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1
P R I N C I P L E O F R E L AT I V I T Y.

Reading No reading from [11] appears to have been assigned, but rele-
vant stuff can be found in chapter 1. Covering lecture notes RelEM1-11.pdf

1.1 distance as a clock.

The title of this course is an oxymoron since ELECTRODYNAMICS ==

RELATIVITY. In classical and quantum physics (non-gravitational) we
start by postulating the existence of space and time. These are, in non-
gravitational physics, the arena where everything takes place. The space
that we work with is the three dimensional Euclidean space R3. One way
of describing it is using three coordinates

R3 = {x, y, z; x, y, z ∈ [−∞,∞]}. (1.1)

We define a distance between P and P′ as∣∣∣PP′
∣∣∣ =

√
(x − x′)2 + (y − y′)2 + (z − z′)2. (1.2)

time is a parameter with respect to which positions of free particles parti-
cles change at a constant rate.

Mathematically, we describe the motion of free particles by giving
(x(t), y(t), z(t)) : coordinates as functions of t,

d2xi(t)
dt2 = 0, i = 1, 2, 3. (1.3)

Here x, y, z are the free particle coordinates in an “internal frame”, the
frame where r̈ = 0 holds for a free particle (r̈ = d2r/dt2) for a free particle
with tragectory such as x = v0t, y = z = 0.

1.2 the principle of relativity.

Definition 1.1: Principle of relativity (Galileo or Einstein).

“Laws of nature are identical in all inertial frames”.



2 principle of relativity.

Equivalently, “Identical experiments in two inertial frames yield
identical results”.

What do we mean by laws of nature? Equations that describe dynamics.
Now we need to get more specific. Identical equations means that the
equations have the same form in two inertial frames provided, you express
them (the equations) via the coordinates r, t in the given inertial frame.

FIXME: DRAW x,y,z COORDINATE SYSTEM with origin O. And
another with origin O′ where the origin is moving with velocity v in the y
direction.

The Galilean relativity principle states that “equations of motion are
invariant under Galilean transformations”. What do we mean by transfor-
mations? If we have a point P(t) in space with coordinates in both frames
that are related. It is pretty clear that the coordinates x = x′ and z = z′.
What about the y′ coordinate? For that we have y′ = y − vt, so that the
origins overlap (O = O′) at t = 0.

In Galilean relativity, time is absolute. i.e. It is the same in all inertial
frames. It is now a no-brainer to find the velocities of the particle. Taking
derivatives we take time derivatives of

x′ = x (1.4)

y′ = y − vt (1.5)

z′ = z, (1.6)

for

v′x = vx (1.7)

v′y = vy − v (1.8)

v′z = vz. (1.9)

In vector notation we have

r′ = r − v0t (1.10)

v′ = v − v0. (1.11)

The principle of relativity says that the dynamical equations are invariant
under such transformations.

Take Newton’s law for example applied to two bodies, labeled by their
masses M1 and M2.
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These bodies may be interacting. For example, with Newtonian gravita-
tion

V(r1 − r2) = −GN
M1M2

|r1 − r2|
, (1.12)

or the Van Der Waals, interaction

V(r1 − r2) = − (const)
1

|r1 − r2|
6 , (1.13)

Our interaction is via a gradient ∂ f (r)/∂r = (∂ f /∂x, ∂ f /∂y, ∂ f /∂z)

M1r̈1 = −
∂

∂r1
V(r1 − r2) (1.14)

M2r̈2 = −
∂

∂r2
V(r1 − r2). (1.15)

In the unprimed frame, these are “the laws of physics”. Consider a primed
frame O′ : r′i = ri − v0t (for i = 1, 2). Taking derivatives we have v′i =

v′i + v0, and v̇′i = v̇′i .
We note that the distance between the two particles is unchanged in the

primed coordinate system

(1.16)r′1 − r′2 = r1 − v0t − (r2 − v0t)
= r1 − r2.

Similarly

∂

∂ri
=

∂

∂(r′i + v0t)
=

∂

∂r′i
. (1.17)

Observe that the interaction eq. (1.14) is unchanged by this change in
coordinates.

1.3 enter electromagnetism.

If the only interactions are 1/r gravity and 1/r Coulomb, Galilean rela-
tivity holds. Electromagnetism came along and Maxwell’s prediction that
electromagnetic waves exist and propagate with speed

c ≈ 3 × 108m/s. (1.18)

(Note that in SI units c = 1/
√
ε0µ0).
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It was proposed that the speed of light was the speed in a medium (the
“aether”) through which electrodynamic waves propagate. The idea was
that the oscillations of this medium constitute electromagnetic waves. Then
“c” would be the speed of light with respect to that medium. This medium
would fill all space.

PICTURE: of gradient field, with aether velocity at different points.
Superimposed on this is a picture of the Earth’s orbit, so that the velocity
of the aether could be measured at different points of the earth’s orbit by
measuring the speed of light at different points in the orbit.

PICTURE: of interferometer.
We can study this effect by rotating this platform to measure at different

points of the day and the year.
We note that the speed of the earth is approximately v+ = 150 ×

106km/107s ≈ 15km/s.
Aside: It was not clear to me where these numbers came from. Wolfram

alpha says that the Earth’s orbital speed is approximately 32km/s, although
that is still within an order of magnitude of the number used in class.

The shift of fringes would then be v+ ≈ (v+/c)2 ≈ 10−8. What Einstein
did was to elevate the principle of relativity to one that applies to electro-
magnetism, but replacing the transformation relating frames to the Lorentz
transformation, a transformation observed by Lorentz and Poincare that
leave Maxwell’s equations invariant. Einstein did this by postulating that
the speed of light is a constant in all frames, and we will see how this is
the case.

Question 1.1: Is not this true only outside of matter?

In matter we have electromagnetic wave propagation at speeds less
than c.

A: (paraphrasing) We can consider the in-matter case to be a special
case, treating collections of discreet particles as continuous approxi-
mations. It is only as a side effect of these approximations that one
produces the in-matter Maxwell’s equation, and we will consider the
“vacuum” Maxwell equation as always true, provided the points of
interest do not fall exactly on any specific particle.

Yes we have speed of light different in media. Example, speed of
light in water is 3/4 vacuum speed due to high index of refraction.

http://www.wolframalpha.com/input/?i=speed+of+the+earth
http://www.wolframalpha.com/input/?i=speed+of+the+earth
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Also note that we can have effects like an electron moving in water
can constantly emit light. This is called Cerenkov radiation.

Reading No reading from [11] appears to have been assigned, but rele-
vant stuff can be found in chapter 1.

Covering lecture notes RelEM12-26.pdf.

1.4 einstein’s relativity principle.

1. Replace Galilean transformations between coordinates in differential
inertial frames with Lorentz transforms between (x, t). Postulate that
these constitute the symmetries of physics. Recall that Galilean trans-
formations are symmetries of the laws of non-relativistic physics.

2. Speed of light c is the same in all inertial frames. Phrased in this
form, relativity leads to “relativity of simultaneity”.

