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P R E FA C E

This document is based on my lecture notes for the Fall 2014, University of Toronto
Modeling of Multiphysics course (ECE1254H), taught by Professor P. Triverio.

Official course description: “The course deals with the modeling and simulation of
physical systems. It introduces the fundamental techniques to generate and solve the
equations of a static or dynamic system. Special attention is devoted to complexity
issues and to model order reduction methods, presented as a systematic way to sim-
ulate highly-complex systems with acceptable computational cost. Examples from
multiple disciplines are considered, including electrical/electromagnetic engineering,
structural mechanics, fluid-dynamics. Students are encouraged to work on a project
related to their own research interests.”

Topics:

• Automatic generation of system equations (Tableau method, modified nodal
analysis).

• Solution of linear and nonlinear systems (LU decomposition, conjugate gradient
method, sparse systems, Newton-Raphson method).

• Solution of dynamical systems (Euler and trapezoidal rule, accuracy, stability).

• Model order reduction of linear systems (proper orthogonal decomposition,
Krylov methods, truncated balanced realization, stability/dissipativity enforce-
ment).

• Modeling from experimental data (system identification, the Vector Fitting algo-
rithm, enforcement of stability and dissipativity).

• If time permits, an overview of numerical methods to solve partial differential
equations (Boundary element method, finite elements, FDTD).

Recommended texts include

• [8].
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N O T E S A N D P R O B L E M S





1N O D A L A N A LY S I S

1.1 in slides

A review of systematic nodal analysis for a basic resistive circuit was outlined in
slides, with a subsequent attempt to show how many similar linear systems can be
modeled as circuits so that the same toolbox can be applied. This included blood flow
through a body (and blood flow to the brain), a model of antenna interference in a
portable phone, heat conduction in a one dimensional conductor under a heat lamp,
and a few other systems.

This discussion reminded me of the joke where the farmer, the butcher and the
physicist are all invited to talk at a beef convention. After meaningful and appropriate
talks by the farmer and the butcher, the physicist gets his chance, and proceeds with
“We begin by modeling the cow as a sphere, ...”. The ECE equivalent of that appears
to be a Kirchhoff circuit problem.

1.2 mechanical structures example

Continuing the application of circuits like linear systems to other systems, consider a
truss system as illustrated in fig. 1.1, or in the simpler similar system of fig. 1.2.

Figure 1.1: A static loaded truss configuration.

3



4 nodal analysis

Figure 1.2: Simple static load.

The unknowns are

• positions of the joints after deformation (xi, yi).

• force acting on each strut Fj = (Fj,x, Fj,y).

The constitutive equations, assuming static conditions (steady state, no transients)

• Load force. FL = (FL,x, FL,y) = (0,−mg).

• Strut forces. Under static conditions the total resulting force on the strut is zero,
so F′j = −Fj. For this problem it is redundant to label forces on both ends, so the
labeled end of the object is marked with an asterisk as in fig. 1.3.

Figure 1.3: Strut model.

Consider a simple case One strut as in fig. 1.4.
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Figure 1.4: Very simple static load.

F∗ = −ax ε

constant, describes the beam elasticity, given

(
L

unloaded length L = |x∗ − 0|, given

− L0

)
(1.1)

The constitutive law for a general strut as in fig. 1.5 is

Figure 1.5: Strut force diagram.

The force is directed along the unit vector

e =
r∗ − r
|r∗ − r| , (1.2)

and has the form

F∗ = −eε (L− L0) . (1.3)
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The value ε may be related to Hooks’ constant, and L0 is given by

L = |r∗ − r| =
√

(x∗ − x)2 + (y∗ − y)2. (1.4)

Observe that the relation between F∗ and position is nonlinear!
Treatment of this system will be used as the prototype for the handling of other

nonlinear systems.
Returning to the simple static system, and introducing force and joint labels as in

fig. 1.6, the conservation law, a balance of forces, can be examined.

Figure 1.6: Strut system.

• At joint 1:

fA + fB + fC = 0 (1.5)

or

fA,x + fB,x + fC,x = 0

fA,y + fB,y + fC,y = 0
(1.6)

• At joint 2:

−fC + fD + fL = 0 (1.7)
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or

−fC,x + fD,x + fL,x = 0

−fC,y + fD,y + fL,y = 0
(1.8)

There are two equivalences

• Force↔ Current.

• Force balance equation↔ KCL

1.3 assembling system equations automatically. node/branch method

Consider the sample circuit of fig. 1.7.

Figure 1.7: Sample resistive circuit.

Step 1. Choose unknowns: For this problem, take

• node voltages: V1, V2, V3, V4

• branch currents: iA, iB, iC, iD, iE

No additional labels are required for the source current sources. A reference node
is always introduced, given the node number zero.

For a circuit with N nodes, and B resistors, there will be N − 1 unknown node
voltages and B unknown branch currents , for a total number of N− 1 + B unknowns.
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Step 2. Conservation equations: KCL

• 0: iA + iE − iD = 0

• 1: −iA + iB + iS,A = 0

• 2: −iB + iS,B − iE + iS,C = 0

• 3: iC − iS,C = 0

• 4: −iS,A − iS,B + iD − iC = 0

Grouping unknown currents, this is

• 0: iA + iE − iD = 0

• 1: −iA + iB = −iS,A

• 2: −iB − iE = −iS,B − iS,C

• 3: iC = iS,C

• 4: iD − iC = iS,A + iS,B

Note that one of these equations is redundant (sum 1-4). In a circuit with N nodes,
are are at most N − 1 independent KCLs. In matrix form


−1 1 0 0 0

0 −1 0 0 −1

0 0 1 0 0

0 0 −1 1 0





iA
iB
iC
iD
iE


=


−iS,A

−iS,B − iS,C

iS,C

iS,A + iS,B

 (1.9)

This first matrix of ones and minus ones is called the incidence matrix A. This
matrix has B columns and N− 1 rows. The matrix of known currents is called IS, and
the branch currents called IB. That is

AIB = IS. (1.10)

Observe that there is a plus and minus one in all columns except for those columns
impacted by the neglect of the reference node current conservation equation.
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Algorithm for filling A In the input file, to describe a resistor of fig. 1.8, you’ll have a
line of the form

Rlabel n1 n2 value

Figure 1.8: Resistor node convention.

The algorithm to process resistor lines is

Algorithm 1.1: Resistor line handling.

A← 0
ic← 0
for all resistor lines do

ic← ic + 1, adding one column to A
if n1! = 0 then

A(n1, ic)← +1
end if
if n2! = 0 then

A(n2, ic)← −1
end if

end for

Algorithm for filling IS Current sources, as in fig. 1.9, a line will have the specification

Ilabel n1 n2 value

Figure 1.9: Current source conventions.
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Algorithm 1.2: Current line handling.

IS = zeros(N − 1, 1)
for all current lines do

IS(n1)← IS(n1)− value
IS(n2)← IS(n2) + value

end for

Step 3. Constitutive equations:

iA
iB
iC
iD
iE


=



1/RA

1/RB

1/RC

1/RD

1/RE





vA

vB

vC

vD

vE


(1.11)

Or

IB = αVB, (1.12)

where VB are the branch voltages, not unknowns of interest directly. That can be
written



vA

vB

vC

vD

vE


=



−1

1 −1

1 −1

1

−1




v1

v2

v3

v4

 (1.13)

Observe that this is the transpose of A, so

VB = ATVN. (1.14)

Solving

• KCLs: AIB = IS
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• constitutive: IB = αVB =⇒ IB = αATVN

• branch and node voltages: VB = ATVN

In block matrix form, this is

[
A 0

I −αAT

] [
IB

VN

]
=

[
IS

0

]
. (1.15)

Is it square? This can be observing to be the case after noting that there are

• N − 1 rows in A , and B columns.

• B rows in I.

• N − 1 columns.

1.4 nodal analysis

Avoiding branch currents can reduce the scope of the computational problem. Con-
sider the same circuit fig. 1.10, this time introducing only node voltages as unknowns

Figure 1.10: Resistive circuit with current sources.

Unknowns: node voltages: V1, V2, · · ·V4

Equations are KCL at each node except 0.

1. V1−0
RA

+ V1−V2
RB

+ iS,A = 0
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2. V2−0
RE

+ V2−V1
RB

+ iS,B + iS,C = 0

3. V3−V4
RC
− iS,C = 0

4. V4−0
RD

+ V4−V3
RC
− iS,A − iS,B = 0

In matrix form this is


1

RA
+ 1

RB
− 1

RB
0 0

− 1
RB

1
RB

+ 1
RE

0 0

0 0 1
RC

− 1
RC

0 0 − 1
RC

1
RC

+ 1
RD




V1

V2

V3

V4

 =


−iS,A

−iS,B − iS,C

iS,C

iS,A + iS,B

 (1.16)

Introducing the nodal matrix G, this is written as

GVN = IS (1.17)

There is a recurring pattern in the nodal matrix, designated the stamp for the resis-
tor of value R between nodes n1 and n2

[ n1 n2

n1
1
R − 1

R
n2 − 1

R
1
R

]
, (1.18)

containing a set of rows and columns for each of the node voltages n1, n2.
Note that some care is required to use this nodal analysis method since the invert-

ible relationship i = V/R is required. Short circuits V = 0, and voltage sources such as
V = 5 also cannot be handled directly. The mechanisms to deal with differential terms
like inductors will be discussed later.

Recap of node branch equations The node branch equations were

• KCL: AIB = IS

• Constitutive: IB = αATVN ,

• Nodal equations: AαAT

G

VN = IS
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where IB was the branch currents, A was the incidence matrix, and α =


1

R1
1

R2
. . .

.

The stamp can be observed in the multiplication of the contribution for a single
resistor. The incidence matrix has the form G = AαAT

(1.19)
G =

[ ↓

n1 +1
n2 −1

] [
1
R

] [ n1 n2

+1 −1
]

=
[ n1 n2

n1
1
R − 1

R
n2 − 1

R
1
R

]

Theoretical facts Noting that (AB)T = BTAT, it is clear that the nodal matrix G =
AαAT is symmetric

(1.20)

GT =
(

AαAT
)T

=
(

AT
)T

αTAT

= AαAT

= G

1.5 modified nodal analysis (mna)

Modified nodal analysis (MNA), eliminates the branch currents for the resistive circuit
elements, and is the method used to implement software such as spice. To illustrate
the method, consider the same circuit, augmented with an additional voltage sources
as in fig. 1.11. This method can also accomodate voltage sources, provided an un-
known current source is also introduced for each voltage source circuit element. The
unknowns are

• node voltages (N − 1): V1, V2, · · ·V5

• branch currents for selected components (K): iS,C, iS,D

Compared to standard nodal analysis, two less unknowns for this system are re-
quired. The equations are
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Figure 1.11: Resistive circuit with current and voltage sources.

1. −V5−V1
RA

+ V1−V2
RB

+ iS,A = 0

2. V2−V5
RE

+ V2−V1
RB

+ iS,B − iS,C = 0

3. iS,C + V3−V4
RC

= 0

4. V4−0
RD

+ V4−V3
RC
− iS,A − iS,B = 0

5. V5−V2
RE

+ V5−V1
RA
− iS,D = 0

Put into giant matrix form, this is



G AV

ZA + ZB −ZB . . −ZA

−ZB ZB − ZE . . −ZE −1
. . ZC −ZC . +1
. . −ZC ZC + ZD .
−ZA −ZE ZA + ZE −1

−AT
V +1 −1

1





V1

V2

V3

V4

V5

iS,C

iS,D


=



−iS,A

−iS,B

0

iS,A + iS,B

0

VS,C

VS,D


(1.21)

Call the extension to the nodal matrix G, the voltage incidence matrix AV.
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Review Additional unknowns are added for

• branch currents for voltage sources

• all elements for which it is impossible or inconvenient to write i = f (v1, v2).

Imagine, for example, a component as illustrated in fig. 1.12.

Figure 1.12: Variable voltage device.

v1 − v2 = 3i2 (1.22)

• any current which is controlling dependent sources, as in fig. 1.13.

Figure 1.13: Current controlled device.

• Inductors

v1 − v2 = L
di
dt

. (1.23)
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The goal is to solve linear systems of the form

Mx = b, (2.1)

possibly with thousands of elements.

2.1 gaussian elimination


1 2 3

1 M11 M12 M13

2 M21 M22 M23

3 M31 M32 M33


x1

x2

x3

 =

b1

b2

b3

 (2.2)

It’s claimed for now, to be seen later, that back substitution is the fastest way to
arrive at the solution, less computationally complex than completion the diagonaliza-
tion.

Steps

(1) · M21

M11
=⇒

[
M21

M21
M11

M12
M21
M11

M13

]
(2.3)

(2) · M31

M11
=⇒

[
M31

M31
M11

M32
M31
M11

M33

]
(2.4)

This gives


M11 M12 M13

0 M22 − M21
M11

M12 M23 − M21
M11

M13

0 M32 − M31
M11

M32 M33 − M31
M11

M33


x1

x2

x3

 =


b1

b2 − M21
M11

b1

b3 − M31
M11

b1

 . (2.5)

17
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Here the M11 element is called the pivot. Each of the Mj1/M11 elements is called a
multiplier. This operation can be written as

M11 M12 M13

0 M(2)
22 M(3)

23

0 M(2)
32 M(3)

33


x1

x2

x3

 =

 b1

b(2)
2

b(2)
3

 . (2.6)

Using M(2)
22 as the pivot this time, form

M11 M12 M13

0 M(2)
22 M(3)

23

0 0 M(3)
33 −

M(2)
32

M(2)
22

M(2)
23


x1

x2

x3

 =


b1

b2 − M21
M11

b1

b3 − M31
M11

b1 −
M(2)

32

M(2)
22

b(2)
2

 . (2.7)

2.2 lu decomposition

Through Gaussian elimination, the system has been transformed from

Mx = b (2.8)

to

Ux = y. (2.9)

The Gaussian transformation written out in the form Ux = b is

Ux =


1 0 0

−M21
M11

1 0
M(2)

32

M(2)
22

M21
M11
− M31

M11
−M(2)

32

M(2)
22

1


b1

b2

b3

 . (2.10)

As a verification observe that the operation matrix K−1, where K−1U = M produces
the original system


1 0 0

M21
M11

1 0
M31
M11

M(2)
32

M(2)
22

1


U11 U12 U13

0 U22 U23

0 0 U33

 x = b (2.11)



2.2 lu decomposition 19

Using this LU decomposition is generally superior to standard Gaussian elimina-
tion, since it can be used for many different b vectors, and cost no additional work
after the initial factorization.

The steps are

(2.12)
b = Mx

= L (Ux)
≡ Ly.

The matrix equation Ly = b can now be solved by substituting first y1, then y2, and
finally y3. This is called forward substitution.

The final solution is

(2.13)Ux = y,

using back substitution.
Note that this produced the vector y as a side effect of performing the Gaussian

elimination process.

Example 2.1: Numeric LU factorization.

Looking at a numeric example is helpful to get a better feel for LU factorization
before attempting a Matlab implementation, as it strips some of the abstraction
away.

M =

5 1 1

2 3 4

3 1 2

 . (2.14)

This matrix was picked to avoid having to think of selecting the right pivot row
when performing the LU factorization. The first two operations give

 5 1 1
(r2→r2− 2

5 r1) 0 13/5 18/5
(r3→r3− 3

5 r1) 0 2/5 7/5

. (2.15)



20 solving large systems

The row operations (left multiplication) that produce this matrix are

 1 0 0

0 1 0

−3/5 0 1


 1 0 0

−2/5 1 0

0 0 1

 =

 1 0 0

−2/5 1 0

−3/5 0 1

 . (2.16)

These operations happen to be commutative and also both invert simply. The
inverse operations are 1 0 0

2/5 1 0

0 0 1


 1 0 0

0 1 0

3/5 0 1

 =

 1 0 0

2/5 1 0

3/5 0 1

 . (2.17)

In matrix form the elementary matrix operations that produce the first stage of
the Gaussian reduction are

 1 0 0

−2/5 1 0

−3/5 0 1


5 1 1

2 3 4

3 1 2

 =

5 1 1

0 13/5 18/5

0 2/5 7/5

 . (2.18)

Inverted that is

5 1 1

2 3 4

3 1 2

 =

 1 0 0

2/5 1 0

3/5 0 1


5 1 1

0 13/5 18/5

0 2/5 7/5

 . (2.19)

This is the first stage of the LU decomposition, although the U matrix is not
yet in upper triangular form. With the pivot row in the desired position already,
the last row operation to perform is

r3 → r3 −
2/5

5/13
r2 = r3 −

2
13

r2. (2.20)
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The final stage of this Gaussian reduction is

1 0 0

0 1 0

0 −2/13 1


5 1 1

0 13/5 18/5

0 2/5 7/5

 =

5 1 1

0 13/5 18/5

0 0 11/13

 = U, (2.21)

so the desired lower triangular matrix factor is 1 0 0

2/5 1 0

3/5 0 1


1 0 0

0 1 0

0 2/13 1

 =

 1 0 0

2/5 1 0

3/5 2/13 1

 = L. (2.22)

A bit of Matlab code easily verifies that the above manual computation recovers
M = LU

l = [ 1 0 0 ; 2/5 1 0 ; 3/5 2/13 1 ] ;

u = [ 5 1 1 ; 0 13/5 18/5 ; 0 0 11/13 ] ;

m = l * u

Example 2.2: Numeric LU factorization with pivots.

