

d2x∇F =
∫

A
d2x∂F +

∫
A

d2xn̂ (n̂ · ∇) F,

so

(1.7)



∂A

dxF =
∫

A
d2x (J − n̂ (n̂ · ∇) F)

=

∫
A

dA (In̂J − (n̂ · ∇) IF)
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This is not nearly as nice as the magnetic flux relationship which was nicely split with the current and fields
nicely separated. The dxF product has all possible grades, as does the d2xJ product (in general). Observe
however, that the normal term on the right has only grades 1,2, so we can split our line integral relations into
pairs with and without grade 1,2 components

(1.8)



∂A
〈dxF〉0,3 =

∫
A

dA〈In̂J〉0,3

∂A
〈dxF〉1,2 =

∫
A

dA (〈In̂J〉1,2 − (n̂ · ∇) IF) .

Let’s expand these explicitly in terms of the component fields and densities to check against the conventional
relationships, and see if things look right. The line integrand expands to

(1.9)
dxF = dx (E + IηH)
= dx · E + Iηdx ·H + dx ∧ E + Iηdx ∧H
= dx · E − η(dx ×H) + I(dx × E) + Iη(dx ·H),

the current integrand expands to

(1.10)

In̂J = In̂
(
ρ

ε
− ηJ + I (cρm −M)

)
= n̂I

ρ

ε
− ηn̂IJ − n̂cρm + n̂M

= n̂ ·M + η(n̂ × J) − n̂cρm + I(n̂ ×M) + n̂I
ρ

ε
− ηI(n̂ · J).

We are left with

(1.11)



∂A

(dx · E + Iη(dx ·H)) =
∫

A
dA (n̂ ·M − ηI(n̂ · J))


∂A
(−η(dx ×H) + I(dx × E)) =

∫
A

dA
(
η(n̂ × J) − n̂cρm + I(n̂ ×M) + n̂I

ρ

ε
−
∂

∂n
(IE − ηH)

)
.

This is a crazy mess of dots, crosses, fields and sources. We can split it into one equation for each grade, which
will probably look a little more regular. That is

(1.12)



∂A

dx · E =
∫

A
dAn̂ ·M


∂A
dx ×H =

∫
A

dA
(
−n̂ × J +

n̂ρm

µ
−
∂H
∂n

)


∂A

dx × E =
∫

A
dA

(
n̂ ×M +

n̂ρ
ε
−
∂E
∂n

)


∂A

dx ·H = −
∫

A
dAn̂ · J

The first and last equations could have been obtained much more easily from Maxwell’s equations in their
conventional form more easily. The two cross product equations with the normal derivatives are not familiar to
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me, even without the fictitious magnetic sources. It is somewhat remarkable that so much can be packed into
one multivector equation:

(1.13)


∂A

dxF = I
∫

A
dA

(
n̂J −

∂F
∂n

)
.
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