PICTURE: Three people on a platform, at positions 1, 3, 2, all with
equidistant separation. This stationary frame is labeled O. 1 and 2
flash light signals at the same time and in frame O the reception of
the light signal by 3 is observed as arriving at 3 simultaneously.

Now introduce a moving frame with origin O′ moving along the
positive x axis. To a stationary observer in O′ the three guys are seen
to be moving in the −x direction. The middle guy (3) is eventually
going to be seen to receive the light signal by this O′ observer, but
less time is required for the light to get from 1 to 3, and more time
is required for the light to get from 2 to 1 (3 is moving away from
the light according to the O′ observer). Because the speed of light is
perceived as constant for all observers, the perception is then that
the light must arrive at 3 at different times.

This is very non-intuitive since we are implicitly trained by our
surroundings that Galilean transformations govern mechanical be-
havior.

In O, 1 and 2 send light signals simultaneously while in O′ 1 sends
light later than 2. The conclusion, rather surprisingly compared to
intuition, is that simultaneity is relative.
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Question 1.2: On symmetries.

Q: A comment made that the symmetries impose the dynamics,
and the symmetries provided the form of the Lagrangian in classical
physics. My question to this comment was

“When we have transformations that leave the Lagrangian un-
changed (a symmetry), we have a conserved current. I have done
various exercises to compute those currents for various types of trans-
formations (translation, spacetime translation, rotation, boosts, ...),
but can not think of a way that the Lagrangian itself is defined these
sorts symmetries. Can you elaborate on what you mean by this?”

A: Ah, you see, what I meant by that is the following. For a free
particle L should depend on x, ẋ and t. Homogeneity of space and
time do not allow to have x and t dependence and isotropy of space
only permits dependence on |ẋ|. Finally, Gallilean relativity only
allows L = ẋ2 (times a constant). (See [10] vol 1 or my notes on
PHY354 website, p. 23-27).

So what was used is:
• Having only dependence on x and dx/dt.

• Spacetime homogeneity/isotropy.

• Gallilean relativity.
Similar story holds in relativity, as we will see.

http://www.physics.utoronto.ca/~poppitz/epoppitz/PHY354_files/CMpp13.1-27.pdf
http://www.physics.utoronto.ca/~poppitz/epoppitz/PHY354_files/CMpp13.1-27.pdf


2
S PAC E T I M E .

We will need to develop some tools to work with these concepts in a
concrete fashion. It is convenient to combine space R3 and time R1 into a
4d “spacetime”. In [11] this is called fictitious spacetime for reasons that
are not clear. Points in this space are also called “events”, or “spacetime
points”, or “world point”. The “world line” is the trajectory for a particle
in spacetime.

PICTURE: R3 represented as a plane, and t up. For every point we can
plot an x(t) in this combined space.

2.1 intervals for light like behaviour.

Consider two frames, one moving along the x-axis at a (constant) rate not
yet specified.

“events” have coordinates (t, x) in O and (t′, x′) in O′. Because we now
have to model the mathematics without a notion of simultaneity, we must
now also introduce different time coordinates t, and t′ in the two frames.

Let us imagine that at at time t1 light is emitted at x1, and at time t2 this
light is absorbed. Our space time events are then (t1, x1) and (t2, x2). In the
O frame, the light will go a distance c(t2 − t1). This same distance can also
be expressed as√

(x1 − x2)2. (2.1)

These are equal. It is convenient to work without the square roots, so we
write

(x1 − x2)2 = c2(t2 − t1)2. (2.2)

Or

c2(t2 − t1)2 − (x1 − x2)2 =

c2(t2 − t1)2 − (x1 − x2)2 − (y1 − y2)2 − (z1 − z2)2 = 0.
(2.3)

We can repeat the same argument for the primed frame. In this frame, at
time t′1 light is emitted at x′1, and at time t′2 this light is absorbed. Our space
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time events in this frame are then (t′1, x
′
1) and (t′2, x

′
2). As above, in this

O′ frame, the light will go a distance c(t′2 − t′1), with a similar Euclidean
distance involving x′1 and x′2. That is

c2(t′2 − t′1)2 − (x′1 − x′2)2 =

c2(t′2 − t′1)2 − (x′1 − x′2)2 − (y′1 − y′2)2 − (z′1 − z′2)2 = 0.
(2.4)

We get zero for this quantity in any inertial frame 1. This quantity is
found to be very important, and want to give this a label. We call this the
“interval”, or the “spacetime interval”, and write this as follows:

s2
12 = c2(t2 − t1)2 − (r2 − r1)2. (2.5)

This is a quantity calculated between any two spacetime points with coor-
dinates (t2, r2) and (t1, r1) in some frame.

So far we have argued that c being the same in any two frames implies
that spacetime events “separated by a zero interval” in one frame are
“separated by a zero interval” in any other frame.

2.2 invariance of infinitesimal intervals.

For events that are infinitesimally close to each other. i.e. t2 − t1 and r2 − r1

are small (infinitesimal), it is convenient to denote t2 − t1 and r2 − r1 by dt
and dr respectively. We can then define

ds2
12 = c2dt2 − dr2, (2.6)

or

ds =
√

c2dt2 − dr2. (2.7)

We will use this a lot.
We have learned that if s12 = 0 in one frame, then s′12 = 0 in any other

frame. We generally expect that there is a relation s′12 = F(s12) between
the intervals in two frames. So far we have learned that F(0) = 0.

Let us now consider the case where both of these intervals are infinitesi-
mal. Then we can write

ds′12 = F(ds12) = F(0) + F′(0)ds12 + · · · = F′(0)ds12 + · · · . (2.8)

We will neglect terms O(ds12)2 and higher. Thus equality of zero intervals
between two frames implies that

ds′12 ∼ ds12. (2.9)
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Now we must invoke an assumption (principle) of homogeneity of time and
space and isotropy of space. This interval should not depend on where these
events take place, or on the time that the measurements were performed. If
this is the case then we conclude that the proportionality constant relating
the two intervals is not a function of position or space. We argue that this
proportionality can then only be a function of the (absolute) relative speed
between the frames.

We write this as

ds′12 = F(v12)ds12. (2.10)

This argument can be turned around and we say that ds12 = F̃(v12)ds′12.
Thus F̃ = F, because there is no distinction between O and O′. We want
to conclude that

ds12 = F(v12)ds′12 = F(v12)F̃(v12)ds12. (2.11)

and then conclude that F = F̃ = 1. This argument is to be continued. To
complete this conclusion we will need to perform some additional math,
once we cover finite intervals.

Reading Still covering chapter 1 material from the text [11], and lecture
notes RelEM12-26.pdf.

2.3 geometry of spacetime: lightlike , spacelike , timelike in-
tervals.

Last time we introduced the (squared) interval

s2
12 = c2dt2 − dr2. (2.12)

This spacetime interval is of great importance to relativity, and is as impor-
tant as the spatial distance |r2 − r1| in Newtonian physics. This distance
determines the Euclidean geometry of space.