Proceeding with a factorization where pivots are required, does not produce an
LU factorization that is the product of a lower triangular matrix and an upper
triangular matrix. Instead what is found is what looks like a permutation of a
lower triangular matrix with an upper triangular matrix. As an example, consider
the LU reduction of

Mx =

0 0 1

2 0 4

1 1 1


x1

x2

x3

 . (2.23)
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Since r2 has the biggest first column value, that is the row selected as the pivot

Mx→ M′x′ =

2 0 4

0 0 1

1 1 1


x2

x1

x3

 . (2.24)

This permutation can be expressed algebraically as a row permutation matrix
operation

M′ =

0 1 0

1 0 0

0 0 1

M. (2.25)

With the pivot permutations out of the way, the row operations remaining for
the Gaussian reduction of this column are

r2 → r2 −
0
2

r1

r3 → r3 −
1
2

r1

, (2.26)

which gives

(2.27)

M1 =

 1 0 0

0 1 0

−1/2 0 1

M′

=

 1 0 0

0 1 0

−1/2 0 1


2 0 4

0 0 1

1 1 1



=

2 0 4

0 0 1

0 1 −1

 .
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Application of one more permutation operation gives the desired upper trian-
gular matrix

(2.28)

U = M′1

=

1 0 0

0 0 1

0 1 0


2 0 4

0 0 1

0 1 −1



=

2 0 4

0 1 −1

0 0 1

 .

This new matrix operator applies to the permuted vector

x′′ =

x2

x3

x1

 . (2.29)

The matrix U has been constructed by the following row operations

(2.30)U =

1 0 0

0 0 1

0 1 0


 1 0 0

0 1 0

−1/2 0 1


0 1 0

1 0 0

0 0 1

M.

LU = M is sought, or

(2.31)L

1 0 0

0 0 1

0 1 0


 1 0 0

0 1 0

−1/2 0 1


0 1 0

1 0 0

0 0 1

M = M,

or
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(2.32)

L =

0 1 0

1 0 0

0 0 1


 1 0 0

0 1 0

1/2 0 1


1 0 0

0 0 1

0 1 0



=

 0 1 0

1 0 0

1/2 0 1


1 0 0

0 0 1

0 1 0



=

 0 0 1

1 0 0

1/2 1 0

 .

The LU factorization attempted does not appear to produce a lower triangular
factor, but a permutation of a lower triangular factor?

When such pivoting is required it isn’t obvious, at least to me, how to do the
clever LU algorithm that outlined in class. How can the operations be packed
into the lower triangle when there is a requirement to actually have to apply
permutation matrices to the results of the last iteration?

It seems that a LU decomposition of M cannot be performed, but an LU factor-
ization of PM, where P is the permutation matrix for the permutation 2, 3, 1 that
was applied to the rows during the Gaussian operations.

Checking that LU factorization:

PM =

0 1 0

0 0 1

1 0 0


0 0 1

2 0 4

1 1 1

 =

2 0 4

1 1 1

0 0 1

 . (2.33)

The elementary row operation to be applied is

r2 → r2 −
1
2

r1, (2.34)
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for

(PM)1 =

2 0 4

0 1 −1

0 0 1

 , (2.35)

The LU factorization is therefore

PM = LU =

 1 0 0

1/2 1 0

0 0 1


2 0 4

0 1 −1

0 0 1

 . (2.36)

Observe that this can also be written as

M =
(

P−1L
)

U. (2.37)

The inverse permutation is a 3, 1, 2 permutation matrix

P−1 =

0 0 1

1 0 0

0 1 0

 . (2.38)

It can be observed that the product P−1L produces the not-lower-triangular
matrix factor found earlier in eq. (2.32).

Example 2.3: Final illustration of the LU algorithm with pivots by example.

Two previous examples of LU factorizations were given. I found one more to be
the key to understanding how to implement this as a Matlab algorithm, required
for exercise 2.2.
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A matrix that contains both pivots and elementary matrix operations is

M =


0 0 2 1

0 0 1 1

2 0 2 0

1 1 1 1

 (2.39)

The objective is to apply a sequence of row permutations or elementary row
operations to M that put M into upper triangular form, while also tracking all
the inverse operations. When no permutations were required to produce U, then
a factorization M = L′U is produced where L′ is lower triangular.

The row operations to be applied to M are

U = L−1
k L−1

k−1 · · · L
−1
2 L−1

1 M, (2.40)

with

L′ = L0L1L2 · · · Lk−1Lk (2.41)

Here L0 = I, the identity matrix, and L−1
i is either a permutation matrix inter-

changing two rows of the identity matrix, or it is an elementary row operation
encoding the operation rj → rj −Mri, where ri is the pivot row, and rj, j > i are
the rows that the Gaussian elimination operations are applied to.

For this example matrix, the M11 value cannot be used as the pivot element
since it is zero. In general, the row with the biggest absolute value in the column
should be used. In this case that is row 3. The first row operation is therefore a
1, 3 permutation. For numeric stability, use

L−1
1 =


0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

 , (2.42)
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which gives

M→ L−1
1 M =


0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1




0 0 2 1

0 0 1 1

2 0 2 0

1 1 1 1

 =


2 0 2 0

0 0 1 1

0 0 2 1

1 1 1 1

 . (2.43)

Computationally, avoiding the matrix multiplication that achieve this permuta-
tion is desired. Instead just swap the two rows in question.

The inverse of this operation is the same permutation, so for L′ the first stage
computation is

L ∼ L0L1 = L1. (2.44)

As before, a matrix operation would be very expensive. When the application
of the permutation matrix is from the right, it results in an exchange of columns
1, 3 of the L0 matrix (which happens to be identity at this point). So the matrix
operation can be done as a column exchange directly using submatrix notation.

Now proceed down the column, doing all the non-zero row elimination opera-
tions required. In this case, there is only one operation todo

r4 → r4 −
1
2

r1. (2.45)

This has the matrix form

L−1
2 =


1 0 0 0

0 1 0 0

0 0 1 0

−1/2 0 0 1

 . (2.46)
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The next stage of the U computation is

M→ L−1
2 L−1

1 M =


1 0 0 0

0 1 0 0

0 0 1 0

−1/2 0 0 1




2 0 2 0

0 0 1 1

0 0 2 1

1 1 1 1

 =


2 0 2 0

0 0 1 1

0 0 2 1

0 1 0 1

 . (2.47)

Again, this is not an operation that should be done as a matrix operation. In-
stead act directly on the rows in question with eq. (2.45).

Note that the inverse of this matrix operation is very simple. An amount r1/2
has been subtracted from r4, so to invert this all that is required is adding back
r1/2. That is

L2 =


1 0 0 0

0 1 0 0

0 0 1 0

1/2 0 0 1

 . (2.48)

Observe that when this is applied from the right to L0L1 → L0L1L2, the inter-
pretation is a column operation

c1 → c1 + mc4, (2.49)

In general, if application of the row operation

rj → rj −mri, (2.50)

to the current state of the matrix U, requires application of the operation

ri → ri + mrj, (2.51)

to the current state of the matrix L′.
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The next step is to move on to reduction of column 2, and for that only a
permutation operation is required

L3 =


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 , (2.52)

Application of a 2, 4 row interchange to U, and a 2, 4 column interchange to L′

gives

M→


2 0 2 0

0 1 0 1

0 0 2 1

0 0 1 1

 . (2.53)

The final operation is a regular row operation

r4 → r4 −
1
2

r3, (2.54)

with matrix

L−1
4 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 −1/2 1

 (2.55)

The composite permutation performed so far is

P = L3L1 I. (2.56)

This should also be computed by performing row interchanges, not matrix
multiplication.
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To solve the system

Mx = L′Ux = b, (2.57)

solve the equivalent problem

PL′Ux = Pb, (2.58)

To do this let y = Ux, for

PL′y = Pb. (2.59)

The matrix L = PL′ is lower triangular, as P contained all the permutations that
applied along the way (FIXME: this is a statement, not a proof, and not obvious).

The system

Ly = Pb, (2.60)

can now be solved using forward substitution, after which the upper triangular
system

y = Ux, (2.61)

can be solved using only back substitution.

2.3 problems

Exercise 2.1 Modified Nodal Analysis.

a. Write a Matlab routine [G,b]=NodalAnalysis(filename) that generates the
modified nodal analysis (MNA) equations

Gx = b (2.62)

from a text file (netlist) that describes an electrical circuit made of resistors,
independent current sources, independent voltage sources, voltage-controlled
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voltage sources. For the netlist, we use the widely-adopted SPICE syntax. For
each resistor, the file will contain a line in the form

Rlabel node1 node2 value

where “value” is the resistance value. Current sources are specified with the
line

Ilabel node1 node2 DC value

and current flows from node1 to node2. Note that DC is just a keyword. A
voltage source connected between the nodes node+ and node- is specified by
the line

Vlabel node+ node- DC value

where node+ and node- identify, respectively, the node where the “positive”
and “negative” terminal is connected to. A voltage-controlled voltage source,
connected between the nodes node+ and node-, is specified by the line

Elabel node+ node- nodectrl+ nodectrl- gain

The controlling voltage is between the nodes nodectrl+ and nodectrl-, and the
last argument is the source gain.

b. Explain how did you include the controlled source into the modified nodal
analysis formulation. Which general rule can be given to “stamp” a voltage-
controlled voltage source into MNA?

c. Consider the circuit shown in the figure fig. 2.1. Write an input file for the netlist
parser developed in the previous point, and use it to generate the matrices G
and b for the circuit. The operational amplifiers have an input resistance of
1MΩ? and a gain of 106 . Model them with a resistor and a voltage-controlled
voltage source. Use the Matlab command \ to solve the linear system eq. (2.62)
and determine the voltage V◦ shown in the figure.

d. Implement your own LU factorization routine. Repeat the previous point us-
ing your own LU factorization and forward/backward substitution routines to
solve the circuit equations. Report the computed V◦.

Answer for Exercise 2.1

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING
ECE1254. .

. .
.

.
. . .
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Figure 2.1: Circuit to solve.
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. .
. .

. . END-
REDACTION

Exercise 2.2 Resistor Mesh.

a. Write a small Matlab function that generates a netlist for a network made by:· · ·
1. N × N square grid of resistors of value R, where N is the number of

resistors per edge. The grid nodes are numbered from 1 to (N + 1)2

2. voltage source V = 1V connected between node 1 and ground

3. three current sources, each one connected between a randomly selected
node of the grid and the reference node. The source current flows from
the grid node to the reference node. Choose their value randomly between
10 mA and 100 mA;

Generate the modified nodal analysis equations (1) for a grid with N = 50, R =
0.2Ω and solve them with your LU routine to find the node voltages. Plot the
result with the Matlab command surf().

b. Plot the CPU time taken by your system solver (LU factorization + forward/back-
ward substitution) as a function of the size n of the 3 modified nodal analysis
matrix G. Note: do not exploit the sparsity of the matrix.

c. Determine experimentally how the CPU time scales for large n. Fit the CPU
times you observe with a power law like tcpu(n) ' Knα where K is a constant
in order to determine the exponent α.

d. Comment on the result. Discuss your findings in light of what we discussed in
class

Answer for Exercise 2.2

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING
ECE1254. .

. .
.

.
. . .

. .
. . .

. .
. .
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.
. . .

.
.

. . .
. .

. . .
. .

.
. .

. .
. .

.
. .

. .
. . .

. .
. .

. . END-
REDACTION

Exercise 2.3 Heat conduction.

a. In this problem we will examine the heat conducting bar basic example, but
will consider the case of a “leaky” bar to give you practice developing a numer-
ical technique for a new physical problem. With an appropriate input file, the
simulator you developed in problem 1 can be used to solve numerically the one-
dimensional Poisson equation with arbitrary boundary conditions. The Poisson
equation can be used to determine steady-state temperature distribution in a
heat-conducting bar, as in

∂2T(x)
∂x2 =

κa

κm
(T(x)− T0)−

H(x)
κm

(2.63)

where T(x) is the temperature at a point in space x, H(x) is the heat generated
at x, κm is the thermal conductivity along the metal bar, and κa is the thermal
conductivity from the bar to the surrounding air. The temperature T0 is the
surrounding air temperature. The ratio κa/κm will be small as heat moves much
more easily along the bar than dissipates from the bar into the surrounding air.
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Use your Matlab simulator to numerically solve the above Poisson equation for
T(x), x ∈ [0, 1] , given H(x) = 50 sin2(2πx) for x ∈ [0, 1], κa = 0.001, andκm = 0.1.
In addition, assume the ambient air temperature is T0 = 400, and T(0) = 250
and T(1) = 250. The boundary conditions at x = 0 and x = 1 model heat sink
connections to a cool metal cabinet at both ends of the package. That is, it is
assumed that the heat sink connections will insure both ends of the package
are fixed at near room temperature.
To represent equation eq. (2.63) as a circuit, you must first discretize your bar
along the spatial variable x in small sections of length ∆x, and approximate the
derivatives using a finite difference formula, e.g.,

∂2T(x)
∂x2 ≈ 1

∆x

(
T(x + ∆x)− T(x)

∆x
− T(x)− T(x− ∆x)

∆x

)
(2.64)

Then, interpret the discretized equation as a KCL using the electrothermal anal-
ogy where temperature corresponds to node voltage, and heat flow to current.
Draw the equivalent circuit you obtained.

b. Plot T(x) in x ∈ [0, 1].

c. In your numerical calculation, how did you choose ∆x? Justify the choice of ∆x.

d. Now use your simulator to numerically solve the above equation for T(x), x ∈
[0, 1], given H(x) = 50 for x ∈ [0, 1], κa = 0.001 , and κm = 0.1. In addition,
assume the ambient air temperature is T0 = 400, and there is not heat flow at
both ends of the bar. The zero heat flow boundary condition at x = 0 and x = 1
implies that there are no heat sinks at the ends of the package. Since heat flow
is given by

heatflow = κ
∂T
∂x

. (2.65)

zero heat flow at the boundaries means that T(0) and T(1) are unknown, but
∂T/∂x(0) = 0, and ∂T/∂x(1) = 0.
Given the zero-heat-flow boundary condition, what is the new equivalent cir-
cuit? How the different boundary condition maps into the equivalent circuit?

e. Plot the new temperature profile.

f. Explain the temperature distributions that you obtained from a physical stand-
point.
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Answer for Exercise 2.3

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
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3N U M E R I C A L E R R O R S A N D C O N D I T I O N I N G

3.1 strict diagonal dominance

Related to a theorem on one of the slides:

Definition 3.1: Strictly diagonally dominant.

A matrix [Mij] is strictly diagonally dominant if

(3.1)|Mii| > ∑
j 6=i

∣∣Mij
∣∣ ∀i

For example, the stamp matrix

[ i j

i 1
R − 1

R
j − 1

R
1
R

]
(3.2)

is not strictly diagonally dominant. For row i this strict dominance can be achieved
by adding a reference resistor

[ i j

i 1
R0

+ 1
R − 1

R
j − 1

R
1
R

]
(3.3)

However, even with strict dominance, there will be trouble with ill posed (pertur-
bative) systems.

Round off error examples with double precision

(3.4)(1− 1) + π10−17 = π10−17,

vs.

(3.5)
(

1 + π10−17
)
− 1 = 0.

This is demonstrated by

37
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#include <stdio.h>

#include <math.h>

// produces:

// 0 3.14159e-17

int main()

{

double d1 = (1 + M_PI * 1e-17) - 1 ;

double d2 = M_PI * 1e-17 ;

printf( "%g %g\n", d1, d2 ) ;

return 0 ;

}

Note that a union and bitfield [5] can be useful for exploring double precision
representation.

3.2 exploring uniqueness and existence

For a matrix system Mx = b in column format, with

(3.6)
[
M1 M2 · · · MN

]


x1

x2
...

xN

 = b.

This can be written as

(3.7)x1

weight

M1 + x2

weight

M2 + · · · xNMN = b.

Linear dependence means

(3.8)y1M1 + y2M2 + · · · yNMN = 0,

or My = 0.
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Table 3.1: Solution space.

b ∈ span{M_i} b /∈ span{M_i}
columns of M linearly independent x exists and is unique No solution

columns of M linearly dependent x exists. Infinitely many solutions No solution

With a linear dependency an additional solution, given solution x is x1 = x + αy.
This becomes relevant for numerical processing since for a system Mx1 = b a αMy
can often be found, for which

(3.9)Mx + αMy = b,

where αMy is of order 10−20.

