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PHY2403H Quantum Field Theory. Lecture 7: Symmetries, translation
currents, energy momentum tensor. Taught by Prof. Erich Poppitz

DISCLAIMER: Very rough notes from class, with some additional side notes. ~ These are notes for the UofT
course PHY2403H, Quantum Field Theory I, taught by Prof. Erich Poppitz fall 2018.

1.1 Symmetries
Given the complexities of the non-linear systems we want to investigate, examination of symmetries
gives us simpler problems that we can solve.

e “internal” symmetries. This means that the symmetries do not act on space time (x,f). An
example is
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If we map ¢' — O;kpf where OO = 1, then we call this an internal symmetry. The corresponding

Lagrangian density might be something like
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e spacetime symmetries: Translations, rotations, boosts, dilatations. We will consider continuous
symmetries, which can be defined as a succession of infinitesimal transformations. An example

from O(2) is a rotation
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In index notation we write

(pi — cpi + oceij(pj, (1.5)
where €2 = +1,€*! = —1 is the completely antisymmetric tensor. This can be written in more
general form as

¢ — ¢+ 59, (1.6)

where 6¢' is considered to be an infinitesimal transformation.

—| Definition 1.1: Symmetry

A symmetry means that there is some transformation

where d¢' is an infinitesimal transformation, and the equations of motion are invariant under
this transformation.

— Theorem 1.1: Noether’s theorem (1st).

If the equations of motion re invariant under ¢* — ¢* + 5¢¥, then there exists a conserved current
j# such that 9,,j# = 0.

Noether’s first theorem applies to global symmetries, where the parameters are the same for all
(x, t). Gauge symmetries are not examples of such global symmetries.
Given a Lagrangian density L(¢(x), ¢,.(x)), where ¢, = 9, ¢. The action is

s=/ﬂ%£. (1.7)
EOMs are invariant if under ¢(x) — ¢'(x) = ¢(x) + dep(x), we have

L(p) — L'(¢) (1.8)
= L(¢) + 9, JE (@) + O(€D).
Then there exists a conserved current. In QFT we say that the E.O.M’s are “on shell”. Note that

eq. (1.8) is a symmetry since we have added a total derivative to the Lagrangian which leaves the
equations of motion of unchanged.



In general, the change of action under arbitrary variation of ¢ of the fields is
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However from eq. (1.8)
0 L = ay]g(qj/ a]lq))/ (1.10)
so after equating these variations we fine that
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or d,j" = 0 provided
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Integrating the divergence of the current over a space time volume, perhaps that of fig. 1.1, is also

zero. That is
0= [dxa,"
- / Pxdt 9, (1.14)
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where the spatial divergence is zero assuming there’s no current leaving the volume on the infinite
boundary. (no j at spatial infinity.

We write

Q= / P, (1.15)

and call this the on-shell charge associated with the symmetry.
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Figure 1.1: Cylindrical spacetime boundary.
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1.2 Spacetime translation.

A spacetime translation has the form

xt = M =yt at, (1.16)

P(x) — ¢'(x') = p(x) (1.17)

(contrast this to a Lorentz transformation that had the form x# — x'* = A¥ xV).
If ¢'(x + a) = p(x), then

¢'(x) +a"9,¢' (x) = ¢’ (x) + a9, P(x) (1.18)
= p(x),

SO

¢'(x) = p(x) — a"9,¢' (x) (1.19)
= P(x) + 0ap(x),

or

daPp(x) = —a" 9, ¢(x). (1.20)
Under ¢ — ¢ — a"d, ¢, we have

L(P) — L(¢p) — a9, L. (1.21)

Let’s calculate this with our scalar theory Lagrangian
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The Lagrangian variation is
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So the current is
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We really have a current for each v direction and can make that explicit writing
oL =—0,L
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where v are labels which coordinates are translated:
d,¢p = —0
v v (1.27)
0,L=—0,L.
We call the conserved quantities elements of the energy-momentum tensor, and write it as
09 34’
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Incidentally, we picked a non-standard sign convention for the tensor, as an explicit expansion of
T%, the energy density component, shows

dpdp 199 1 2
T00:_££ Ea*fa*f_*(w’) (V4>)—m74>2—V(4>) 10
10pdp 1 m? o

i i _ a2
=P (V) (V9) - D97 - V().

Had we translated by —a* we’d have a positive definite tensor instead.