Similarly, the interval eq. (2.12) determines the “distance” in space time.
Symmetries are the guiding principles of physics, and this quantity we

will see to be related to spacetime symmetries. Last time we argued that
the constancy of the speed of light in all frames implies that if s2

12 = 0 in
one frame, then s′12

2 = 0.
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We were considering infinitesimal 1, 2 separation with ds = F(V)ds′

where V is the relative speed of the two frames. Relating the two incre-
mental intervals we have a function F and its inverse

ds′ = ˜F(V)ds = F̃(V)F(V)ds, (2.13)

but we can also argue that

F̃ = F by O′ ∼ O, (2.14)

and thus that

F2 = 1, (2.15)

or

F = ±1. (2.16)

Since we wish this to hold for V = 0, we require the positive root, and can
conclude that F = 1.

Note that ds (or s12) requires a sign convention, since it is s2
12 = c2(t2 −

t1)2 − (r2 − r1)2 that is the object which (we will argue) is invariant.
This is similar to the Euclidean case where it is the quantity (r2 − r1)2

is invariant, and our convention is to always pick the positive sign.
Possible conventions for s12 are

s12 =
√

c2(t2 − t1)2 − (r2 − r1)2, (2.17)

if s2
12 > 0, and when s2

12 < 0, the alternate convention is

s12 = i
√
|s12|

2. (2.18)

Later we will argue that ds = ds′ implies s12 = s′12 for any finite interval.

2.4 relativity principle in mathematical formulation.

The Relativity principle (in mathematical formulation): the spacetime
interval s12,∀1, 2 (spacetime points) is the same in all frames.

In other words, the transformations (t, r) → (t′, r′) have to leave s2
12

invariant for all 1 and 2.
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These transformations, that is to say these coordinate transformations

(t, r)→ (t′, r′)
O→ O′.

(2.19)

leave the laws of nature invariant.
We will see later how such invariance, like the spatial invariance in New-

tonian physics, defines the dynamics of spacetime. We will also answer
the question about what are these transformations that leave the interval
invariant. In the Newtonian case those transformations were rotations, and
we will be looking for similar transformations. The negative sign in the
spacetime interval will complicate things a bit, but not actually too much.

Next week: we will find the “Lorentz transformation”.

2.5 geometry of spacetime.

We now want to study a bit of the geometry of spacetime implied by
s2

12 = c2(t2 − t1)2 − (r2 − r1)2. Consider two spacetime points 1,2, where
(t1, r1), (t2, r2) are points in some frame.

PICTURE: two points plotted on the x-axis, with time t1 = 0, and t = t2
The points are

1. (0, 0)

2. (t, x, 0, 0)

The interval is

s2
12 = c2t2 − x2. (2.20)

PICTURE: “flat” light cone. 2d cross-section of space time surface c2t2 =

x2 + y2.
PICTURE: conic light cone. 3d (2 space + 1 time) cross-section of

space time surface c2t2 = x2 + y2. One diagonal for the trajectory ct = −x,
and another for ct = x. The bottom section is the past light cone, since
light that is absorbed at the origin must have been emitted at some point in
the past. Similarly, light emitted from the origin, takes trajectories on the
future light cone.

Observe that on the light cone, s2
12 = 0. The intervals s2

12 = 0 sepa-
rates any given set of spacetime points into “lightlike”, “spacelike”, and
“timelike” regions.
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For events (or spacetime points) separated by a timelike interval, there
always exists a frame such that the occur at same point in space (since
s2

12 = c2t2 − r2 > 0 (region II) it is consistent to imagine that there exists
a frame where r′ = 0 and s2

12 = c2t2 > 0. This is very much like we can
always find a rotation in Euclidean space that orients two points so that
they lie along the x (or any other arbitrary) axis.

We have not yet proven this, but will see it shortly. What we will see is
that we can never make these two events have the same time (t′ , 0). This
is because if we make t′ = 0 we will get a negative interval in some frame.

For points in spacetime separated by spacelike intervals, one can always
choose a frame such that they occur at same t. (i.e. for us t′ = 0). Since
s2

12 = c2t2 − r2 < 0, s2
12 = −r2 < 0.

Similar to light rays that move along the light cone, particles that move
at speeds less than the speed of light propagate along worldlines within
region II (in the interior of the light cone). At at arbitrary point in the
worldline of a particle draw a 45 degree cone. Tangent to world line should
lie inside the figure lightcone of that space time point.

2.6 proper time .

PICTURE4: velocity at (t, x) = v (say). Consider an inertial frame with
speed v, centered at the momentary position of the particle. Call this the
primed frame. In this frame ds2 = c2dt′2 (particle is at rest in this frame).

In the original frame ds2 = c2dt2 − dx2. Since these are equal we have

c2dt2 − dx2 = c2dt′2. (2.21)

Dividing by c2 we have

dt′2 = dt2 −
1
c2 dx2. (2.22)

Here dt2 is the (squared) time elapsed in the frame where it is moving. The
time elapsed in the rest frame of the particle, we call the “proper time”,
and we have dt′ < dt because 1 − v2/c2 < 1. This is described as

More exactly, we write

dτ2 =
ds2

dt2 = dt2

1 − 1
c2

(
dx
dt

)2 . (2.23)
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In general, for noninfinitesimal dt, to find the proper time one has to
integrate

τab =
1
c

∫ b

a
ds. (2.24)

Plan for next class: Talk about causality. Derive the Lorentz transforma-
tion.

Reading Still covering chapter 1 material from the text [11], lecture
notes RelEM12-26.pdf, and lecture notes RelEM27-44.pdf.

2.7 more spacetime geometry.

PICTURE: ct,x curvy worldline with tangent vector v.
In an inertial frame moving with v, whose origin coincides with momen-

tary position of this moving observer ds2 = c2dt′2 = c2dt2 − r2

“proper time” is

dt′ = dt

√
1 −

1
c2

(
dr
dt

)2

= dt

√
1 −

v2

c2 . (2.25)

We see that dt′ < dt if v > 0, so that
√

1 − v2/c2 < 1.
In a manifestly invariant way we define the proper time as

dτ ≡
ds
c
. (2.26)

So that between worldpoints a and b the proper time is a line integral over
the worldline

dτ ≡
1
c

∫ b

a
ds. (2.27)

PICTURE: We are splitting up the worldline into many small pieces and
summing them up.

2.8 finite interval invariance.

Tomorrow we are going to complete the proof about invariance. We have
shown that light like intervals are invariant, and that infinitesimal intervals
are invariant. We need to put these pieces together for finite intervals.
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2.9 deriving the lorentz transformation.

Let us find the coordinate transforms that leave s2
12 invariant. This general-

izes Galileo’s transformations.
We would like to generalize rotations, which leave spatial distance in-

variant. Such a transformation also leaves the spacetime interval invariant.
In Euclidean space we can generate an arbitrary rotation by composition

of rotation around any of the xy, yz, zx axis.
For 4D Euclidean space we would form any rotation by composition of

any of the 6 independent rotations for the 6 available planes. For example
with x, y, z,w axis we can rotate in any of the xy, xz, xw, yz, yw, zw planes.