3.3 perturbation and norms

Consider a perturbation to the system Mx = b

(3.10)(M + δM) (x + δx) = b.

Some vector norms

• L1 norm

(3.11)‖x‖1 = ∑
i
|xi|

• L2 norm

(3.12)‖x‖2 =
√

∑
i
|xi|2

• L∞ norm

(3.13)‖x‖∞ = max
i
|xi|.

These are illustrated for x = (x1, x2) in fig. 3.1.
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Figure 3.1: Some vector norms.

Figure 3.2: Matrix as a transformation.

3.4 matrix norm

A matrix operation y = Mx can be thought of as a transformation as in fig. 3.2.
The 1-norm for a Matrix is defined as

(3.14)‖M‖ = max
‖x‖1=1

‖Mx‖ ,

and the matrix 2-norm is defined as

(3.15)‖M‖2 = max
‖x‖2=1

‖Mx‖2 .



4S I N G U L A R VA L U E D E C O M P O S I T I O N , A N D C O N D I T I O N I N G
N U M B E R

4.1 singular value decomposition

Recall that the matrix norm of M, for the system y = Mx was defined as

(4.1)‖M‖ = max
‖x‖=1

‖Mx‖ .

The L2 norm will typically be used, resulting in a matrix norm of

(4.2)‖M‖2 = max
‖x‖2=1

‖Mx‖2 .

It can be shown that

(4.3)‖M‖2 = max
i

σi(M),

where σi(M) are the (SVD) singular values.

Definition 4.1: Singular value decomposition (SVD).

Given M ∈ Rm×n, a factoring of M can be found with the form

(4.4)M = UΣVT,

where U and V are orthogonal matrices such that UTU = 1, and VTV = 1, and

(4.5)Σ =



σ1

σ2
. . .

σr

0
. . .

0


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42 singular value decomposition, and conditioning number

The values σi, i ≤ min(n, m) are called the singular values of M. The singular
values are subject to the ordering

σ1 ≥ σ2 ≥ · · · ≥ 0 (4.6)

If r is the rank of M, then the σr above is the minimum non-zero singular value
(but the zeros are also called singular values).

Observe that the condition UTU = 1 is a statement of orthonormality. In terms of
column vectors ui, such a product written out explicitly is

(4.7)


uT

1

uT
2
...

uT
m


[
u1 u2 · · · um

]
=


1

1
. . .

1

 .

This is both normality uT
i ui = 1, and orthonormality uT

i uj = 1, i 6= j.

Example 4.1: A 2× 2 case.

(for column vectors ui, vj).

(4.8)M =
[
u1 u2

] [σ1

σ2

] [
vT

1

vT
2

]

Consider y = Mx, and take an x with ‖x‖2 = 1
Note: I’ve chosen not to sketch what was drawn on the board in class. See

instead the animated gif of the same in [15], or the Wolfram online SVD demo in
[6].

A very nice video treatment of SVD by Prof Gilbert Strang can be found in [12].

4.2 conditioning number

Given a perturbation of Mx = b to

(4.9)(M + δM) (x + δx) = b,
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or

(4.10)����Mx− b + δMx + Mδx + δMδx = 0.

This gives

(4.11)Mδx = −δMx− δMδx,

or

(4.12)δx = −M−1δM (x + δx) .

Taking norms

(4.13)
‖δx‖2 =

∥∥∥M−1δM (x + δx)
∥∥∥

2

≤
∥∥∥M−1

∥∥∥
2
‖δM‖2 ‖x + δx‖2 ,

or

(4.14)
‖δx‖2
‖x + δx‖2

relative error of solution

≤ ‖M‖2

∥∥∥M−1
∥∥∥

2

conditioning number of M

‖δM‖2
‖M‖2

relative perturbation of M

.

The conditioning number can be shown to be

cond(M) =
σmax

σmin
≥ 1 (4.15)

FIXME: justify.

sensitivity to conditioning number Double precision relative rounding errors can be of
the order 10−16 ∼ 2−54, which allows the relative error of the solution to be gauged

relative error of solution ≤ cond(M) ‖δM‖
‖M‖

10−15 ≤ 10 ∼ 10−16

10−2 ≤ 1014 10−16
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5.1 fill ins

The problem of fill ins in LU computations arise in locations where rows and columns
cross over zero positions.

Rows and columns can be permuted to deal with these. Here is an ad-hoc permu-
tation of rows and columns that will result in less fill ins.


a b c 0

d e 0 0

0 f g 0

0 h 0 i




x1

x2

x3

x4

 =


b1

b2

b3

b4



=⇒


a c 0 b

d 0 0 e

0 g 0 f

0 0 i h




x1

x4

x3

x2

 =


b1

b2

b3

b4



=⇒


0 a c b

0 d 0 e

0 0 g f

i 0 0 h




x3

x4

x1

x2

 =


b1

b2

b3

b4



=⇒


i 0 0 h

0 a c b

0 d 0 e

0 0 g f




x3

x4

x1

x2

 =


b4

b1

b2

b3



=⇒


i 0 0 h

0 c a b

0 0 d e

0 g 0 f




x3

x1

x4

x2

 =


b4

b1

b2

b3



(5.1)
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5.2 markowitz product

To facilitate such permutations the Markowitz product that estimates the amount of
fill in required.

Definition 5.1: Markowitz product.

Markowitz product = (Non zeros in unfactored part of Row -1)×
(Non zeros in unfactored part of Col -1)

In [7] it is stated “A still simpler alternative, which seems adequate generally, is to
choose the pivot which minimizes the number of coefficients modified at each step
(excluding those which are eliminated at the particular step). This is equivalent to
choosing the non-zero element with minimum (ρi − 1)(σj − 1).”

Note that this product is applied only to ij positions that are non-zero, something
not explicitly mentioned in the slides, nor in other locations like [13].

Example 5.1: Markowitz product.

For this matrix
a b c 0

d e 0 0

0 f g 0

0 h 0 i

 , (5.2)

the Markowitz products are


1 6 2

1 3

3 1

3 0

 . (5.3)

5.3 markowitz reordering

The Markowitz Reordering procedure (copied directly from the slides) is
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• For i = 1 to n

• Find diagonal j >= i with min Markowitz product

• Swap rows j↔ i and columns j↔ i

• Factor the new row i and update Markowitz products

Example 5.2: Markowitz reordering.

Looking at the Markowitz products eq. (5.3) a swap of rows and columns 1, 4
gives the modified matrix


i 0 h 0

0 d e 0

0 0 f g

0 a b c

 (5.4)

In this case, this reordering has completely avoided any requirement to do any
actual Gaussian operations for this first stage reduction.

Presuming that the Markowitz products for the remaining 3x3 submatrix are
only computed from that submatrix, the new products are 1 2

2 1

2 4 2

 . (5.5)

The pivot position contains a minimal product, and happens to lie on the diag-
onal. Note that it is not necessarily the best for numerical stability. It appears the
off diagonal Markowitz products are not really of interest since the reordering
algorithm swaps both rows and columns.

5.4 graph representation

It is possible to interpret the Markowitz products on the diagonal as connectivity of a
graph that represents the interconnections of the nodes. Consider the circuit of fig. 5.1
as an example
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Figure 5.1: Simple circuit.

The system equations for this circuit is of the form

x x x 0 1

x x x 0 0

x x x x 0

0 0 x x −1

−1 0 0 1 0





V1

V2

V3

V4

i


=



0

0

0

0

x


. (5.6)

The Markowitz products along the diagonal are

M11 = 9

M22 = 4

M33 = 9

M44 = 4

M55 = 4

(5.7)

Compare these to the number of interconnections of the graph fig. 5.2 of the nodes
in this circuit. These are the squares of the number of the node interconnects in each
case.

Here a 5th node was introduced for the current i between nodes 4 and 1. Observe
that the Markowitz product of this node was counted as the number of non-zero val-
ues excluding the 5, 5 matrix position. However, that doesn’t matter too much since
a Markowitz swap of row/column 1 with row/column 5 would put a zero in the
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Figure 5.2: Graph representation.

1, 1 position of the matrix, which is not desirable. Permutations of zero diagonal posi-
tions will have to be restricted to pivots required for numerical stability, or taken into
account with a a more advanced zero fill avoidance algorithm.

The minimum diagonal Markowitz products are in positions 2 or 4, with respective
Markowitz reorderings of the form



x x x 0 0

x x x 0 1

x x x x 0

0 0 x x −1

0 −1 0 1 0





V2

V1

V3

V4

i


=



0

0

0

0

x


, (5.8)

and

x 0 0 x −1

0 x x x 1

0 x x x 0

x x x x 0

1 −1 0 0 0





V4

V1

V2

V3

i


=



0

0

0

0

x


. (5.9)
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The original system had 7 zeros that could potentially be filled in the remaining
4× 4 submatrix. After a first round of Gaussian elimination, the system matrices have
the respective forms



x x x 0 0

0 x x 0 1

0 x x x 0

0 0 x x −1

0 −1 0 1 0


(5.10a)



x 0 0 x −1

0 x x x 1

0 x x x 0

0 x x x 0

0 −1 0 x x


(5.10b)

The remaining 4× 4 submatrices have interconnect graphs sketched in fig. 5.3.

Figure 5.3: Graphs after one round of Gaussian elimination.

From a graph point of view, the objective is to delete the most connected nodes.
This can be driven by the Markowitz products along the diagonal or directly with
graph methods.
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6.1 summary of factorization costs

LU (dense)

• cost: O(n3)

• cost depends only on size

LU (sparse)

• cost: Diagonal and tridiagonal are O(n), but can be up to O(n3) depending on
sparsity and the method of dealing with the sparsity.

• cost depends on size and sparsity

Computation can be affordable up to a few million elements.

Iterative methods Can be cheap if done right. Convergence requires careful precondi-
tioning.

6.2 iterative methods

Given an initial guess of x0, any iterative methods are generally of the form

Algorithm 6.1: Iterative methods.

repeat
r = b−Mxi

until ‖r‖ < ε.

The difference r is called the residual. For as long as it is bigger than desired, con-
tinue improving the estimate xi.

The matrix vector product Mxi, if dense, is of O(n2). Suppose, for example, that the
solution can be found in ten iterations. If the matrix is dense, performance can be of
10 O(n2). If sparse, this can be worse than just direct computation.
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6.3 gradient method

This is a method for iterative solution of the equation Mx = b.
This requires symmetric positive definite matrix M = MT, with M > 0, for which

an energy function is defined

Ψ(y) ≡ 1
2

yTMy− yTb (6.1)

For a two variable system this is illustrated in fig. 6.1.

Figure 6.1: Positive definite energy function.

Theorem 6.1: Energy function minimum.

The energy function eq. (6.1) has a minimum at

y = M−1b = x. (6.2)

To prove this, consider the coordinate representation

Ψ =
1
2

ya Mabyb − ybbb, (6.3)
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for which the derivatives are

(6.4)
∂Ψ
∂yi

=
1
2

Mibyb +
1
2

ya Mai − bi

= (My− b)i .

The last operation above was possible because M = MT. Setting all of these
equal to zero, and rewriting this as a matrix relation gives

My = b, (6.5)

as asserted.

This is called the gradient method because the gradient moves a point along the
path of steepest descent towards the minimum if it exists.

The method is

x(k+1) = x(k) + αk

step size

d(k)

direction

, (6.6)

where the direction is

(6.7)
d(k) = −∇Φ

= b− Mx(k)

= r(k).

Optimal step size The next iteration expansion of the energy function Φ
(
x(k+1)) is

(6.8)
Φ
(

x(k+1)
)

= Φ
(

x(k) + αkd(k)
)

=
1
2

(
x(k) + αkd(k)

)T
M
(

x(k) + αkd(k)
)
−
(

x(k) + αkd(k)
)T

b.

To find the minimum, the derivative of both sides with respect to αk is required

0 =
1
2

(
d(k)
)T

Mx(k) +
1
2

(
x(k)
)T

Md(k) + αk

(
d(k)
)T

Md(k) −
(

d(k)
)T

b. (6.9)
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Because M is symmetric, this is

αk

(
d(k)
)T

Md(k) =
(

d(k)
)T (

b−Mx(k)
)

=
(

d(k)
)T

r(k), (6.10)

or

αk =

(
r(k))T r(k)

(r(k))
T Mr(k)

(6.11)

This this method is not optimal when a new direction is picked each step of the
iteration.

6.4 recap : summary of gradient method

The gradient method allowed for a low cost iterative solution of a linear system

Mx = b, (6.12)

without a requirement for complete factorization. The residual was defined as the
difference between the application of any trial solution y to M and b

r = b−My. (6.13)

An energy function was introduced

Ψ(y) =
1
2

yTMy− yTb, (6.14)

which has an extremum at the point of solution. The goal was to attempt to follow-
ing the direction of steepest decent r(k) = −∇Ψ with the hope of finding the minimum
of the energy function. That iteration is described by

x(k+1) = x(k) + αkr(k), (6.15)

and illustrated in fig. 6.2.
The problem of the gradient method is that it introduces multiple paths as sketched

in fig. 6.3.
which lengthens the total distance that has to be traversed in the iteration.
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Figure 6.2: Gradient descent.

Figure 6.3: Gradient descent iteration.
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6.5 conjugate gradient method

The Conjugate gradient method makes the residual at step k orthogonal to all previous
search directions

1. r(1) ⊥ d(0)

2. r(1) ⊥ d(0), d(1)

3. · · ·

After n iterations, the residual will be zero.

First iteration Given an initial guess x(0), proceed as in the gradient method

d(0) = −∇Ψ(x(0)) = r(0), (6.16)

x(1) = x(0) + α0r(0), (6.17)

with

α0 =

(
r(0))T r(0)

(r(0))
T Mr(0)

, (6.18)

so that the residual is

(6.19)
r(1) = b− Mx(1)

= b− Mx(0) − α0Mr(0)

= b− αMr(0).

An orthogonality condition r(1) ⊥ d(0) is desired.

Proof:

(6.20)〈d(0), r(1)〉 = 〈d(0), r(0)〉 − α0〈d(0), Mr(0)〉
= 〈d(0), r(0)〉 − α0〈r(0), Mr(0)〉.
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Second iteration

x(2) = x(1) + α1d(1). (6.21)

The conditions to satisfy are

d(0) ⊥ r(2) (6.22a)

d(1) ⊥ r(2) (6.22b)

Observe that the orthogonality condition of eq. (6.22a) is satisfied

(6.23)

〈d(0), r(2)〉 = 〈d(0), b− Mx(2)〉
= 〈d(0), b− Mx(1) − α1Md(1)〉

= 〈d(0), b− Mx(1)〉

= 0 because d(0) ⊥ r(1)

− α1〈d(0), α1Md(1)〉

This will be zero if an M orthogonality or conjugate zero condition can be imposed

〈d(0), Md(1)〉 = 0. (6.24)

To find a new search direction d(1) = r(1)− β0d(0), eq. (6.24) is now imposed. The r(1)

is the term from the standard gradient method, and the β0d(0) term is the conjugate
gradient correction. This gives β0

β0 =
〈d(0), Mr(1)〉
〈d(0), Md(0)〉 (6.25)

Imposing eq. (6.22b) gives

α1 =
〈d(0), r(1)〉
〈d(1), Md(1)〉 . (6.26)
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Next iteration

x(k+1) = x(k) + αkd(k)

d(k) = r(k) − βk−1d(k−1)
(6.27)

The conditions to impose are

d(0) ⊥ r(k+1)

...
...

d(k−1) ⊥ r(k+1)

(6.28)

However, there are only 2 degrees of freedom α, β, despite having many conditions
to impose.

Impose the following to find βk−1

d(k−1) ⊥ r(k+1) (6.29)

(See slides for more)

6.6 full algorithm

CG without preconditioning The conjugate gradient algorithm presented in the slides
(without preconditioning) was

Algorithm 6.2: Conjugate gradient.

d(0) = r(0)

repeat

αk = (d(k))
T

r(k)

(d(k))
T

Md(k)

x(k+1) = x(k) + αkd(k)

r(k+1) = r(k) − αk Md(k)

βk = (Md(k))
T

r(k+1)

(Md(k))
T

d(k)

d(k+1) = r(k+1) − βkd(k)

until converged

The repeated calculations are undesirable for actually coding this algorithm. First
introduce a temporary for the matrix product
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Algorithm 6.3: Conjugate gradient with temporaries.

d(0) = r(0)

repeat
q = Md(k)

αk = (d(k))
T

r(k)

(d(k))
T

q

x(k+1) = x(k) + αkd(k)

r(k+1) = r(k) − αkq

βk = qTr(k+1)

qTd(k)

d(k+1) = r(k+1) − βkd(k)

until converged

This has a lot more computation than the algorithm specified in [11] §B.2. It looks
like the orthogonality properties can be used to recast the d(k) · r(k) products in terms
of r(k)

(
d(k)
)T

r(k) = r(k) ·
(

r(k) + βk−1d(k−1)
)

. (6.30)

Since the new residual is orthogonal to all the previous search directions r(k) ·
d(k−1) = 0, the βk−1 term is killed leaving just r(k) · r(k).

The numerator of βk can be tackled by noting that the transformed direction vector
q is a scaled difference of residuals. Taking dot products

(6.31)

q · r(k+1) =
1
αk

(
r(k) − r(k+1)

)
· r(k+1)

=
1
αk

(
�
�d(k) − βk−1�

��d(k−1) − r(k+1)
)
· r(k+1)

= − 1
αk

r(k+1) · r(k+1).

This gives

αk =

(
r(k))T r(k)

(d(k))
T q

(6.32a)

βk = −
(
r(k+1))T r(k+1)

αkqTd(k) , (6.32b)
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A final elimination of αk from eq. (6.32b) gives

βk = −
(
r(k+1))T r(k+1)

(r(k))
T r(k)

. (6.33)

All the pieces put together yield

Algorithm 6.4: Optimized conjugate gradient.

d(0) = r(0)

repeat
q = Md(k)

αk = (r(k))
T

r(k)

(d(k))
T

q

x(k+1) = x(k) + αkd(k)

r(k+1) = r(k) − αkq

βk = − (r(k+1))
T

r(k+1)

(r(k))
T

r(k)

d(k+1) = r(k+1) − βkd(k)

until converged

This is now consistent with eqns 45-49 of [11], with the exception that the sign of
the βk term has been flipped.

Since all the previous state does not have to be tracked the indexes can be dropped
after introducing a couple temporary variables for the squared residuals

Algorithm 6.5: Optimized conjugate gradient, more temporaries.

x = x(0)

q = Mx
r = b− q
d = r
repeat

q = Md
δ = rTr
α = δ

dTq
x = x + αd
r = r− αq
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δ′ = rTr
β = δ′

δ

δ = δ′

d = r + βd
until converged

This is coded in ps2a/conjugateGradientPainlessB2.m. That implementation allows
for a preconditioner, but applies the preconditioner in a dump and inefficient way.

CG with preconditioning An optimized preconditioned CG algorithm can be found
in [10] §4.3.5. Given x(0), that algorithm is

Algorithm 6.6: Conjugate gradient with preconditioning.

r(0) = b− Ax(0)

z(0) = P−1r(0)

p(0) = z(0)

repeat

αk = (z(k))
T

r(k)

(p(k))
T

Ap(k)

x(k+1) = x(k) + αkp(k)

r(k+1) = r(k) − αk Ap(k)

Pz(k+1) = r(k+1)

βk = (z(k+1))
T

r(k+1)

(z(k))
T

r(k)

p(k+1) = z(k+1) + βkp(k)

until converged

To adapt this to code, drop the indexes and introduce some temporaries

Algorithm 6.7: Conjugate gradient with preconditioning and temporaries.

r = b− Ax
Pz = r
p = z
δ = zTr
repeat

q = Ap
α = δ/

(
pTq

)
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x = x + αp
r = r− αq
Pz = r
δ′ = zTr
β = δ′/δ

δ = δ′

p = z + βp
until converged

This is coded in ps2a/conjugateGradientQuarteroniPrecond.m
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Table 6.1: LU vs Conjugate gradient order.

Full Sparse

LU O(n3) O(n1.2−1.8)

Conjugate gradient O(kn2) 5.4

Table 6.2: Convergence.

Full

Direct O(n3)

C.G. O(kn2)

6.7 order analysis

Note that for x, y in Rn, 〈x, y〉 = xTy is O(n), and Mx is O(n2).
A conjugate gradient and LU comparision is given in table 6.1, where k < n

Final comments

1. How to select x(0) ? An initial rough estimate can often be found by solving a
simplified version of the problem.

2. Is it neccessary to reserve memory space to store M? No. If y = Mz, the product
can be calculated without physically storing the full matrix M.

6.8 conjugate gradient convergence

For k � n, convergence orders are given in table 6.2. A matrix norm, similar to
‖x‖ =

√
xTx, is defined

‖x‖M ≡
√

xTMx. (6.34)

Note that this norm is real valued for CG which only applies to positive definite
matrices (or it will not converge), so this norm is real valued.

... lots on slides...

K(M) =
σmax

σmin
(6.35)
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...
Some fast ways to estimate the conditioning number are required.

6.9 gershgorin circle theorem

Theorem 6.2: Gershgorin circle theorem.

Given M, for any eigenvalue of M there is an i ∈ [1, n] such that

|λ−Mii| ≤∑
j 6=i

∣∣Mij
∣∣

Consider this in the complex plane for row i

[
Mi1 Mi2 · · ·Mii · · ·Min

]
(6.36)

This inequality covers a circular region in the complex plane as illustrated in fig. 6.4
for a two eigenvalue system.

Figure 6.4: Gershgorin circles.

These are called Gershgorin circles.
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Example 6.1: Leaky bar.

For the leaky bar of fig. 6.5, the matrix is
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Figure 6.5: Leaky bar.

M =



2 −1

−1 3 −1

−1 3 −1
. . .

−1

−1 2


(6.37)

The Gershgorin circles are fig. 6.6.
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Figure 6.6: Gershgorin circles for leaky bar.

This puts a bound on the eigenvalues

1 ≤ λ(M) ≤ 5, (6.38)

so that

K(M) =
λmax

λmax
≤ 5. (6.39)

On slides: example with smaller leakage to ground. On slides: example with
no leakage to ground.

These had, progressively larger and larger (possibly indefinite for the latter)
conditioning number estimates.

The latter had the form of

M =


1 −1 0 0

−1 2 −1 0

0 −1 2 1

0 0 −1 1

 (6.40)

The exact eigenvalues for this system happens to be

λ ∈ {3.10690.2833, 1.3049± 0.7545i} (6.41)

so the exact conditioning number is 3.1/0.28 ≈ 11.
Compare this to the estimates, which are

|λ1 − 1| ≤ 1

|λ2 − 2| ≤ 2

|λ3 − 2| ≤ 2

|λ4 − 1| ≤ 1

(6.42)

These are two circles at z = 1 of radius 1, and two circles at z = 2 of radius 2, as
plotted in fig. 6.7.
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Figure 6.7: Gershgorin circles for 4 eigenvalue system.

6.10 preconditioning

Goal is to take

Mx = b (6.43)

and introduce an easy to invert matrix P to change the problem to

P−1Mx = P−1b. (6.44)

This system has the same solution, but allows for choosing P to maximize the
convergence speed.

6.11 symmetric preconditioning

Because the conjugate gradient methods requires a symmetric matrix, it is desirable
to pick a preconditioning method that preserves the symmetric (and positive definite)
nature of the matrix. This is possible by splitting P into square root factors

P = P1/2P1/2, (6.45)
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and apply to Mx = b as

P−1/2M P−1/2P1/2

= I

x = P−1/2b. (6.46)

Now introduce a change of variables y = P1/2x, transforming the system to solve
into

P−1/2MP−1/2y = b′. (6.47)

Some options

• Diagonal preconditioner: P = diag{M}

• Incomplete LU or Cholesky factorization. Cheap, approximate decomposition
where a preconditioner M ' LU = P is picked. An incomplete LU factorization
would be easy to invert since lower or upper triangular matrices are easy to
invert. In Matlab the ilu() function can be used to do an incomplete LU factor-
ization.

• ... (many preconditioner are available).

For a symmetric positive definite matrix M, an LU decomposition of the form M =
LLT, is called the Cholesky factorization.

As an example consider the matrix

M =



2

2
(small)

. . .

6

6

. . .

(small)
50

50



, (6.48)
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for which a diagonal preconditioner can be used

P =



1/2

1/2

. . .

1/6

1/6

. . .

1/50

1/50



. (6.49)

The preconditioned matrix will now have the form

M′ =



1

1
(small)

. . .

1

1

. . .

(small)
1

1



, (6.50)

so that the Gershgorin circles can all be found within a small radius of unity as
sketched in fig. 6.8.
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Figure 6.8: Gershgorin circles after preconditioning.

6.12 preconditioned conjugate gradient

It is possible to avoid inverting the preconditioner by requiring that the LU decompo-
sition of P be easily computed. Then

Pzk = rk (6.51)

can be solved by successive forward and back substitution.
More on slides...

6.13 problems

Exercise 6.1 Conjugate gradient and Gershgorin circles.

a. Consider an arbitrary circuit made by positive resistors and independent DC
current sources. Prove, mathematically, that its nodal matrix is always symmet-
ric and positive semi-definite.

b. Consider an electrical network made by:

• N × N square grid of resistors of value R, where N is the number of
resistors per edge. The grid nodes are numbered from 1 to (N + 1)2 . Node
1 is a corner node

• resistor Rg between each node of the grid and the reference node.
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• a non-ideal voltage source connected between node 1 and ground. The
voltage source has value Vs and internal (series) resistance Rs

• three current sources between three randomly-selected nodes of the grid
and ground. The source current must flow from the grid to the reference
node as shown in fig. 6.9 (and not vice versa!) Choose the current source
values randomly between 10 mA and 100 mA.

Figure 6.9: Subcircuit.

Write a Matlab routine that generates a SPICE compatible netlist for this system
(you can reuse the code you developed for the first problem set). Generate the
modified nodal analysis equations

Gx = b (6.52)

for a grid with N = 40, R = 0.1Ω, Rg = 1MΩ, Vs = 2V, Rs = 0.1Ω. Then, write in
Matlab your own routine for the conjugate gradient method. Give to the user
the possibility of specifying a preconditioning matrix P. The routine shall stop
iterations when the residual norm satisfies

‖Gx− b‖2
‖b‖2

< ε (6.53)

where ε is a threshold specified by the user. Use the conjugate gradient method
to solve modified nodal analysis eq. (6.52) of the grid.
Does the conjugate gradient method converge?

c. Discuss if the conjugate gradient method can be applied to the modified nodal
analysis equations of the grid. Support your answer with some numerical re-
sults.

d. Suggest a transformation of the grid that will lead to a circuit equivalent to the
original one, but for which conjugate gradient can be used. We call this new
circuit “2D grid”. You will have to use it for all the questions that follow.
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e. Solve the “2D grid” circuit using three methods:

• your own LU decomposition

• the conjugate gradient method with ε = 10−3

• the conjugate gradient method with ε = 10−3 and a tri-diagonal precondi-
tioner P

for increasing N. Use R = 0.1Ω. Plot the CPU time taken by the three methods
vs N, and the number of iterations taken by the two iterative methods. Explore
a range of N compatible with your PC speed and memory, but make sure to
reach fairly large values of N.

f. Does preconditioning reduce the number of iterations required by conjugate
gradient? Does preconditioning reduce CPU time?

g. Try to make your code for the conjugate gradient method as efficient as possi-
ble. Show the improvements that you have obtained.

h. Generate nodal analysis eq. (6.52) for “2D grid” with N = 20. Plot the eigenval-
ues of G and the Gershgorin circles in three cases: R = 0.1Ω, R = 1Ω, R = 10Ω.
Verify Gershgorin Circle theorem in the three cases.

i. Repeat the previous point for the preconditioned nodal matrix, and compare
the circles obtained in the two cases.

j. Let N = 20, and solve “2D grid” with conjugate gradient with and without pre-
conditioning (use the tri-diagonal preconditioner). Plot the normalized norm
of the residual

‖Gx− b‖2
‖b‖2

(6.54)

versus the iteration counter for three cases: R = 0.1Ω, R = 1Ω, R = 10Ω. Discuss
your findings in the light of Gershgorin circles.

Answer for Exercise 6.1

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING
ECE1254. .

. .
.

.
. . .

. .
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7.1 nonlinear systems

On slides, some examples to motivate:

• struts

• fluids

• diode (exponential)

Example in fig. 7.1.

Figure 7.1: Diode circuit.

Id = Is

(
eVd/VT − 1

)
=

10−Vd

10
. (7.1)

7.2 richardson and linear convergence

Seeking the exact solution x∗ for

f (x∗) = 0, (7.2)

Suppose that

xk+1 = xk + f (xk) (7.3)

75
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If f (xk) = 0 then the iteration has converged at xk = x∗.

Convergence analysis Write the iteration equations at a sample point and the solution
as

xk+1 = xk + f (xk) (7.4a)

x∗ = x∗ + f (x∗)

= 0

(7.4b)

The difference is

xk+1 − x∗ = xk − x∗ +
(

f (xk)− f (x∗)
)

. (7.5)

The last term can be quantified using the mean value theorem B.2, giving

(7.6)
xk+1 − x∗ = xk − x∗ +

∂ f
∂x

∣∣∣∣
x̃

(
xk − x∗

)
=
(

xk − x∗
)(

1 +
∂ f
∂x

∣∣∣∣
x̃

)
.

The absolute value is thus

∣∣∣xk+1 − x∗
∣∣∣ =
∣∣∣xk − x∗

∣∣∣∣∣∣∣1 +
∂ f
∂x

∣∣∣∣
x̃

∣∣∣∣. (7.7)

Convergence is obtained when
∣∣∣1 + ∂ f

∂x

∣∣∣
x̃

∣∣∣ < 1 in the iteration region. This could
easily be highly dependent on the initial guess.

A more accurate statement is that convergence is obtained provided

∣∣∣∣1 +
∂ f
∂x

∣∣∣∣ ≤ γ < 1 ∀x̃ ∈ [x∗ − δ, x∗ + δ], (7.8)

and
∣∣x0 − x∗

∣∣ < δ. This is illustrated in fig. 7.2.
It could very easily be difficult to determine the convergence regions.
There are some problems
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Figure 7.2: Convergence region.

• Convergence is only linear

• x, f (x) are not in the same units (and potentially of different orders). For exam-
ple, x could be a voltage and f (x) could be a circuit current.

• (more on slides)

Examples where this may be desirable include

• Spice Gummal Poon transistor model. Lots of diodes, ...

• Mosfet model (30 page spec, lots of parameters).

7.3 newton’s method

The core idea of this method is sketched in fig. 7.3. To find the intersection with the
x-axis, follow the slope closer to the intersection.

Figure 7.3: Newton’s method.
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To do this, expand f (x) in Taylor series to first order around xk, and then solve for
f (x) = 0 in that approximation

f (xk+1) ≈ f (xk) +
∂ f
∂x

∣∣∣∣
xk

(
xk+1 − xk

)
= 0. (7.9)

This gives

xk+1 = xk − f (xk)
∂ f
∂x

∣∣∣
xk

. (7.10)

Example 7.1: Newton’s method.

For the solution of

f (x) = x3 − 2, (7.11)

it was found

Table 7.1: Numerical Newton’s method example.

k xk
∣∣xk − x∗

∣∣
0 10 8.74

1 · 5.4
... ·

...

8 · 1.7× 10−3

9 · 2.4× 10−6

10 · 6.6× 10−12

The error tails off fast as illustrated roughly in fig. 7.4.
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Figure 7.4: Error by iteration.

Convergence analysis The convergence condition is

0 = f (xk) +
∂ f
∂x

∣∣∣∣
xk

(
xk+1 − xk

)
. (7.12)

The Taylor series for f around xk, using a mean value formulation is

f (x) = f (xk) +
∂ f
∂x

∣∣∣∣
xk

(
x− xk

)
. +

1
2

∂2 f
∂x2

∣∣∣∣
x̃∈[x∗ ,xk]

(
x− xk

)2
. (7.13)

Evaluating at x∗ gives

0 = f (xk) +
∂ f
∂x

∣∣∣∣
xk

(
x∗ − xk

)
. +

1
2

∂2 f
∂x2

∣∣∣∣
x̃∈[x∗ ,xk]

(
x∗ − xk

)2
, (7.14)

and subtracting this from eq. (7.12) leaves

0 =
∂ f
∂x

∣∣∣∣
xk

(
xk+1 −��xk − x∗ +��xk

)
− 1

2
∂2 f
∂x2

∣∣∣∣
x̃

(
x∗ − xk

)2
. (7.15)

Solving for the difference from the solution, the error is

xk+1 − x∗ =
1
2

(
∂ f
∂x

)−1 ∂2 f
∂x2

∣∣∣∣
x̃

(
xk − x∗

)2
, (7.16)

or in absolute value

∣∣∣xk+1 − x∗
∣∣∣ =

1
2

∣∣∣∣∂ f
∂x

∣∣∣∣−1∣∣∣∣∂2 f
∂x2

∣∣∣∣∣∣∣xk − x∗
∣∣∣2. (7.17)

Convergence is quadratic in the error from the previous iteration. There will be
trouble if the derivative goes small at any point in the iteration region. For example
in fig. 7.5, the iteration could easily end up in the zero derivative region.
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Figure 7.5: Newton’s method with small derivative region.