For spacetime we can “rotate” in x, t, y, t, z, t “planes”. Physically this
is motion space (boosting a position).

Consider a x, t transformation The trick (that is in the notes) is to rewrite
the time as an analytical continuation of the time coordinate, as follows

ds2 = c2dt2 − dx2. (2.28)

and write

t → iτ, (2.29)

so that the interval becomes

ds2 = −(c2dτ2 + dx2). (2.30)

Now we have a structure that is familiar, and we can rotate as we normally
do. Prof does not want to go through the details of this “trickery” in class,
but says to see the notes. The end result is that we can transform as follows

x′ = x coshψ + ct sinhψ (2.31)

ct′ = x sinhψ + ct coshψ. (2.32)

which is analogous to a spatial rotation

x′ = x cosα + y sinα (2.33)

y′ = −x sinα + y cosα. (2.34)

There are some differences in sign as well, but the important feature to
recall is that cosh2 x − sinh2 x = (1/4)(e2x + e−2x + 2 − e2x − e−2x + 2) = 1.
We call these hyperbolic rotations, something that is simply a mathematical
transformation. Now we want to relate this to something physical.
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Q: What is ψ? The origin of O has coordinates (t,O) in the O frame.
PICTURE (pg 32): O′ frame translating along x axis with speed vx. We

have

x′

ct′
=

vx

c
. (2.35)

However, using eq. (2.31) we have for the (spatial) origin

x′ = ct sinhψ (2.36)

ct′ = ct coshψ, (2.37)

so that

x′

ct′
= tanhψ =

vx

c
. (2.38)

Using

coshψ =
1√

1 − tanh2 ψ

(2.39)

sinhψ =
tanhψ√

1 − tanh2 ψ

. (2.40)

Performing all the gory substitutions one gets

x′ =
1√

1 − v2
x/c2

x +
vx/c√

1 − v2
x/c2

ct (2.41)

y′ = y (2.42)

z′ = z (2.43)

ct′ =
vx/c√

1 − v2
x/c2

x +
1√

1 − v2
x/c2

ct. (2.44)

PICTURE: Let us go to the more conventional case, where O is at rest and
O′ is moving with velocity vx.
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We achieve this by simply changing the sign of vx in eq. (2.41) above.
This gives us

x′ =
1√

1 − v2
x/c2

x −
vx/c√

1 − v2
x/c2

ct (2.45)

y′ = y (2.46)

z′ = z (2.47)

ct′ = −
vx/c√

1 − v2
x/c2

x +
1√

1 − v2
x/c2

ct. (2.48)

We want some shorthand to make this easier to write and introduce

γ =
1√

1 − v2
x/c2

, (2.49)

so that eq. (2.45) becomes

x′ = γ
(
x −

vx

c
ct
)

(2.50)

ct′ = γ
(
ct −

vx

c
x
)
. (2.51)

We started the class by saying these would generalize the Galilean trans-
formations. Observe that if we take c→ ∞, we have γ → 1 and

x′ = x − vxt + O((vx/c)2) (2.52)

t′ = t + O(vx/c). (2.53)

This is how to remember the signs. We want things to match up with the
non-relativistic limit.

Q: How do lines of constant x′ and ct′ look like on the x, ct spacetime
diagram? Our starting point (again) is

x′ = γ
(
x −

vx

c
ct
)

(2.54)

ct′ = γ
(
ct −

vx

c
x
)
. (2.55)

What are the points with x′ = 0. Those are the points where x = (vx/c)ct.
This is the ct′axis. That is the straight worldline

PICTURE: worldline of O′ origin.
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What are the points with ct′ = 0. Those are the points where ct = xvx/c.
This is the x′axis.

Lines that are parallel to the x′ axis are lines of constant x′, and lines
parallel to ct′ axis are lines of constant t′, but the light cone is the same for
both.

What is this good for? We have time to pick from either length contrac-
tion or non-causality (how to kill your grandfather). How about length
contraction. We can use the diagram to read the x or ct coordinates, or
examine causality, but it is hard to read off t′ or x′ coordinates.

Reading Covering chapter 1 material from the text [11], and lecture
notes RelEM27-44.pdf.

2.10 more on proper time.

PICTURE:1: worldline with small interval.
Considering a small interval somewhere on the worldline trajectory, we

have

ds2 = c2dt2 − dx2 = c2dt′2, (2.56)

where dt′ is the proper time elapsed in a frame moving with velocity v,
and dt is the time elapsed in a stationary frame.

We have

dt′ = dt
√

1 − (dx/dt)2/c2 = dt
√

1 − v2/c2. (2.57)

PICTURE:2: particle at rest.
For the particle at rest

cτstationary
21 = c(t2 − t1) =

∫ 2

1
ds =

∫ 2

1
cdt. (2.58)

PICTURE:3: particle with motion.
“length” of 1-2 “curved” worldline∫ 2

1
ds′ =

∫ 2

1
cdt′

=

∫ 2

1
cdt

√
1 − (dv/dt)2,

(2.59)
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where in this case [1, 2] denotes the range of a line integral over the
worldline. We see that the multiplier of dt for any point along the curve is
smaller than 1, so that the length along a straight line is longest (i.e. for
the particle at rest).

We have argued that if 1,2 occur at the same place, the spacetime length
of a straight line between them is the longest. This remains the time for all
1,2 timelike separated.

LOTS OF DISCUSSION. See new posted notes for details.
Back to page 18 of the notes.
We have argued that ds12 = ds′12 =⇒ s12 = s′12 for infinitesimal 1,2

even if not infinitesimal.
The idea is to represent the interval between twill not close 1,2 as a sum

over small ds’s.
P6: x = x2t/t2 straight line through origin, with t ∈ [0, t2].
P7: zoomed on part of this line.

ds2 = c2dt2 − dx2

= c2dt2 −

(
x2

t2

)2

dt2

= c2dt2

1 − 1
c2

(
x2

t2

)2 ,
(2.60)

or ∫ 1

0
ds = c

∫ t2

0
dt

√
1 −

1
c2

(
x2

t2

)2

. (2.61)

In another frame just replace t → t′ and x2 → x′2∫ 1

0
ds = c

∫ t′2

0
dt

√
1 −

1
c2

(
x′2
t′2

)2

. (2.62)

2.11 length contraction.

Consider O and O′ with O′ moving in x with speed vx > 0. Here we have

x′ = γ
(
x −

vx

c
ct
)

ct′ = γ
(
ct −

vx

c
x
)
.

(2.63)

http://www.physics.utoronto.ca/~poppitz/poppitz/PHY450_files/pp.24.1-24.4.pdf
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PICTURE: spacetime diagram with ct′ at angle α, where tanα = vx/c.
Two points (xA, 0), (xB, 0), with rest length measured as L = xB − xA.