When to stop iteration One way to check is to look to see if the difference

∥∥∥xk+1 − xk
∥∥∥ < ε∆x, (7.18)

however, when the function has a very step slope this may not be sufficient unless
the trial solution is also substituted to see if the desired match has been achieved.

Alternatively, if the slope is shallow as in fig. 7.5, then checking for just
∣∣ f (xk+1

∣∣ < ε f
may also put the iteration off target.

Finally, a relative error check to avoid false convergence may also be required. Fig-
ure 7.6 shows both absolute convergence criteria

∣∣∣xk+1 − xk
∣∣∣ < ε∆x (7.19a)

∣∣∣ f (xk+1)
∣∣∣ < ε f . (7.19b)

A small relative difference may also be required

∣∣xk+1 − xk
∣∣

|xk|
< ε f ,r. (7.20)

This can become problematic in real world engineering examples such as to diode
of fig. 7.7, containing both shallow regions and fast growing or dropping regions.
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Figure 7.6: Possible relative error difference required.

Figure 7.7: Diode current curve.
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7.4 solution of n nonlinear equations in n unknowns

It is now time to move from solutions of nonlinear functions in one variable:

f (x∗) = 0, (7.21)

to multivariable systems of the form

f1(x1, x2, · · · , xN) = 0
...

fN(x1, x2, · · · , xN) = 0

, (7.22)

where the unknowns are

x =


x1

x2
...

xN

 . (7.23)

Form the vector F

F(x) =


f1(x1, x2, · · · , xN)

...

fN(x1, x2, · · · , xN)

 , (7.24)

so that the equation to solve is

F(x) = 0. (7.25)

The Taylor expansion of F around point x0 is

F(x) = F(x0) + JF(x0)

Jacobian

(x− x0) , (7.26)
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where the Jacobian is

JF(x0) =


∂ f1
∂x1

. . . ∂ f1
∂xN

. . .
∂ fN
∂x1

. . . ∂ fN
∂xN

 (7.27)

7.5 multivariable newton’s iteration

Given xk, expand F(x) around xk

F(x) ≈ F(xk) + JF(xk)
(

x− xk
)

(7.28)

Applying the approximation

0 = F(xk) + JF(xk)
(

xk+1 − xk
)

, (7.29)

multiplying by the inverse Jacobian, and some rearranging gives

xk+1 = xk − J−1
F (xk)F(xk). (7.30)

The algorithm is

Algorithm 7.1: Newton’s method.

Guess x0, k = 0.
repeat

Compute F and JF at xk

Solve linear system JF(xk)∆xk = −F(xk)
xk+1 = xk + ∆xk

k = k + 1
until converged
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As with one variable, there are a number of convergence conditions to check for

∥∥∥∆xk
∥∥∥ < ε1∥∥∥F(xk+1)
∥∥∥ < ε2∥∥∆xk
∥∥

‖xk+1‖
< ε3

(7.31)

Typical termination is some multiple of eps, where eps is the machine precision.
This may be something like:

4× N × eps, (7.32)

where N is the “size of the problem”. Sometimes there may be physically meaning-
ful values for the problem that define the desirable iteration cutoff. For example, for a
voltage problem, it might be that precisions greater than a millivolt are not of interest.

7.6 automatic assembly of equations for nonlinear system

Nonlinear circuits Start off by considering a nonlinear resistor, designated within a
circuit as sketched in fig. 7.8.

Figure 7.8: Non-linear resistor.

Example: diode, with i = g(v), such as

i = I0

(
ev/ηVT − 1

)
. (7.33)

Consider the example circuit of fig. 7.9. KCL’s at each of the nodes are

1. IA + IB + ID − Is = 0

2. −IB + IC − ID = 0
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Figure 7.9: Example circuit.

Introducing the constitutive equations this is

1. gA(V1) + gB(V1 −V2) + gD(V1 −V2)− Is = 0

2. −gB(V1 −V2) + gC(V2)− gD(V1 −V2) = 0

In matrix form this is[
gD −gD

−gD gD

] [
V1

V2

]
+

[
gA(V1) +gB(V1 −V2) −Is

−gB(V1 −V2) +gC(V2)

]
= 0. (7.34)

The entire system can be written in matrix form as

F(x) = Gx + F′(x) = 0. (7.35)

The first term, a product of a nodal matrix G represents the linear subnetwork, and
is filled with the stamps that are already familiar.

The second term encodes the relationships of the nonlinear subnetwork. This non-
linear component has been marked with a prime to distinguish it from the complete
network function that includes both linear and nonlinear elements.

Observe the similarity with the previous stamp analysis. With gA() connected on
one end to ground it occurs only in the resulting vector, whereas the nonlinear ele-
ments connected to two non-zero nodes in the network occur once with each sign.
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Figure 7.10: Non-linear resistor circuit element.

Stamp for nonlinear resistor For the nonlinear circuit element of fig. 7.10.

F′(x) =
[

n1→ +g(Vn1 −Vn2)
n2→ −g(Vn1 −Vn2)

]
(7.36)

Stamp for Jacobian

JF(xk) = G + JF′(xk). (7.37)

Here the stamp for the Jacobian, an N × N matrix, is

JF′(xk) =



V1 ··· Vn1 Vn2 ··· VN

1
...

n1
∂g(Vn1−Vn2 )

∂Vn1

∂g(Vn1−Vn2 )
∂Vn2

n2 − ∂g(Vn1−Vn2 )
∂Vn1

− ∂g(Vn1−Vn2 )
∂Vn2

...
N


. (7.38)

7.7 damped newton’s method

Figure 7.11 illustrates a system that may have troublesome oscillation, depending on
the initial guess selection.

Large steps can be dangerous, and can be avoided by modifying Newton’s method
as follows

The algorithm is
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Figure 7.11: Oscillatory Newton’s iteration.

Algorithm 7.2: Damped Newton’s method.

Guess x0, k = 0.
repeat

Compute F and JF at xk

Solve linear system JF(xk)∆xk = −F(xk)
xk+1 = xk + αk∆xk

k = k + 1
until converged

This is the standard Newton’s method when αk = 1.

7.8 continuation parameters

Newton’s method converges given a close initial guess. A sequence of problems can
be generated where the previous problem generates a good initial guess for the next
problem.

An example is a heat conducting bar, with a final heat distribution. The numeric
iteration can be started with T = 0. The temperature can be gradually increased until
the final desired heat distribution is increased.

To solve a general system of the form

F(x) = 0. (7.39)

modify this problem by introducing a parameter

F̃(x(λ), λ) = 0, (7.40)
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where

• F̃(x(0), 0) = 0 is easy to solve

• F̃(x(1), 1) = 0 is equivalent to F(x) = 0.

• (more on slides)

The source load stepping algorithm is

• Solve F̃(x(0), 0) = 0, with x(λprev = x(0)

• (more on slides)

This can still have problems, for example, when the parameterization is multivalued
as in fig. 7.12.

Figure 7.12: Multivalued parameterization.

It is possible to adjust λ so that the motion is along the parameterization curve.

7.9 singular jacobians

(mostly on slides)
There is the possibility of singular Jacobians to consider. FIXME: not sure how this

system represented that. Look on slides.

f̃ (v(λ), λ) = i(v)− 1
R

(v− λVs) = 0. (7.41)

An alternate continuation scheme uses

F̃(x(λ), λ) = λF(x(λ)) + (1− λ)x(λ). (7.42)
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Figure 7.13: Diode system that results in singular Jacobian.

This scheme has

F̃(x(0), 0) = 0 (7.43a)

F̃(x(1), 1) = F(x(1)), (7.43b)

and for one variable, easy to compute Jacobian at the origin, or the original Jacobian
at λ = 1

∂F̃
∂x

(x(0), 0) = I (7.44a)

∂F̃
∂x

(x(1), 1) =
∂F
∂x

(x(1)) (7.44b)

7.10 struts and joints , node branch formulation

Consider the simple strut system of fig. 7.14 again.
The unknowns are

1. Forces

At each of the points there is a force with two components

(7.45)fA =
(

fA,x, fA,y
)



90 solution of nonlinear systems

Figure 7.14: Simple strut system.

Construct a total force vector

f =



fA,x

fA,y

fB,x

fB,y
...


(7.46)

2. Positions of the joints

r =



x1

y1

y1

y2
...


(7.47)

The given variables are

1. The load force fL.

2. The joint positions at rest.

3. parameter of struts.
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Conservation laws The conservation laws are

fA + fB + fC = 0 (7.48a)

−fC + fD + fL = 0 (7.48b)

which can be put into matrix form


x1 1 0 1 0 1 0 0 0
y1 0 1 0 1 0 0 0 0
x2 0 0 0 0 −1 0 1 0
y2 0 1 0 1 0 −1 0 1





fA,x

fA,y

fB,x

fB,y

fC,x

fC,y

fD,x

fD,y


=


0

0

− fL,x

− fL,y

 (7.49)

Here the block matrix is called the incidence matrix A. The system can be expressed
as

Af = fL. (7.50)

Constitutive laws Given a pair of nodes as in fig. 7.15.

Figure 7.15: Strut spanning nodes.
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each component has an equation relating the reaction forces of that strut based on
the positions

fc,x = Sx (x1 − x2, y1 − y2, pc) (7.51a)

fc,y = Sy (x1 − x2, y1 − y2, pc) , (7.51b)

where pc represent the parameters of the system. Write

f =



fA,x

fA,y

fB,x

fB,y
...


=


Sx (x1 − x2, y1 − y2, pc)

Sy (x1 − x2, y1 − y2, pc)
...

 , (7.52)

or

f = S(r) (7.53)

Putting the pieces together The node branch formulation is

Af− fL = 0

f− S(r) = 0
(7.54)

Elimination of the forces (the equivalent of currents in this system) produces the
nodal formulation

AS(r)− fL = 0 (7.55)

This nodal formulation cannot be used with struts that are so stiff that the positions
of some of the nodes are fixed. As before this can be worked around by introducing
an additional unknown for each component of such a strut.

The cost of this Jacobian calculation required to approximate this system can still
potentially be expensive.
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7.11 problems

Exercise 7.1 Newton’s method.

Consider the circuit in fig. 7.16. By setting R = 1, Is1 = 5, Is2 = 10−6, and using diode
parameters I0 = 10−6 and 1/vT = 80, we can obtain the following nodal analysis
equation.

x + 10−6e80x = 5 (7.56)

Figure 7.16: Circuit.

Write a program to use Newton’s method to solve this equation for x, and use the
program to answer the questions below:

a. Starting with an initial guess of x = 0, how many Newton iterations are re-
quired to compute an x that is within 10−6 of the exact solution?

b. How did you determine the accuracy of your solution?

c. Try using a simple source-stepping style continuation scheme to solve the sys-
tem of equations, as in

x + 10−6e80x = λ ∗ 5, (7.57)

where λ is a continuation parameter that varies from zero to one. How many
Newton iterations do you need to solve the original problem?
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d. Compare the two approaches discussed in the slides for generating an initial
guess for each step of your continuation scheme. That is, compare using just
the previous step’s converged solution

x0(λ) = x(λprev), (7.58)

to updating the converged solution using the derivative with respect to λ, that
is:

x0(λ) = x(λprev) +
dx
dλ

(
λprev

)
δλ. (7.59)

Does using the derivative help?

Answer for Exercise 7.1

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING
ECE1254. .

. .
.

.
. . .

. .
. . .

. .
. .

.
. . .

.
.

. . .
. .

. . .
. .

.
. .

. .
. .

.
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. .
. .

. . .
. .

. .
. . END-

REDACTION

Exercise 7.2 Finite element methods.

When modeling distributions of charged particles governed by drift-diffusion equa-
tions, equilibrium analysis typically leads to the following nonlinear Poisson equation

−∂2ψ

∂x2 = −
(

eψ(x) − e−ψ(x)
)

, (7.60)

where we will consider the interval x ∈ [0, 1] with the boundary conditions ψ(0) =
−V and ψ(1) = V . If a simple finite-difference scheme is used to solve the nonlinear
Poisson equation on an N-node grid, the discrete equations are

2ψi − ψi+1 − ψi−1 + ∆x2 (eψi − e−ψi
)

= 0, (7.61)

for i ∈ [2, · · · , N − 1],

2ψ1 − ψ2 − (−V) + ∆x2 (eψ1 − e−ψ1
)

= 0, (7.62)

and

2ψN − ψN−1 −V + ∆x2 (eψN − e−ψN
)

= 0. (7.63)

Note, ∆x = 1/(N + 1) and not 1/(N − 1). The nodes at x = 0 and x = 1 are not
included in the discretization, but rather enter through the boundary conditions.

a. Prove that the Jacobian associated with the above discretized equations is non-
singular regardless of the values for the ψi’s.

b. Based on this observation, how do you expect damped Newton methods will
perform, when applied to solving this problem?

c. Solve the above equations with a multidimensional Newton’s method using a
zero initial guess for the ψi’s, and N = 100. Demonstrate that your program
achieves quadratic convergence.
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d. and determine the number of Newton iterations required to insure one part in
106 accuracy in the solution for two cases: when V = 1 and when V = 20.

e. What happens when V = 100?

Answer for Exercise 7.2

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING
ECE1254. .

. .
.

.
. . .

. .
. . .

. .
. .

.
. . .

.
.

. . .
. .

. . .
. .

.
. .

. .
. .

.
. .

. .
. . .

. .
. .

. . END-
REDACTION
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8.1 assembling equations automatically for dynamical systems

Example 8.1: RC circuit.

The method can be demonstrated well by example. Consider the RC circuit fig. 8.1
for which the capacitors introduce a time dependence

Figure 8.1: RC circuit.

The unknowns are v1(t), v2(t).
The equations (KCLs) at each of the nodes are

1. v1(t)
R1

+ C1
dv1
dt + v1(t)−v2(t)

R2
+ C2

d(v1−v2)
dt − is,1(t) = 0

2. v2(t)−v1(t)
R2

+ C2
d(v2−v1)

dt + v2(t)
R3

+ C3
dv2
dt − is,2(t) = 0

This has the matrix form[
Z1 + Z2 −Z2

−Z2 Z2 + Z3

] [
v1(t)

v2(t)

]
+

[
C1 + C2 −C2

−C2 C2 + C3

] [
dv1(t)

dt
dv2(t

dt )

]
=

[
1 0

0 1

] [
is,1(t)

is,2(t)

]
. (8.1)

97
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Observe that the capacitor between node 2 and 1 is associated with a stamp of
the form

[
C2 −C2

−C2 C2

]
, (8.2)

very much like the impedance stamps of the resistor node elements.

The RC circuit problem has the abstract form

Gx(t) + C
dx(t)

dt
= Bu(t), (8.3)

which is more general than a state space equation of the form

dx(t)
dt

= Ax(t) + Bu(t). (8.4)

Such a system may be represented diagrammatically as in fig. 8.2.

Figure 8.2: State space system.

The C factor in this capacitance system, is generally not invertible. For example,
if consider a 10 node system with only one capacitor, for which C will be mostly
zeros. In a state space system, in all equations have a derivative. All equations are
dynamical.

The time dependent MNA system for the RC circuit above, contains a mix of dy-
namical and algebraic equations. This could, for example, be a pair of equations like

dx1

dt
+ x2 + 3 = 0 (8.5a)

x1 + x2 + 3 = 0 (8.5b)
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Figure 8.3: Inductor configuration.

How to handle inductors A pair of nodes that contains an inductor element, as in
fig. 8.3, has to be handled specially.

The KCL at node 1 has the form

· · · + iL(t) + · · · = 0, (8.6)

where

vn1(t)− vn2(t) = L
diL
dt

. (8.7)

It is possible to express this in terms of iL, the variable of interest

iL(t) =
1
L

∫ t

0
(vn1(τ)− vn2(τ)) dτ + iL(0). (8.8)

Expressing the problem directly in terms of such integrals makes the problem
harder to solve, since the usual differential equation toolbox cannot be used directly.
An integro-differential toolbox would have to be developed. What can be done instead
is to introduce an additional unknown for each inductor current derivative diL/dt, for
which an additional MNA row is introduced for that inductor scaled voltage differ-
ence.

8.2 numerical solution of differential equations

Consider the one variable system

Gx(t) + C
dx
dt

= Bu(t), (8.9)

given an initial condition x(0) = x0. Imagine that this system has the solution
sketched in fig. 8.4.

Very roughly, the steps for solution are of the form
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Figure 8.4: Discrete time sampling.

1. Discretize time

2. Aim to find the solution at t1, t2, t3, · · ·

3. Use a finite difference formula to approximate the derivative.

There are various schemes that can be used to discretize, and compute the finite
differences.