From the diagram c(tB − tA) = tanαL, and from eq. (2.63) we have

x′A = γ
(
xA −

vx

c
ctA

)
x′B = γ

(
xB −

vx

c
ctB

)
,

(2.64)

so that

L′ = x′B − x′A

= γ
(
(xB − xA) −

vx

c
c(tB − tA)

)
= γ

(
L −

vx

c
tanαL

)
= γ

(
L −

v2
x

c2 L
)

= γL
(
1 −

v2
x

c2

)

= L

√
1 −

v2
x

c2 .

(2.65)

2.12 superluminal speed and causality.

If Einstein’s relativity holds, superliminal motion is a “no-no”. Imagine
that some “tachyons” exist that can instantaneously transmit stuff between
observers.

PICTURE9: two guys with resting worldlines showing.
Can send info back to A before A sends to B. Superluminal propagation

allows sending information not yet available. Can show this for finite
superluminal velocities (but hard) as well as infinite velocity superluminal
speeds. We see that time ordering can not be changed for events separated
by time like separation. Events separated by spacelike separation cannot
be ca usually connected.

2.13 problems

Exercise 2.1 Transformation of velocities.
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From the Lorentz transformations of space and time coordinates.

a. Derive the transformation of velocities. With a particle moving
with v in the unprimed (stationary) frame, find its velocity v′ in
the primed frame. The primed frame is moving with some V with
respect to the unprimed one. Make sure to finally derive the gen-
eral “addition of velocities” equation in terms of vectors and dot
products, as given in [9].

b. Velocities relative to c. Then, use the addition of velocities rule to
show that:

1. if v < c in one frame, then v′ < c in any other frame.

2. If v = c in one frame, then v′ = c in any other frame, and

3. if v > c in one frame, than v′ > c in any other frame.

Answer for Exercise 2.1

Part a. We need a vector form of the Lorentz transform to start with.
Let us write σ for a unit vector colinear with the primed frame velocity V,
so that V = (V ·σ)σ. When our boost was in the x direction, our Lorentz
transformation was in terms of x = x · x̂. The component in the direction
of the boost is now x ·σ, and we have

ct′ = γ

(
ct − (x ·σ)

V ·σ
c

)
x′ ·σ = γ

(
x ·σ −

V ·σ
c

ct
)

x′ ∧σ = x∧σ.

(2.66a)

We can add the vector components using x = (x · σ)σ + (x ∧ σ)σ,
leaving

ct′ = γ

(
ct − (x ·σ)

V ·σ
c

)
x′ = (x∧σ)σ + γ

(
(x ·σ)σ −

V
c

ct
)
.

(2.67a)

Writing (x ∧ σ)σ = x − (x · σ)σ we have for the spatial component
transformation

x′ = x + (x ·σ)σ(γ − 1) − γ
V
c

ct. (2.68)
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Now we are set to take derivatives to calculate the velocities. This gives us

dt′

dt
= γ

(
1 −

(
dx
dt
·σ

)
V ·σ

c2

)
dx′

dt′
dt′

dt
=

dx
dt

+

(
dx
dt
·σ

)
σ(γ − 1) − γ

V
c

c.
(2.69a)

Dividing this pair of equations, and using v = dx/dt, and v′ = dx′/dt′,
this is

v′ =
γ−1v + (v ·σ)σ(1 − γ−1) −V

1 − (v ·σ) (V ·σ)/c2 . (2.70)

Since V and our direction vector σ are colinear, we have (v ·σ)(V ·σ) =

v ·σ, and can simplify this last expression slightly

v′ =
γ−1v + (v ·σ)σ(1 − γ−1) −V

1 − v ·V/c2 . (2.71)

Finally, if we are to compare to the text, we note that the inverse ex-
pression requires replacement of V with −V and switching v with v′. That
gives us

v =
γ−1v′ + (v′ ·σ)σ(1 − γ−1) + V

1 + v′ ·V/c2 . (2.72)

The expression in the text is also a small velocity approximation. For
|V| � c, we have γ−1 ≈ 1, and (1 + v′ ·V/c2)−1 ≈ 1− v′ ·V/c2. This gives
us

v ≈ (v′ + V)(1 − v′ ·V/c2) ≈ V + v′ − v′(v′ ·V)/c2. (2.73)

One additional approximation was made dropping the V(v′ ·V)/c2 term
which is quadratic in V/c, which leave us with equation 5.3 in the text as
desired.

Part b. In eq. (2.72), let us write v′ = uu, where u is a unit vector,
V = V · σ, and α = u · σ for the direction cosine between the primed
frame’s direction of motion and the particle’s velocity direction (also in
the unprimed frame). The stationary frame’s particle velocity is then

v =
γ−1uu + uασ(1 − γ−1) + Vσ

1 + αuV/c2 . (2.74)
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As a check, note that for 1 = α = u ·σ = cos(0), we recover the familiar
addition of velocities formula

v = u
u + V

1 + uV/c2 . (2.75)

We want to put eq. (2.74) into a form that renders it more tractable for
general angles too. Factoring out the γ−1 term appears to do the job,
yielding

v =
uγ−1(u − ασ) + (uα + V)σ

1 + αuV/c2 . (2.76)

After a bit of reduction and rearranging we can dot this with itself to
calculate

v2 =
V2(1 − α2)(1 − u2/c2) + (u + αV)2

(1 + αuV/c2)2 . (2.77)

Note that for u = c, we have v2 = c2, regardless of the direction of V with
respect to the motion of the particle in the unprimed frame. This should
not be surprising since this light like invariance is exactly what the Lorentz
transformation is designed to maintain. It is however slightly comforting
to know that the algebra appears to be still be kosher after all this. This
also answers part (b) of this question, since we have tackled the v = c case
in the primed frame, and seen that the speed remains v = c in the unprimed
frame (and thus any frame moving at constant speed relative to another).

Observe that since 1 − α2 = sin2 θ, and u ≤ c, this is positive definite
as expected. If one allowed u > c in some frame, our speed could go
imaginary!

For the u < c and u > c cases, let x = u/c and y = V/c. This allows
eq. (2.77) to be casted in a simpler form

v2 = c2 y2(1 − α2)(1 − x2) + (x + αy)2

(1 + αxy)2 . (2.78)

We wish to verify that (a) given any x ∈ (−1, 1), we have v2 < c2 for all
y ∈ (−1, 1), α ∈ (−1, 1), and (c) given any |x| > 1, we have v2 > c2 for all
y ∈ (−1, 1), α ∈ (−1, 1).

Considering (a) first, this requires a demonstration that

y2(1 − α2)(1 − x2) + (x + αy)2 < (1 + αxy)2. (2.79)
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Expanding out the products and canceling terms, we want to show that for
(a) that if |x|, |y| < 1 we have

x2(1 − y2) + y2 < 1, (2.80)

and for (c) that if |x| > 1, we have for any |y| < 1

x2(1 − y2) + y2 > 1. (2.81)

Observe that the frame velocity orientation direction cosines have com-
pletely dropped out, leaving just the (relative to c) velocity terms.