8.3 forward euler method

One such scheme is to use the forward differences, as in fig. 8.5, to approximate the
derivative

ẋ(tn) ≈ xn+1 − xn

∆t
. (8.10)

Introducing this into eq. (8.9) gives

Gxn + C
xn+1 − xn

∆t
= Bu(tn), (8.11)

or

Cxn+1 = ∆tBu(tn)− ∆tGxn + Cxn. (8.12)

The coefficient C must be invertible, and the next point follows immediately

xn+1 =
∆tB

C
u(tn) + xn

(
1− ∆tG

C

)
(8.13)
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Figure 8.5: Forward difference derivative approximation.

8.4 backward euler method

Discretized time dependent partial differential equations were seen to have the form

Gx(t) + Cẋ(t) = Bu(t), (8.14)

where G, C, B are matrices, and u(t) is a vector of sources.
The backward Euler method augments eq. (8.14) with an initial condition. For a one

dimensional system such an initial condition could a zero time specification

Gx(t) + Cẋ(t) = Bu(t), (8.15a)

x(0) = x0 (8.15b)

Discretizing time as in fig. 8.6.
The discrete derivative, using a backward difference, is

ẋ(t = tn) ≈ xn − xn−1

∆t
(8.16)

Evaluating eq. (8.15a) at t = tn is

Gxn + Cẋ(t = tn) = Bu(tn), (8.17)
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Figure 8.6: Discretized time.

or approximately

Gxn + C
xn − xn−1

∆t
= Bu(tn). (8.18)

Rearranging

(
G +

C
∆t

)
xn =

C
∆t

xn−1 + Bu(tn). (8.19)

Assuming that matrices G, C are constant, and ∆t is fixed, a matrix inversion can
be avoided, and a single LU decomposition can be used. For N sampling points (not
counting t0 = 0), N sets of backward and forward substitutions will be required to
compute x1 from x0, and so forth.

Backwards Euler is an implicit method.
Recall that the forward Euler method gave

xn+1 = xn

(
I − C−1∆tG

)
+ C−1∆tBu(tn) (8.20)

This required

• C must be invertible.

• C must be cheap to invert, perhaps C = I, so that

xn+1 = (I − ∆tG) xn + ∆tBu(tn) (8.21)
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• This is an implicit method

• This can be cheap but unstable.

8.5 trapezoidal rule (tr)

The derivative can be approximated using an average of the pair of derivatives as
illustrated in fig. 8.7.

Figure 8.7: Trapezoidal derivative approximation.

xn − xn−1

∆t
≈ ẋ(tn−1) + ẋ(tn)

2
. (8.22)

Application to eq. (8.15a) for tn−1, tn respectively gives

Gxn−1 + Cẋ(tn−1) = Bu(tn−1)

Gxn + Cẋ(tn) = Bu(tn)
(8.23)

Averaging these

G
xn−1 + xn

2
+ C

ẋ(tn−1) + ẋ(tn)
2

= B
u(tn−1) + u(tn)

2
, (8.24)

and inserting the trapezoidal approximation

G
xn−1 + xn

2
+ C

xn − xn−1

∆t
= B

u(tn−1) + u(tn)
2

, (8.25)
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and a final rearrangement yields

(
G +

2
∆t

C
)

xn = −
(

G− 2
∆t

C
)

xn1 + B (u(tn−1) + u(tn)) . (8.26)

This is

• also an implicit method.

• requires LU of G + 2C/∆t.

• more accurate than BE, for the same computational cost.

In all of these methods, accumulation of error is something to be very careful of,
and in some cases such error accumulation can even be exponential.

This is effectively a way to introduce central differences. On the slides this is seen
to be more effective at avoiding either artificial damping and error accumulation that
can be seen in backwards and forwards Euler method respectively.

8.6 nonlinear differential equations

Assume that the relationships between the zeroth and first order derivatives has the
form

F (x(t), ẋ(t)) = 0 (8.27a)

x(0) = x0 (8.27b)

The backward Euler method where the derivative approximation is

ẋ(tn) ≈ xn − xn−1

∆t
, (8.28)

can be used to solve this numerically, reducing the problem to

F
(

xn,
xn − xn−1

∆t

)
= 0. (8.29)
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Figure 8.8: Possible solution points.

This can be solved with Newton’s method. How do we find the initial guess for
Newton’s? Consider a possible system in fig. 8.8.

One strategy for starting each iteration of Newton’s method is to base the initial
guess for x1 on the value x0, and do so iteratively for each subsequent point. One
can imagine that this may work up to some sample point xn, but then break down
(i.e. Newton’s diverges when the previous value xn−1 is used to attempt to solve
for xn). At that point other possible strategies may work. One such strategy is to
use an approximation of the derivative from the previous steps to attempt to get a
better estimate of the next value. Another possibility is to reduce the time step, so the
difference between successive points is reduced.

8.7 analysis , accuracy and stability (∆ t → 0)

Consider a differential equation

ẋ (t) = f (x (t) , t) (8.30a)

x (t0 ) = x0 (8.30b)

A few methods of solution have been considered

(FE) xn+1 − xn = ∆ t f (xn , tn )

(BE) xn+1 − xn = ∆ t f (xn+1 , tn+1 )

(TR) xn+1 − xn = ∆ t
2 f (xn+1 , tn+1 ) + ∆ t

2 f (xn , tn )
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A common pattern can be observed, the generalization of which are called linear
multistep methods (LMS) , which have the form

k−1

∑
j=−1

α j xn− j = ∆ t
k−1

∑
j=−1

β j f (xn− j , tn− j ) (8.31)

The FE (explicit), BE (implicit), and TR methods are now special cases with

(FE) α−1 = 1, α0 = −1, β−1 = 0, β0 = 1

(BE) α−1 = 1, α0 = −1, β−1 = 1, β0 = 0

(TR) α−1 = 1, α0 = −1, β−1 = 1/2, β0 = 1/2

Here k is the number of timesteps used. The method is explicit if β−1 = 0.

Definition 8.1: Convergence.

With

x(t) : exact solution

xn : computed solution

en : where en = xn − x(tn), is the global error

The LMS method is convergent if

max
n,∆t→0

|xn − t(tn)| → 0

Convergence: zero-stability and consistency (small local errors made at each itera-
tion),

where zero-stability is “small sensitivity to changes in initial condition”.

Definition 8.2: Consistency.

A local error Rn+1 can be defined as

Rn+1 =
k−1

∑
j=−1

αjx(tn−j)− ∆t
k−1

∑
j=−1

β j f (x(tn−j), tn−j).
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The method is consistent if

lim
∆t

(
max

n

∣∣∣∣ 1
∆t

Rn+1

∣∣∣∣ = 0
)

or Rn+1 ∼ O(∆t2)

8.8 residual for lms methods

Mostly on slides: 12_ODS.pdf
Residual is illustrated in fig. 8.9, assuming that the iterative method was accurate

until tn

Figure 8.9: Residual illustrated.

Summary

FE : Rn+1 ∼ (∆t)2. This is of order p = 1.

BE : Rn+1 ∼ (∆t)2. This is of order p = 1.

TR : Rn+1 ∼ (∆t)3. This is of order p = 2.

BESTE : Rn+1 ∼ (∆t)4. This is of order p = 3.
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8.9 global error estimate

Suppose t ∈ [0, 1]s, with N = 1/∆t intervals. For a method with local error of order
Rn+1 ∼ (∆t)2 the global error is approximately NRn+1 ∼ ∆t.

8.10 stability

Recall that a linear multistep method (LMS) was a system of the form

k−1

∑
j=−1

αjxn−j = ∆t
k−1

∑
j=−1

β j f (xn−j, tn−j) (8.32)

Consider a one dimensional test problem

ẋ(t) = λx(t) (8.33)

where as in fig. 8.10, Re(λ) < 0 is assumed to ensure stability.

Figure 8.10: Stable system.

Linear stability theory can be thought of as asking the question: “Is the solution of
eq. (8.33) computed by my LMS method also stable?”

Application of eq. (8.32) to eq. (8.33) gives

k−1

∑
j=−1

αjxn−j = ∆t
k−1

∑
j=−1

β jλxn−j, (8.34)

or
k−1

∑
j=−1

(
αj − ∆β jλ

)
xn−j = 0. (8.35)
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With

γj = αj − ∆β jλ, (8.36)

this expands to

γ−1xn+1 + γ0xn + γ1xn−1 + · · · + γk−1xn−k. (8.37)

This can be seen as a

• discrete time system

• FIR filter

The numerical solution xn will be stable if eq. (8.37) is stable.
A characteristic equation associated with eq. (8.37) can be defined as

γ−1zk + γ0zk−1 + γ1zk−2 + · · · + γk−1 = 0. (8.38)

This is a polynomial with roots zn (poles). This is stable if the poles satisfy |zn| < 1,
as illustrated in fig. 8.11

Figure 8.11: Stability.

Observe that the γ′s are dependent on ∆t.
Some of the details associated with this switch to discrete time systems have been

assumed. A refresher, by example, of those ideas can be found in appendix D.
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Example 8.2: Forward Euler stability.

For k = 1 step.

xn+1 − xn = ∆t f (xn, tn), (8.39)

the coefficients are α−1 = 1, α0 = −1, β−1 = 0, β0 = 1. For the simple function
above

γ−1 = α−1 − ∆tλβ−1 = 1 (8.40a)

γ0 = α0 − ∆tλβ0 = −1− ∆tλ. (8.40b)

The stability polynomial is

1z + (−1− ∆tλ) = 0, (8.41)

or

z = 1 + δtλ. (8.42)

This is the root, or pole.
For stability we must have

|1 + ∆tλ| < 1, (8.43)

or ∣∣∣∣λ−(− 1
∆t

)∣∣∣∣ < 1
∆t

, (8.44)

This inequality is illustrated roughly in fig. 8.12.
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Figure 8.12: Stability region of FE.

All poles of my system must be inside the stability region in order to get stable
γ.

8.11 stability (continued)

Continuing with the simple continuous time test system

ẋ(t) = λx(t) (8.45)

With the application of a trial solution x(t) = est, the resulting characteristic equation
is

s = λ, (8.46)

and stability follows, provided that Re(λ) < 0 as sketched in fig. 8.13.

Figure 8.13: Stability region.
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Utilizing LMS methods, for example TR, the discrete time system results, such as

γ−1xn+1 + γ0xn + γ1xn−1 + · · · = 0. (8.47)

With a substitution xn+j = zk−1+j, a characteristic polynomial results

γ−1zk + γ0zk−1 + γ1zk−2 + · · · = 0. (8.48)

This is stable provided |zl | < 1, as illustrated in fig. 8.14.

Figure 8.14: Stability region in z-domain.

... SWITCHED TO SLIDES.

Definition 8.3: Stiff.

A stiff system is one that has multiple timescales, as characterized by a significant
range of eigenvalues.

Definition 8.4: Lossless system.

Lossless poles are those that reside strictly on the imaginary axis.
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Definition 8.5: Lossly system.

Lossly poles are those that reside strictly to the left of the imaginary axis.

Definition 8.6: Active system.

Active poles are those that reside strictly to the right of the imaginary axis.

Definition 8.7: A-stable.

See slides.

Theorem 8.1: Dahlquist’s theorem.

There are no LMS methods of order greater than 2 that are A-stable. Also known
as the Dahlquist barrier. The TR method has the lowest error of the A-stable LMS
methods.

Some recent developments The backward differentiation formulas (BDF) are of order >
2. They are not A-stable, but can be sufficient with stability sketched in fig. 8.15.

Figure 8.15: BDF stability region.

Also available are the Obreshkov formulas [1], which are both A-stable and of
order > 2. There is a cost to both of these methods: computation of the derivatives at
each step.
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8.12 problems

Exercise 8.1 Modeling inductors and capacitors and time dependence.

In this problem you will first extend the circuit simulator that you developed in the
previous problem sets to include capacitors and inductors . Then, you will use it to
simulate a clock-distribution network.

a. Modify the circuit simulator you developed for the previous assignments to
handle capacitors and inductors. The program should read a file with the list
of: resistors, currents sources, voltage sources, capacitors, and inductors. The
syntax for specifying a capacitor is:

Clabel node1 node2 val

where label is an arbitrary label, node1 and node2 are integer circuit node
numbers, and val is the capacitance (a floating point number). The syntax for
specifying an inductor is:

Llabel node1 node2 val

where label is an arbitrary label, node1 and node2 are integer circuit node
numbers, and val is the inductance (a floating point number). Explain how you
handle inductors, and which stamp can be proposed to include them into the
modified nodal analysis equations written in the form

Gx(t) + Cẋ(t) = Bu(t) (8.49)

where the column vector u(t) contains all sources.

b. As test system, we consider the network in fig. 8.16 which distributes the clock
signal to 8 blocks of an integrated circuit. The network is in the form of a binary
tree with four levels. Each segment is a transmission line with characteristics
(length, per-unit-length parameters) given in table 8.1. Divide each transmis-
sion line into segments of length ∆z = 0.05mm, and model each segment with
an RLC circuit as the one shown in the figure.
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Figure 8.16: Network for the distribution of the clock to 8 IC blocks.

Table 8.1: Characteristics of the clock tree network. Note that the resistance, inductance
and capacitance values are per-unit-length (p.u.l.)

Level Length Resistance p.u.l Inductance p.u.l. Capacitance p.u.l.

[mm] R[Ω/cm] L[nH/cm] C[pF/cm]

1 6 25 5.00 2.00

2 4 35.7 7.14 1.40

3 3 51.0 10.2 0.98

4 2 51.0 10.2 0.98

Model the clock source with a periodic voltage source with the following char-
acteristics: amplitude 1 V, rise/fall time 100 ps, period 2 ns, duty cycle 50%,
initial delay 100 ps. The clock source voltage is depicted in fig. 8.17.
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Figure 8.17: Clock signal.

Model each chip block with a 5 k Ω resistor in parallel with a 5 f F capacitor.
Write a Matlab function that generates a spice-compatible netlist of the clock
distribution network. Report in a table the values of the resistors, inductors
and capacitors that you used in each section.

c. Simulate the circuit with backward Euler (BE). Use a constant time-step. Plot
the voltage generated by the clock source and the voltage received by one of
the blocks for t ∈ [0, 5] ns. Suggestion: since the clock starts a few timesteps
after t = 0, you can assume zero initial conditions for your simulation.

d. Explain how did you choose the timestep to be used in the simulation.

e. Implement and compare two methods for solving differential equations: back-
ward Euler (BE), and trapezoidal rule (TR). Simulate the circuit with the two
methods for different timestep values, ranging from a coarse timestep to a
fine time step. Report in a table the error and the CPU time for each method.
Since we don’t have an exact solution for this system, use as reference solution
the output voltage computed with TR with a very fine time step. In the ta-
ble, report as error the maximum absolute error between the computed output
voltage and the reference one.

f. Plot the error versus the time step on a log-log scale for the two methods, and
comment the obtained results.

Answer for Exercise 8.1

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING
ECE1254. .
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Many examples on slides.

Definition 9.1: Admittance.

Given an impedance Z, the admittance Y is defined as

Y =
1
Z

.

9.1 model order reduction

The system equations of interest for model order reduction (MOR) are

Gx(t) + Cẋ(t) = Bu(t) (9.1a)

y(t) = LTx(t). (9.1b)

Here

• u(t) is a vector of inputs.

• y(t) is a vector of interesting outputs, as filtered by the matrix L, and

• x(t) is the state vector, of size N.

The aim is illustrated in fig. 9.1.

Review: transfer function

GX(s) + C (sX(s)−���x(0)) = BU(s) (9.2a)

119
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Figure 9.1: Find a simplified model that has the same input-output characteristics.

Y(s) = LTX(s). (9.2b)

Grouping terms

(G + sC)X(s) = BU(s), (9.3)

and inverting allows for solution for the state vector output in the frequency domain

X(s) = (G + sC)−1 BU(s) (9.4)

The vector of outputs of interest are

Y(s) = LT (G + sC)−1 BU(s) (9.5)

The boxed portion is the transfer function

H(s) = LT (G + sC)−1 B. (9.6)

... Switched to slides.
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Geometrical interpretation to the change of variables

(9.7)

x(t) = V

N × N

w(t)

=
[
v1 v2 · · · vN

]


w1(t)

w2(t)
...

wN(t)


= v1w1(t) + v2w2(t) + · · · vNwN(t).

The key to MOR is to find a way to select the important portions of these vi, wi(t)
vectors-function pairs. This projects the system equations onto an approximation that
retains the most interesting characteristics.

9.2 moment matching

Referring back to eq. (9.1) and it’s Laplace transform representation, an input-to-state
transfer function F(s) is defined by

X(s) = (G + sC)−1 BU(s) = F(s)U(s) (9.8)

This can be expanded around the DC value ( s = 0 )

(9.9)F(s) = M0 + M1s + M2s2 + · · ·Mq−1sq−1 + Mq

moments

sq + · · ·

A reduced model of order q is defined as

(9.10)F(s) = M0 + M1s + M2s2 + · · ·Mq−1sq−1 + M̃qsq.

9.3 model order reduction (cont).

An approximation of the following system is sought

Gx(t) + Cẋ(t) = Bu(t) (9.11a)
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y(t) = LTx(t). (9.11b)

The strategy is to attempt to find a N × q projector V of the form

V =
[
v1 v2 · · · vq

]
(9.12)

so that the solution of the constrained q-variable state vector xq is sought after
letting

x(t) = Vxq(t). (9.13)

9.4 moment matching

F(s) = (G + sC)−1 B = M0 + M1s + M2s2 + · · · + Mq−1sq−1 + Mqsq + · · · (9.14)

The reduced model is created such that

Fq(s) = M0 + M1s + M2s2 + · · · + Mq−1sq−1 + M̃qsq. (9.15)

Form an N × q projection matrix

Vq ≡
[
M0 M1 · · · Mq−1

]
(9.16)

With the substitution of eq. (9.13) the system equations in the time domain, illus-
trated graphically in fig. 9.2, becomes

This is a system of N equations, in q unknowns. A set of moments from the fre-
quency domain have been used to project the time domain system. This relies on the
following unproved theorem (references to come)

thm:multiphysicsL19:280

Theorem 9.1: Reduced model moments.

If span{vq} = span{M0, M1, · · · , Mq−1}, then the reduced model will match the
first q moments.
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Figure 9.2: Projected system.

Figure 9.3: Reduced projected system.
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Left multiplication by VT
q yields fig. 9.3.

This is now a system of q equations in q unknowns.
With

Gq = VT
q GVq (9.17a)

Cq = VT
q CVq (9.17b)

Bq = VT
q B (9.17c)

LT
q = LTVq (9.17d)

the system is reduced to

Gqxq(t) + Cqẋq(t) = Bqu(t). (9.18a)

y(t) ≈ LT
q xq(t) (9.18b)

Moments calculation Using

(G + sC)−1 B = M0 + M1s + M2s2 + · · · (9.19)

thus

(9.20)B = (G + sC) M0 + (G + sC) M1s + (G + sC) M2s2 + · · ·
= GM0 + s (CM0 + GM1) + s2 (CM1 + GM2) + · · ·

Since B is a zeroth order matrix, setting all the coefficients of s equal to zero provides
a method to solve for the moments

B = GM0

−CM0 = GM1

−CM1 = GM2

(9.21)
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The moment M0 can be found with LU of G, plus the forward and backward sub-
stitutions. Proceeding recursively, using the already computed LU factorization, each
subsequent moment calculation requires only one pair of forward and backward sub-
stitutions.

Numerically, each moment has the exact value

Mq =
(
−G−1C

)q
M0. (9.22)

As q → ∞, this goes to some limit, say w. The value w is related to the largest
eigenvalue of −G−1C. Incidentally, this can be used to find the largest eigenvalue of
−G−1C.

The largest eigenvalue of this matrix will dominate these factors, and can cause
some numerical trouble. For this reason it is desirable to avoid such explicit moment
determination, instead using implicit methods.

The key is to utilize theorem 9.1, and look instead for an alternate basis {vq} that
also spans {M0, M1, · · · , Mq}.

Space generated by the moments Write

Mq = AqR, (9.23)

where in this case

A = −G−1C

R = M0 = −GB
(9.24)

The span of interest is

span{R, AR, A2R, · · · , Aq−1R}. (9.25)

Such a sequence is called a Krylov subspace. One method to compute such a basis,
the Arnoldi process, relies on Gram-Schmidt orthonormalization methods:

Algorithm 9.1: Arnoldi process.

V0 = R/‖R‖
for all i ∈ [0, q− 2] do

Vi+1 = AVi
for all j ∈ [0, i] do
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Vi+1 = Vi+1 −
(
VT

i+1Vj
)

Vj
end for
Vi+1 = Vi+1/‖Vi+1‖

end for

Some numerical examples and plots on the class slides.

9.5 truncated balanced realization (1000 ft overview)

Consider a model in state space form

ẋ = Ax(t) + Bu(t)

y = Cx(t) + Du(t).
(9.26)

The system has the form

u(t) →

controllability

x(t) →

observability

y(t). (9.27)

Definition 9.2: Observability.

The system is observable if ∀t, the initial state x(t0) can be determined knowing
u(t), y(t), t ∈ [t0, t1].

Equivalent condition (if A stable) If A stable, the observability Gramian W0 > 0

W0 =
∫ ∞

0
eATτCTCeAτdτ (9.28)

This Gramian expression results from a calculation of the “energy” of the homoge-
neous system (no input u(t) ), for which the system is in an initial state x0 at t = 0,
with output

y(t) = CeAtx0 (9.29)

The output energy is
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(9.30)

∫ ∞

0
yTydt =

∫ ∞

0
xT

0 eATtCTCeAtx0dt

= xT
0 W0x0

= E0

Consider the eigenvalues and vectors of W0

W0x0,i = λ0,ix0,i. (9.31)

If x0 = x0,i this implies

E0 = xT
0,iλ0,ix0,i (9.32)

The eigenvalues of the observability Gramian can provide some useful information
about what states are observable.

Definition 9.3: Controllability.

If for any initial state x(t0) , there is a final time t1 > t0, and a final state x1 such
that there exists an input u∗(t) such that x(t1) = x1.

Theorem 9.2: Controllability Gramian.

The system is controllable if and only if the controllability Gramian Wc > 0.

What is the energy of the input u∗(t) that is needed to set up x1? On the slides it is
shown that this is

(9.33)E1 = xT
1 W−1

c x1.

if x1 is an eigenvector of Wc with eigenvalue λ1, then this reduces to

(9.34)
E1 =

1
λ1

xT
1 x1

=
1

λ1
.

These eigenvalues provide information about how much energy is required to
achieve any given state.
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The purpose of considering observability and controllability is to help determine
what modes can be safely discarded to reduce the model order. A state that cannot be
achieved without excessive energy cost is not likely to be of interest.

While the explicit form of the controllability Gramian has not been given, it be-
comes of less interest since it is possible to make a change of variables, such that the
controllability and observability Gramians become equal and diagonal.

(9.35)
Wc
∼

= TWcTT

Wo
∼

= T−TWoT−1

Using these provides a balanced method to determine the most important modes
to retain.

9.6 problems

Exercise 9.1 Model order reduction methods.

In this problem you will apply different model order reduction methods to the heat
conducting bar. Use Backward Euler for time integration.

a. In this problem we shall introduce a heat source u(t) and its spatial distribution
in the form of h(x).

∂T(x, t)
∂t

=
∂2T(x, t)

∂x2 − αT(x, t) + h(x)u(t) x ∈ [0, 1] (9.36)

where T(x, t) is the temperature at location x at time t. The boundary condition
is that no heat flows away from the two ends of the bar, i.e.

∂T
∂x

∣∣∣∣
x=0

=
∂T
∂x

∣∣∣∣
x=1

= 0. (9.37)

The term with α models the heat dissipation from the bar to the surrounding
environment. Let α = 0.01. You can assume zero initial conditions. Explain how
this heat equation can be formulated into an equivalent dynamical system in
the form

Gx(t) + Cẋ(t) = Bu(t) (9.38)
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Explain the choice of your matrices G, C, B. What do the states x(t) of your
dynamical system correspond to, physically? We define the output y(t) as y(t) =
LTx(t), where T denotes the matrix transpose.

b. We are interested in the following scenarios:

Case 1 Input: heat flow at the left end of the bar
Output: temperature at the right end

Case 2 Input: heat flow at the left end of the bar
Output: average temperature along the bar

Case 3 Input: uniform heating
Output: temperature at the right end

Case 4 Input: uniform heating
Output: average temperature along the bar

Explain how you will pick the matrices B, L in each case. In all remaining
questions, consider only case 1.

c. Write a Matlab routine PlotFreqResp(ω,G,C,B,L) which takes in ω, G, C, B, L
as input and plots the system frequency response. Here ω is a vector of fre-
quencies in rad/s. For N = 500 (500 nodes) plot the real and imaginary part of
the frequency response for case 1.

Hints: To plot the frequency response, use the command semilogx(x,y). You
can generate the frequency vector with the command: ω = logspace(-8,4,500).

d. Reduce the dynamical system for N = 500 using the modal truncation method.
Retain the modes that are associated with the “slowest” eigenvalues. Note
that you will have to convert your system from the modified nodal analysis
representation to the state-space representation. Use q = 1, 2, 4, 10, 50 (q =
number of states in the reduced system). Plot the frequency response of the
original system and frequency response of the reduced system in the same
plot. Select a “reasonably small” order q for the reduced model, that ensures a
reasonable approximation of the original system. Clearly explain how did you
pick that q, which factors did you look at.

e. Using your time domain solver, compute the output of the original system
(N = 500) and of the reduced model (with the order q you selected) for each of
the following two inputs:
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1. Take the first input u(t) = u1(t) as

u1(t) =

{
1 if t ≥ 0

0 if t < 0
(9.39)

For u1(t) pick tstop such that the system reaches steady state.

2. Take the second input u(t) = u2(t) as

u2(t) = sin(0.01t) for tstop = 10000 (9.40)

Be sure to pick an appropriate time step and explain your choice. How much
speed-up did you get for your reduced models for time domain simulations?
Explain your results.

f. Repeat part d using the PRIMA model order reduction algorithm (see provided
routine prima.m). In order to maximize the efficiency of the reduced model,
after you generate it with prima(), bring it to state-space form (by multiplying
by C−1 ). Then, make the A matrix of the state space model diagonal. In this
way, the reduced model becomes sparse rather than full, and can be solved
more quickly.

g. Repeat part e using the PRIMA model order reduction algorithm.

h. Compare the results obtained with the two methods. A table with a few columns
will suffice.

Answer for Exercise 9.1

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING
ECE1254. .
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A P P E N D I C E S





AS I N G U L A R VA L U E D E C O M P O S I T I O N

In definition 4.1 singular value decomposition (SVD) was presented without any men-
tion of how to compute it.

Here I’ll review some of the key ideas from the MIT OCW SVD lecture by Prof.
Gilbert Strang [12]. This is largely to avoid having to rewatch this again in a few years
as I just did.

The idea behind the SVD is to find an orthogonal basis that relates the image space
of the transformation, as well as the basis for the vectors that the transformation
applies to. That is a relation of the form

(A.1)ui = Mvj

Where vj are orthonormal basis vectors, and ui are orthonormal basis vectors for
the image space.

Suppose that such a set of vectors can be computed and that M has a representation
of the desired form

(A.2)M = UΣV∗

where

(A.3)U =
[
u1 u2 · · · um

]
,

and

(A.4)V =
[
v1 v2 · · · vn

]
.

By left or right multiplication of M with its (conjugate) transpose, the decomposed
form of these products can be observed to have a very simple form

M∗M = VΣ∗U∗UΣV∗ = VΣ∗ΣV∗, (A.5a)

MM∗ = UΣV∗VΣ∗U∗ = UΣΣ∗U∗. (A.5b)

Because Σ is diagonal, the products Σ∗Σ and ΣΣ∗ are also both diagonal, and pop-
ulated with the absolute squares of the singular values that have been presumed to
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exist. Because ΣΣ∗ is an m×m matrix, whereas Σ∗Σ is an n× n matrix, so the numbers
of zeros in each of these will differ, but each will have the structure

Σ∗Σ ∼ ΣΣ∗ ∼



|σ1|2

|σ2|2
. . .

|σr|2

0
. . .

0


(A.6)

This shows one method of computing the singular value decomposition (for full
rank systems). Solution of the eigensystem of either MM∗ or M∗M is required to find
both the singular values, and one of U or V. U can be found from the r orthonormal
eigenvectors of MM∗ supplemented with a mutually orthonormal set of vectors from
the Null space of M. Σ can be found by taking the square roots of the eigenvalues of
MM∗. With both Σ and U computed, V can be found by inversion. Alternatively, it
is possible to solve for Σ and V by computing the eigensystem of M∗M, also supple-
menting those eigenvectors with vectors from the null space, and then compute U by
inversion.

Working the examples from the lecture is instructive to gain some insight about
how this works.

Example A.1: Full rank 2× 2 matrix.

In the lecture the SVD decomposition is computed for

M =

[
4 4

3 −3

]
(A.7)

The matrix product with its conjugate is

MM∗ =

[
32 0

0 18

]
(A.8a)
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M∗M =

[
25 7

7 25

]
(A.8b)

The first is already diagonalized so U = I, and the singular values are found
by inspection {

√
32,
√

18}, or

Σ =

[√
32 0

0
√

18

]
(A.9)

Because the system is full rank, V follows by inversion

Σ−1U∗M = V∗, (A.10)

or

V = M∗U
(

Σ−1
)∗

. (A.11)

In this case that is

V =
1√
2

[
1 1

1 −1

]
(A.12)

V could also be computed directly by diagonalizing M∗M. The eigenvectors
are (1,±1) /

√
2, with respective eigenvalues {32, 18}.

This gives eq. (A.9) and eq. (A.12). Again, because the system is full rank, U
can be computed by inversion

U = MVΣ−1. (A.13)

Carrying out this calculation recovers U = I as expected. Looks like I used a
different matrix than Prof. Strang used in his lecture (alternate signs on the 3’s).
He had some trouble that arrived from independent calculation of the respec-
tive eigenspaces. Calculating one from the other avoids that trouble since there
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are different signed eigenvalues that can be chosen. Because specific mappings
between the eigenspaces that satisfy the ui = Mvj constraints encoded by the
relationship M = UΣV∗ are desired, these U and V matrices cannot be selected
independently.

A non-full rank example, as in the lecture, is also useful

Example A.2: A 2× 2 matrix without full rank.

How about

M =

[
1 1

2 2

]
. (A.14)

The matrix and conjugate product is

M∗M =

[
5 5

5 5

]
(A.15a)

MM∗ =

[
2 4

4 8

]
(A.15b)

For which the non-zero eigenvalue is 10 and the corresponding eigenvalue is

v =
1√
2

[
1

1

]
. (A.16)

This gives

Σ =

[√
10 0

0 0

]
(A.17)

Since V must be orthonormal, there is only one choice (up to a sign) for the
vector from the null space.
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Try

V =
1√
2

[
1 1

1 −1

]
(A.18)

MM∗ has eigenvalues {10, 0} as expected. The eigenvector for the non-zero
eigenvalue is found to be

u =
1√
5

[
1

2

]
. (A.19)

It is easy to expand this to an orthonormal basis. Is it required to pick a specific
sign relative to the choice made for V?

Try

U =
1√
5

[
1 2

2 −1

]
. (A.20)

Multiplying out UΣV∗ gives

(A.21)

1√
5

[
1 2

2 −1

] [√
10 0

0 0

]
1√
2

[
1 1

1 −1

]
=

[
1 2

2 −1

] [
1 0

0 0

] [
1 1

1 −1

]

=

[
1 0

2 0

] [
1 1

1 −1

]

=

[
1 1

2 2

]
.

It appears that this works. This has not demonstrated why that should be, and
could be due to luck with signs. To fully understand how to do this type of
computation, more theoretical work would be required. That is probably a good
reason to leave such a task to computational software.





BB A S I C T H E O R E M S A N D D E F I N I T I O N S

Definition B.1: Positive (negative) definite.

A matrix M is positive (negative) definite, denoted M > 0(< 0) if yTMy > 0(<
0), ∀y.

If a matrix is neither positive, nor negative definite, it is called indefinite.
When zero equality is possible yTMy ≥ 0(≤ 0), the matrix is positive (negative)

semi-definite.

Theorem B.1: Positive (negative) definite.

A symmetric matrix M > 0(< 0) iff λi > 0(< 0) for all eigenvalues λi, or is
indefinite iff its eigenvalues λi are of mixed sign.

Theorem B.2: Mean value theorem.

For a continuous and differentiable function f (x), the difference can be expressed
in terms of the derivative at an intermediate point

f (x2)− f (x1) =
∂ f
∂x

∣∣∣∣
x̃
(x2 − x1)

where x̃ ∈ [x1, x2].
This is illustrated (roughly) in fig. B.1.
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Figure B.1: Mean value theorem illustrated.



CN O RT O N E Q U I VA L E N T S

Exercise 6.1 contains a circuit with constant voltage source that makes the associated
MNA matrix non-symmetric. Part a looks like it is there to provide a hint that this
source Vs and its internal resistance Rs can likely be replaced by a constant current
source.

Here two voltage source configurations will be compared to a current source con-
figuration, with the assumption that equivalent circuit configurations can be found.

First voltage source configuration First consider the source and internal series resis-
tance configuration sketched in fig. C.1, with a purely resistive load.

Figure C.1: First voltage source configuration.