To get an initial feel for this function f (x, y) = x2(1 − y2) + y2, notice
that when graphed we have a bowl with a minimum (zero) at the origin, and
what appears to be a uniform value of one on the boundary (case (b)). Then
provided |y| < 1 it appears that the function f increases monotonically to a
value greater than one (case (c)). While looking at a plot is not any sort of
rigorous proof, let us move on to some of the other problems for now, and
return to this last loose thread later if time permits.

Exercise 2.2 Toy GPS model.

A toy model of a GPS system has satellites moving in a straight line with
constant velocity Vx and at a constant height h (measured, e.g., along the y-
axis) above “ground” (the x-axis). The satellites broadcast the time in their
rest frame as well as their location at a time of broadcast. Imagine a person
on the ground receives simultaneously broadcasts from two satellites, A
and B, reporting their locations x′A and x′B as well as times of broadcast
(which happen to be equal), t′A = t′B.

a. Find a condition determining your position in x. Evaluate it to find
your deviation from the midpoint between the satellites to first
order in Vx/c.

b. For some real numbers, note that in reality there are 24 satellites,
moving with V 4km/s, a distance R ≈ 2.7 × 104km. Use these
numbers and the result from the previous problem (assuming a
flat Earth, to be sure...) to get an idea whether (special) relativistic
effects are important for the typical modern GPS accuracy of order
10 m (or less)?

Answer for Exercise 2.2

http://goo.gl/5AnNF
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Part a. We are looking for a worldpoints (ct′, x′, y′) in satellite frame on
the light cone emanating from the satellite worldpoints (ct′A, x

′
A, y
′
A), and

(ct′B, x
′
B, y
′
B). These are

c2(t′A − t′)2 = (x′A − x′)2 + (y′A − y′)2

c2(t′B − t′)2 = (x′B − x′)2 + (y′B − y′)2,
(2.82)

where the worldpoints (ct′, x′, y′) are related to the stationary frame by
ct′

x′

y′



γ −βγ 0

−βγ γ 0

0 0 1



ct

x

y

 . (2.83)

The problem has been artificially simplified by stating that t′A = t′B, and we
can eliminate the y′ terms since we want y′A − y′ = h = y′B − y′ at the point
where the signal is received.

Suppose that in the observer frame the light signals are received with
event coordinates (ct0, x0, 0). In the satellites rest frame these are

ct′ = γ(ct0 − βx0)

x′ = γ(x0 − βct0).
(2.84)

We can make these substitutions above, yielding

(ct′A − γct0 + γβx0)2 = (x′A − γx0 + γβct0)2 + h2

(ct′A − γct0 + γβx0)2 = (x′B − γx0 + γβct0)2 + h2.
(2.85)

Observe that the t′A = t′B condition allows us to equate the pair of RHS
terms and thus have

x′A − γx0 + γβct0 = ±(x′B − γx0 + γβct0). (2.86)

If we pick the positive root, then we have x′A = x′B, a perfectly valid
mathematical solution, but not one that can be used for triangularization.
Taking the negative root instead and rearranging we have

γβct0 = γx0 −
1
2

(x′A + x′B). (2.87)

As a sanity check observe that if β = 0 we have x0 = 1
2 (x′A + x′B) = x′m, the

midpoint in the satellite (also the observer frame for β = 0). This is what
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we would expect if a simultaneous signal is received that emanated at the
same time when both sources are at rest at the same height.

When β , 0 we have

γct0 =
1
β

(γx0 − x′m), (2.88)

allowing us to eliminate γct0 terms from the equations we wish to solve(
ct′A −

1
β

(γx0 − x′m) + γβx0

)2

= (x′A − x′m)2 + h2

(
ct′A −

1
β

(γx0 − x′m) + γβx0

)2

= (x′B − x′m)2 + h2.

(2.89)

We can group the γx0 terms on the LHS nicely

−
1
β
γx0γβx0 = γx0(−

1
β

+ β)

=
1
β
γx0(−1 + β2)

= −
1
β

x0,

(2.90)

leaving(
ct′A −

1
β

x0 +
1
β

x′m

)2

= (x′A − x′m)2 + h2 = (x′B − x′m)2 + h2. (2.91)

The value
∣∣∣x′A − x′m

∣∣∣ =
∣∣∣x′B − x′m

∣∣∣ =
∣∣∣x′A − x′B

∣∣∣/2 is half the separation L′ of
the satellites in their rest frame, so we have

ct′A −
1
β

x0 +
1
β

x′m = ±

√
L′2/4 + h2, (2.92)

or

x0 = x′m + βct′A ∓ β
√

L′2/4 + h2. (2.93)

Utilizing the inverse transformation we have for a x-axis spatial coordinate
in the observer frame

x = γ(x′ + βct′), (2.94)
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allowing the t′A term to be eliminated in favour of the position that the
midpoint between the satellites would have been observed at time t′A. This
gives us

x0 =
1
γ

xm ∓ β

√
L′2/4 + h2. (2.95)

FIXME: Which sign is correct for this problem? I had guess the negative
sign. Fixing that is probably the toughest part of this problem!

Part b. FIXME: Had hand written notes for this part of the problem,
with how I’d attempted it first (considering the actual geometric problem
in 3D.)
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F O U R V E C T O R S A N D T E N S O R S .

3.1 introducing four vectors.

(From tutorial 1)
A 3-vector:

a = (ax, ay, az) = (a1, a2, a3)

b = (bx, by, bz) = (b1, b2, b3).
(3.1)

For this we have the dot product

a · b =

3∑
α=1

aαbα. (3.2)

Greek letters in this course (opposite to everybody else in the world,
because of Landau and Lifshitz) run from 1 to 3, whereas roman letters
run through the set {0, 1, 2, 3}.

We want to put space and time on an equal footing and form the com-
posite quantity (four vector)

xi = (ct, r) = (x0, x1, x2, x3), (3.3)

where

x0 = ct

x1 = x

x2 = y

x3 = z.

(3.4)

It will also be convenient to drop indices when referring to all the compo-
nents of a four vector and we will use lower or upper case non-bold letters
to represent such four vectors. For example

X = (ct, r), (3.5)

or

u = γ (1, v/c) . (3.6)
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Three vectors will be represented as letters with over arrows ~a or (in text)
bold face a.

Recall that the squared spacetime interval between two events X1 and
X2 is defined as

S X1,X2
2 = (ct1 − ct2)2 − (x1 − x2)2. (3.7)

In particular, with one of these zero, we have an operator which takes a
single four vector and spits out a scalar, measuring a “distance” from the
origin

s2 = (ct)2 − r2. (3.8)

This motivates the introduction of a dot product for our four vector space.

X · X = (ct)2 − r2 = (x0)2 −

3∑
α=1

(xα)2. (3.9)

Utilizing the spacetime dot product of eq. (3.9) we have for the dot product
of the difference between two events

(X − Y) · (X − Y) = (x0 − y0)2 −

3∑
α=1

(xα − yα)2

= X · X + Y · Y − 2x0y0 + 2
3∑
α=1

xαyα.