The nodal equations for this system are

1. −iL + (V1 −VL)Zs = 0

2. VLZL + (VL −V1)Zs = 0

3. V1 = Vs

145



146 norton equivalents

In matrix form these are

 Zs −Zs −1

−Zs Zs + ZL 0

1 0 0


V1

VL

iL

 =

 0

0

Vs

 (C.1)

This has solution

VL = Vs
RL

RL + Rs
(C.2a)

iL =
Vs

RL + Rs
(C.2b)

V1 = Vs. (C.2c)

Second voltage source configuration Now consider the same voltage source, but with
the series resistance location flipped as sketched in fig. C.2.

Figure C.2: Second voltage source configuration.

The nodal equations are

1. V1Zs + iL = 0
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2. −iL + VLZL = 0

3. VL −V1 = Vs

These have matrix form

Zs 0 1

0 ZL −1

−1 1 0


V1

VL

iL

 =

 0

0

Vs

 (C.3)

This configuration has solution

VL = Vs
RL

RL + Rs
(C.4a)

iL =
Vs

RL + Rs
(C.4b)

V1 = −Vs
Rs

RL + Rs
(C.4c)

Observe that the voltage at the load node and the current through this impedance
is the same in both circuit configurations. The internal node voltage is different in
each case, but that has no measurable effect on the external load.

Current configuration Now consider a current source and internal parallel resistance
as sketched in fig. C.3.

There is only one nodal equation for this circuit

1. −Is + VLZs + VLZL = 0

The load node voltage and current follows immediately

VL =
Is

ZL + Zs
(C.5a)

iL = VLZL =
ZL Is

ZL + Zs
(C.5b)
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Figure C.3: Current source configuration.

The goal is to find a value for IL so that the voltage and currents at the load node
match either of the first two voltage source configurations. It has been assumed that
the desired parallel source resistance is the same as the series resistance in the voltage
configurations. That was just a guess, but it ends up working out.

From eq. (C.5a) and eq. (C.2a) that equivalent current source can be found from

VL = Vs
RL

RL + Rs
=

Is

ZL + Zs
, (C.6)

or

(C.7)
Is = Vs

RL(ZL + Zs)
RL + Rs

=
Vs

RS

RsRL(ZL + Zs)
RL + Rs

Is =
Vs

RS
. (C.8)

The load is expected to be the same through the load, and is

iL = VLZL == Vs
RLZL

RL + Rs
=

Vs

RL + Rs
, (C.9)

which matches eq. (C.2b).
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Remarks The equivalence of the series voltage source configurations with the paral-
lel current source configuration has been demonstrated with a resistive load. This is
a special case of the more general Norton’s theorem, as detailed in [14] and [3] §5.1.
Neither of those references prove the theorem. Norton’s theorem allows the equiva-
lent current and resistance to be calculated without actually solving the system. Using
that method, the parallel resistance equivalent follows by summing all the resistances
in the source circuit with all the voltage sources shorted. Shorting the voltage sources
in this source circuit results in the same configuration. It was seen directly in the two
voltage source configurations that it did not matter, from the point of view of the ex-
ternal load, which sequence the internal series resistance and the voltage source were
placed in did not matter. That becomes obvious with knowledge of Norton’s theorem,
since shorting the voltage sources leaves just the single resistor in both cases.





DS TA B I L I T Y O F D I S C R E T I Z E D L I N E A R D I F F E R E N T I A L
E Q U AT I O N S

To motivate the methods used to discuss stability of linear multistep methods, it is
helpful to take a step back and review stability concepts for LDE systems.

By way of example, consider a second order LDE homogeneous system defined by

d2x
dt2 + 3

dx
dt

+ 2 = 0. (D.1)

Such a system can be solved by assuming an exponential solution, say

x(t) = est. (D.2)

Substitution gives

est (s2 + 3s + 2
)

= 0, (D.3)

The polynomial part of this equation, the characteristic equation has roots s =
−2,−1.

The general solution of eq. (D.1) is formed by a superposition of solutions for each
value of s

x(t) = ae−2t + be−t. (D.4)

Independent of any selection of the superposition constants a, b, this function will
not blow up as t→ ∞.

This “stability” is due to the fact that both of the characteristic equation roots lie in
the left hand Argand plane.

Now consider a discretized form of this LDE. This will have the form

(D.5)
0 =

1
(∆t)2 (xn+2 − 2xn−1 + xn) +

3
∆t

(xn+1 − xn) + 2xn

= xn+2

(
1

(∆t)2

)
+ xn+1

(
3

∆t
− 2

(∆t)2

)
+ xn

(
1

(∆t)2 −
3

∆t
+ 2
)

,
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152 stability of discretized linear differential equations

or

(D.6)0 = xn+2 + xn+1 (3∆t − 2) + xn

(
1− 3∆t + 2 (∆t)2

)
.

Note that after discretization, each subsequent index corresponds to a time shift.
Also observe that the coefficients of this discretized equation are dependent on the
discretization interval size ∆t. If the specifics of those coefficients are ignored, a gen-
eral form with the following structure can be observed

0 = xn+2γ0 + xn+1γ1 + xnγ2. (D.7)

It turns out that, much like the LDE solution by characteristic polynomial, it is
possible to attack this problem by assuming a solution of the form

xn = Czn. (D.8)

A time shift index change xn → xn+1 results in a power adjustment in this assumed
solution. This substitution applied to eq. (D.7) yields

0 = Czn (z2γ0 + zγ1 + 1γ2
)

, (D.9)

Suppose that this polynomial has roots z ∈ {z1, z2}. A superposition, such as

xn = azn
1 + bzn

2 , (D.10)

will also be a solution since insertion of this into the RHS of eq. (D.7) yields

azn
1
(
z2

1γ0 + z1γ1 + γ2
)

+ bzn
2
(
z2

2γ0 + z2γ1 + γ2
)

= azn
1 × 0 + bzn

2 × 0. (D.11)

The zero equality follows since z1, z2 are both roots of the characteristic equation for
this discretized LDE. In the discrete z domain stability requires that the roots satisfy
the bound |z| < 1, a different stability criteria than in the continuous domain. In
fact, there is no a-priori guarantee that stability in the continuous domain will imply
stability in the discretized domain.

Let’s plot those z-domain roots for this example LDE, using ∆t ∈ {1/2, 1, 2}. The
respective characteristic polynomials are

0 = z2 − 1
2

z = z
(

z− 1
2

)
(D.12a)
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0 = z2 + z = z (z + 1) (D.12b)

0 = z2 + 4z + 3 = (z + 3)(z + 1). (D.12c)

These have respective roots

z = 0,
1
2

(D.13a)

z = 0,−1 (D.13b)

z = −1,−3 (D.13c)

Only the first discretization of these three yields stable solutions in the z domain,
although it appears that ∆t = 1 is right on the boundary.





EL A P L A C E T R A N S F O R M R E F R E S H E R

Laplace transforms were used to solve the MNA equations for time dependent sys-
tems, and to find the moments used to in MOR.

For the record, the Laplace transform is defined as:

L( f (t)) =
∫ ∞

0
e−st f (t)dt. (E.1)

The only Laplace transform pair used in the lectures is that of the first derivative

(E.2)

L( f ′(t)) =
∫ ∞

0
e−st d f (t)

dt
dt

= e−st f (t)
∣∣∞
0 − (−s)

∫ ∞

0
e−st f (t)dt

= − f (0) + sL( f (t)).

Here it is loosely assumed that the real part of s is positive, and that f (t) is “well
defined” enough that e−s∞ f (∞)→ 0.

Where used in the lectures, the Laplace transforms were of vectors such as the
matrix vector product L(Gx(t)). Because such a product is linear, observe that it can
be expressed as the original matrix times a vector of Laplace transforms

(E.3)

L(Gx(t)) = L
[

Gikxk(t)
]

i

=
[

GikLxk(t)
]

i

= G
[
Lxi(t)

]
i
.

The following notation was used in the lectures for such a vector of Laplace trans-
forms

X(s) = Lx(t) =
[
Lxi(t)

]
i
. (E.4)
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Transform pair In [4] a verification of the discrete Fourier transform pairs was per-
formed. A much different looking discrete Fourier transform pair is given in [2] §A.4.
This transform pair samples the points at what are called the Nykvist time instants
given by

tk =
Tk

2N + 1
, k ∈ [−N, · · ·N] (F.1)

Note that the endpoints of these sampling points are not ±T/2, but are instead at

±T
2

1
1 + 1/N

, (F.2)

which are slightly within the interior of the [−T/2, T/2] range of interest. The rea-
son for this slightly odd seeming selection of sampling times becomes clear if one
calculate the inversion relations.

Given a periodic (ω0T = 2π) bandwidth limited signal evaluated only at the Nykvist
times tk,

x(tk) =
N

∑
n=−N

Xnejnω0tk , (F.3)

assume that an inversion relation can be found. To find Xn evaluate the sum

(F.4)

N

∑
k =−N

x(tk)e−jmω0tk =
N

∑
k=−N

(
N

∑
n=−N

Xnejnω0tk

)
e−jmω0tk

=
N

∑
n=−N

Xn

N

∑
k=−N

ej(n−m)ω0tk

This interior sum has the value 2N + 1 when n = m. For n 6= m, and a = ej(n−m) 2π
2N+1 ,

this is

157



158 discrete fourier transform

(F.5)

N

∑
k =−N

ej(n−m)ω0tk =
N

∑
k=−N

ej(n−m)ω0
Tk

2N+1

=
N

∑
k=−N

ak

= a−N
N

∑
k=−N

ak+N

= a−N
2N

∑
r=0

ar

= a−N a2N+1 − 1
a − 1

.

Since a2N+1 = e2π j(n−m) = 1, this sum is zero when n 6= m. This means that

N

∑
k=−N

ej(n−m)ω0tk = (2N + 1)δn,m, (F.6)

which provides the desired Fourier inversion relation

Xm =
1

2N + 1

N

∑
k=−N

x(tk)e−jmω0tk . (F.7)

Matrix form The discrete time Fourier transform has been seen to have the form

xk =
N

∑
n=−N

Xne2π jnk/(2N+1) (F.8a)

Xn =
1

2N + 1

N

∑
k=−N

xke−2π jnk/(2N+1). (F.8b)
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A matrix representation of this form is desired. Let

x =



x−N
...

x0
...

xN


(F.9a)

X =



X−N
...

X0
...

XN


(F.9b)

Equation (F.8a) written out in full is

xk = X−Ne−2π jNk/(2N+1)

+ X1−Ne−2π j(N−1)k/(2N+1)

+ · · ·
+ X0

+ · · ·
+ XN−1e2π j(N−1)k/(2N+1)

+ XNe2π jNk/(2N+1)

(F.10)

Following the FFT discussion in [9], let W = e2π j/(2N+1). The matrix relation is

x =



WNN W(N−1)N · · · 1 · · · W−(N−1)N W−NN

WN(N−1) W(N−1)(N−1) · · · 1 · · · W−(N−1)(N−1) W−N(N−1)

...
...

...
...

...
...

...

1 1 1 1 1 1 1
...

...
...

...
...

...
...

W−N(N−1) W−(N−1)(N−1) · · · 1 · · · WN−1(N−1) WN(N−1)

W−NN W(1−N)N · · · 1 · · · W(N−1)N WNN


X (F.11)
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Similarly, from eq. (F.8b), the inverse relation expands out to

(2N + 1)Xn = x−Ne2π jnN/(2N+1)

+ x1−Ne2π jn(N−1)/(2N+1)

· · ·
+ x0

· · ·
+ xN−1e−2π jn(N−1)/(2N+1)

+ xNe−2π jnN/(2N+1),

(F.12)

with a matrix form of

(2N + 1)X =



W−NN W−N(N−1) · · · 1 · · · WN(N−1) WNN

W−(N−1)N W−(N−1)(N−1) · · · 1 · · · W(N−1)(N−1) W(N−1)N

...
...

...
...

...
...

...

1 1 1 1 1 1 1
...

...
...

...
...

...
...

W(N−1)N W(N−1)(N−1) · · · 1 · · · W−(N−1)(N−1) W−(N−1)N

WNN WN(N−1) · · · 1 · · · W−N(N−1) W−NN


(F.13)

Letting

F =



WNN W(N−1)N · · · 1 · · · W−(N−1)N W−NN

WN(N−1) W(N−1)(N−1) · · · 1 · · · W−(N−1)(N−1) W−N(N−1)

...
...

...
...

...
...

...

1 1 1 1 1 1 1
...

...
...

...
...

...
...

W−N(N−1) W−(N−1)(N−1) · · · 1 · · · WN−1(N−1) WN(N−1)

W−NN W(1−N)N · · · 1 · · · W(N−1)N WNN


, (F.14)

the discrete transform pair has the following compactly matrix representation

x = FX (F.15a)
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X =
1

2N + 1
Fx, (F.15b)

where F is the complex conjugate of F.
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IM AT H E M AT I C A N O T E B O O K S

These Mathematica notebooks, some just trivial ones used to generate figures, others
more elaborate, and perhaps some even polished, can be found in

https://github.com/peeterjoot/mathematica/tree/master/.
The free Wolfram CDF player, is capable of read-only viewing these notebooks to

some extent.

• Nov 3, 2014 ece1254/plotDiode.nb

Plot of somewhat ill behaved sum of linear and exponential function
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http://www.wolfram.com/cdf-player/
https://raw.github.com/peeterjoot/mathematica/master/ece1254/plotDiode.nb
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A stable, 126

accuracy, 105

admittance, 119

Arnoldi process, 125

back substitution, 19

backward differentiation formula, 113

branch current, 7

capacitor, 97, 114

CG
see conjugate gradient, 58

characteristic equation, 151

Cholesky factorization, 69

conditioning, 37

conditioning number, 41–43

conjugate gradient, 56, 58, 71

convergence, 63

order analysis, 63

preconditioned, 71

preconditioning, 61

conservation law, 6

consistency, 106

constitutive equations, 4

continuation parameter, 87

controlability, 126

convergence, 106

Dahlquist’s theorem, 113

DFT, see discrete Fourier transform
difference

forward Euler, 109

discrete Fourier transform, 157

double precision, 37

dynamical systems, 97

energy function, 52

Euler
backward method, 101

forward method, 100

existence, 38

fill ins, 45

Finite element method, 95

forward substitution, 19

Gaussian elimination, 17

Gershgorin circle theorem, 64, 71

global error, 106

global error estimate, 108

gradient method, 54

gradient methods, 51

Gram-Schmidt, 125

Gramian, 126, 127

harmonic balance, 133

heat equation, 34

incidence matrix, 8, 13, 91

indefinite matrix, 143

inductor, 114

input-to-state transfer function, 121

Jacobian, 83

singular, 88

joint, 89

KCL, 11

Krylov subspace, 125

Laplace transform, 155

large systems, 17
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linear multistep methods, 106, 107

linear systems, 17

LMS, see linear multistep methods
LU decomposition, 18, 19, 51

pivot, 21

Markowitz
graph representation, 47

product, 46

reordering, 46

Mathematica, 167

matrix norm, 40, 41

mean value theorem, 143

mechanical structures, 3

MNA, see modified nodal analysis
model order reduction, 119, 121, 128,

155

moments, 124

modified nodal analysis, 13, 17, 30, 98,
145

capacitor, 114

inductor, 99, 114

rc circuit, 97

time dependence, 114

moment matching, 121, 122

moments
reduced, 122

MOR, see model order reduction
multiplier, 18

negative definite, 143

negative semi-definite, 143

Newton’s method, 78, 93

convergence, 79

damped, 86

multivariable, 83

single variable, 77

nodal analysis, 3, 11

nodal formulation, 92

nodal matrix, 12, 14

node branch formulation, 89

node branch method, 7

node voltage, 7

nonlinear differential equations, 104

nonlinear equations
multivariable, 82

nonlinear resistor, 84

stamp, 86

nonlinear systems, 6, 75

Norton’s theorem, 145

numerical error, 37

Nykvist time instant, 157

observability, 126

perturbation, 39

pivot, 18

pole
active, 113

lossless, 112

lossly, 113

positive definite, 143

positive semi-definite, 143

preconditioning, 68

residual, 107

Richardson
convergence, 76

singular value decomposition, 41, 137

sparse factorization, 45

spice, 13

stability, 105, 108, 111

stamp, 12, 13

current, 9

Jacobian, 86

resistor, 9

state space, 98

step size, 53

stiff, 112
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strict diagonal dominance, 37

strut, 89

conservation law, 91

constitutive law, 91

node branch formulation, 92

SVD, see singular value decomposition
symmetric matrix, 13

symmetric preconditioning, 68

TBR, see truncated balanced realization
time dependence, 97

TR, see trapezoidal rule
trapezoidal rule, 103

truncated balanced realization, 126

uniqueness, 38

vector norm, 39

voltage incidence matrix, 14

zero-stability, 106
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