(3.10)

From this, assuming our dot product eq. (3.9) is both linear and symmetric,
we have for any pair of spacetime events

X · Y = x0y0 −

3∑
α=1

xαyα. (3.11)

How do our four vectors transform? This is really just a notational issue,
since this has already been discussed. In this new notation we have

x0′ = ct′ = γ(ct − βx) = γ(x0 − βx1)

x1′ = x′ = γ(x − βct) = γ(x1 − βx0)

x2′ = x2

x3′ = x3.

(3.12)

where β = V/c, and γ−2 = 1 − β2.
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In order to put some structure to this, it can be helpful to express this
dot product as a quadratic form. We write

A · B =
[
a0 aT

]

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


b0

b

 = ATGB. (3.13)

We can write our Lorentz boost as a matrix
γ −βγ 0 0

−βγ γ 0 0

0 0 1 0

0 0 0 1


. (3.14)

so that the dot product between two transformed four vectors takes the
form

A′ · B′ = ATOTGOB. (3.15)

Reading Covering chapter 1 material from the text [11], and lecture
notes RelEM27-44.pdf.

3.2 the special orthogonal group (for euclidean space).

Lorentz transformations are like “rotations” for (t, x, y, z) that preserve
(ct)2 − x2 − y2 − z2. There are 6 continuous parameters:

• 3 rotations in x, y, z space

• 3 “boosts” in x or y or z.

For rotations of space we talk about a group of transformations of 3D
Euclidean space, and call this the S 0(3) group. Here S is for Special, O
for Orthogonal, and 3 for the dimensions.

For a transformed vector in 3D space we write
x

y

z

→

x

y

z


′

= O


x

y

z

 . (3.16)
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Here O is an orthogonal 3 × 3 matrix, and has the property

OT O = 1. (3.17)

Taking determinants, we have

det OT det O = 1, (3.18)

and since det OT = det O, we have

(det O)2 = 1, (3.19)

so our determinant must be

det O = ±1. (3.20)

We work with the positive case only, avoiding the transformations that
include reflections.

The Unitary condition OTO = 1 is an indication that the inner product
is preserved. Observe that in matrix form we can write the inner product

r1 · r2 =
[
x1 y1 z1

] 
x1

y2

x3

 . (3.21)

For a transformed vector X′ = OX, we have X′T = XTOT, and

X′ · X′ = (XTOT)(OX) = XT(OTO)X = XT X = X · X. (3.22)

3.3 the special orthogonal group (for spacetime).

This generalizes to Lorentz boosts! There are two differences

1. Lorentz transforms should be 4 × 4 not 3 × 3 and act in (ct, x, y, z),
and NOT (x, y, z).

2. They should leave invariant NOT r1 · r2, but c2t2t1 − r2 · r1.

Do not get confused that I demanded c2t2t1 − r2 · r1 = invariant rather
than c2(t2 − t1)2 − (r2 − r1)2 = invariant. Expansion of this (squared) inter-
val, provides just this four vector dot product and its invariance condition

invariant = c2(t2 − t1)2 − (r2 − r1)2

= (c2t2
2 − r2

2) + (c2t2
2 − r2

2) − 2c2t2t1 + 2r1 · r2.
(3.23)
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Observe that we have the sum of two invariants plus our new cross term,
so this cross term, (-2 times our dot product to be defined), must also be
an invariant.

Introduce the four vector

x0 = ct

x1 = x

x2 = y

x3 = z.

(3.24)

Or (x0, x1, x2, x3) = {xi, i = 0, 1, 2, 3}.
We will also write

xi = (ct, r)

x̃i = (ct̃, r̃).
(3.25)

Our inner product is

c2tt̃ − r · r̃. (3.26)

Introduce the 4 × 4 matrix

∥∥∥gi j
∥∥∥ =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


. (3.27)

This is called the Minkowski spacetime metric.
Then

c2tt̃ − r · r̃ ≡
3∑

i, j=0

x̃igi jx j

=

3∑
i, j=0

x̃igi jx j

x̃0x0 − x̃1x1 − x̃2x2 − x̃3x3.

(3.28)
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Einstein summation convention . Whenever indices are repeated that are
assumed to be summed over.

We also write

X =


x0

x1

x2

x3


. (3.29)

X̃ =


x̃0

x̃1

x̃2

x̃3


. (3.30)

G =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


. (3.31)

Our inner product

c2tt̃ − r̃ · r = X̃TGX

=
[
x̃0 x̃1 x̃2 x̃3

]

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1




x̃0

x̃1

x̃2

x̃3


.

(3.32)

Under Lorentz boosts, we have

X = ÔX′, (3.33)

where

Ô =


γ −γvx/c 0 0

−γvx/c γ 0 0

0 0 1 0

0 0 0 1


. (3.34)
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(for x-direction boosts)

X̃ = ÔX̃′

X̃T = X̃′TÔT.
(3.35)

But Ô must be such that X̃TGX is invariant. i.e.

X̃TGX = X̃′T(ÔTGÔ)X′ = X′T(G)X′ ∀X′ and X̃′. (3.36)

This implies

ÔTGÔ = G. (3.37)

Such Ô’s are called “pseudo-orthogonal”.
Lorentz transformations are represented by the set of all 4 × 4 pseudo-

orthogonal matrices. In symbols

ÔTGÔ = G. (3.38)

Just as before we can take the determinant of both sides. Doing so we have

det(ÔTGÔ) = det(ÔT ) det(G) det(Ô) = det(G). (3.39)

The det(G) terms cancel, and since det(ÔT ) = det(Ô), this leaves us with
(det(Ô))2 = 1, or

det(Ô) = ±1. (3.40)

We take the det 0 = +1 case only, so that the transformations do not change
orientation (no reflection in space or time). This set of transformation
forms the group

S O(1, 3).

Special orthogonal, one time, 3 space dimensions. Note that when the −1
determinant is also allowed the group is called the O(1, 3) set of transfor-
mations.

Einstein relativity can be defined as the “laws of physics that leave four
vectors invariant in the

S O(1, 3) × T 4.

symmetry group.
Here T 4 is the group of translations in spacetime with 4 continuous

parameters. The complete group of transformations that form the group of
relativistic physics has 10 = 3 + 3 + 4 continuous parameters.

This group is called the Poincare group of symmetry transforms.
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3.4 lower index notation.

Our inner product is written

x̃igi jx j. (3.41)

but this is very cumbersome. The convenient way to write this is instead

x̃igi jx j = x̃ jx j = x̃ixi. (3.42)

where

xi = gi jx j = g jix j. (3.43)

Note: A check that we should always be able to make. Indexes that are not
summed over should be conserved. So in the above we have a free i on the
LHS, and should have a non-summed i index on the RHS too (also lower
matching lower, or upper matching upper).

Non-matched indices are bad in the same sort of sense that an expression
like

r = 1. (3.44)

is not well defined (assuming a vector space r and not a multivector Clifford
algebra that is;)

Expanded out explicitly (noting that all off diagonal terms of the metric
tensor are zero):

x0 = g00x0 = ct

x1 = g1 jx j = g11x1 = −x1

x2 = g2 jx j = g22x2 = −x2

x3 = g3 jx j = g33x3 = −x3.

(3.45)

We would not have objects of the form

xixi = (ct)2 + r2. (3.46)

for example. This is not a Lorentz invariant quantity.

Lorentz scalar example: x̃ixi
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Lorentz vector example: xi This last is also called a rank-1 tensor.
Lorentz rank-2 tensors: ex: gi j

or other 2-index objects.
Why in the world would we ever want to consider two index objects. We

are not just trying to be hard on ourselves. Recall from classical mechanics
that we have a two index object, the inertial tensor.

In mechanics, for a rigid body we had the energy

T =

3∑
i j=1

ΩiIi jΩ j. (3.47)

The inertial tensor was this object

Ii j =

N∑
a=1

ma
(
δi jr2

a − raira j

)
. (3.48)

or for a continuous body

Ii j =

∫
ρ(r)

(
δi jr2 − rir j

)
. (3.49)

In electrostatics we have the quadrupole tensor, ... and we have other such
objects all over physics.

Note that the energy T of the body above cannot depend on the coordi-
nate system in use. This is a general property of tensors. These are object
that transform as products of vectors, as Ii j does.

We call Ii j a rank-2 3-tensor. rank-2 because there are two indices, and
3 because the indices range from 1 to 3.

The point is that tensors have the property that the transformed tensors
transform as

I′i j =
∑

l,m=1,2,3

OilO jmIlm. (3.50)

Another example: the completely antisymmetric rank 3, 3-tensor

εi jk. (3.51)

3.5 problems
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Exercise 3.1 Photon Energy flux in other frames.

In a source’s rest frame S emits radiation isotropically with a frequency ω
with number flux f (photons/cm2s). Moves along x’-axis with speed V in
an observer frame (O). What does the energy flux in O look like?
Answer for Exercise 3.1

Simon (our TA) blasted through a problem from Hartle [5], section 5.17
(all the while apologizing for going so slow). It took me a while to work
through my notes to come up with something that was comprehensible to
me.

At one point he asked if anybody was completely lost. Nobody said yes,
but given the class title, I had the urge to say “No, just relatively lost”.

We will work in momentum space, where we have

pi = (p0,p) =

(E
c
,p

)
p2 =

E2

c2 − p2

p = h̄k
E = h̄ω

pi = h̄ki

ki =

(
ω

c
,k

)
.

(3.52)

We set up the x′-axis to be the direction of motion, and we call α the angle
from it, or the azimuthal angle. The wavevector, k, is the direction the
wave travels. Therefore, if we want to find the angle the radiation makes
to the direction of motion, you need the projection of the wavevector onto
the x-axis, or k1/|k|. In other words, imagine a piece of radiation emitted
in a certain direction, the angle it makes with the x′-axis is the cosine of
the projection on the x′-axis over the magnitude.

This azimuthal angle in the unprimed frame is

cosα =
k1

|k|
=

k1

ω/c
, (3.53)

In the observer’s reference frame (the primed coordinates), the source is
moving in the +x direction, and therefore, we must boost in the −x from
the source’s frame, or −β. Transforming out wave four vector in the same
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fashion as regular mechanical position and momentum four vectors, we
have for the observer

cosα′ =
k1′

ω′/c
=
γ(k1 + βω/c)
γ(ω/c + βk1)

. (3.54)

check 1 as β→ 1 (ie: our primed frame velocity approaches the speed
of light relative to the rest frame), cosα′ → 1, α′ = 0. The surface gets
more and more compressed.

In the original reference frame the radiation was isotropic. In the new
frame how does it change with respect to the angle? This is really a question
to find this number flux rate

f ′(α′) =? . (3.55)

In our rest frame the total number of photons traveling through the surface
in a given interval of time is

N =

∫
dΩdt f (α) =

∫
dφ sinαdα = −2π

∫
d(cosα)dt f (α). (3.56)

Here we utilize the spherical solid angle dΩ = sinαdαdφ = −d(cosα)dφ,
and integrate φ over the [0, 2π] interval. We also have to assume that our
number flux density is not a function of horizontal angle φ in the rest
frame.

In the moving frame we similarly have

N′ = −2π
∫

d(cosα′)dt′ f ′(α′), (3.57)

and we again have had to assume that our transformed number flux density
is not a function of the horizontal angle φ. This seems like a reasonable
move since k2′ = k2 and k3′ = k3 as they are perpendicular to the boost
direction.

f ′(α′) =
d(cosα)
d(cosα′)

(
dt
dt′

)
f (α). (3.58)

Now, utilizing a conservation of mass argument, we can argue that N =

N′. Regardless of the motion of the frame, the same number of particles
move through the surface. Taking ratios, and examining an infinitesimal
time interval, and the associated flux through a small patch, we have(

d(cosα)
d(cosα′)

)
=

(
d(cosα′)
d(cosα)

)−1

= γ2(1 + β cosα)2. (3.59)
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Part of the statement above was a do-it-yourself. First recall that ct′ =

γ(ct + βx), so dt/dt′ evaluated at x = 0 is 1/γ.
The rest is messier. We can calculate the d(cos) values in the ratio above

using eq. (3.53). For example, for d(cos(α)) we have

d(cosα) = d
(

k1

ω/c

)
= dk1 1

ω/c
− c

1
ω2 dω.

(3.60)

If one does the same thing for d(cosα′), after a whole whack of messy
algebra one finds that the differential terms and a whole lot more mystically
cancels, leaving just

d cosα′

d cosα
=

ω2/c2

(ω/c + βk1)2 (1 − β2). (3.61)

A bit more reduction with reference back to eq. (3.54) verifies eq. (3.59).
Also note that again from eq. (3.54) we have

cosα′ =
cosα + β

1 + β cosα
, (3.62)

and rearranging this for cosα′ gives us

cosα =
cosα′ − β

1 − β cosα′
, (3.63)

which we can sum to find that

1 + β cosα =
1

γ2(1 − β cosα′)
, (3.64)

so putting all the pieces together we have

f ′(α′) =
1
γ3

f (α)
(1 − β cosα′)2 . (3.65)

The question asks for the energy flux density. We get this by multiplying
the number density by the frequency of the light in question. This is, as a
function of the polar angle, in each of the frames.

L(α) = h̄ω(α) f (α) = h̄ω f

L′(α′) = h̄ω′(α′) f ′(α′) = h̄ω′ f ′,
(3.66)
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but we have

ω′(α′)/c = γ(ω/c + βk1) = γω/c(1 + β cosα). (3.67)

Aside, β << 1,

ω′ = ω(1 + β cosα) + O(β2) = ω + δω. (3.68)

δω = β, α = 0 blue shift

δω = −β, α = π red shift.
(3.69)

The energy flux density in the unprimed observer frame is now found to
be

L′(α′) =
L/γ

(γ(1 − β cosα′))3 . (3.70)

And the forward backward ratio is

L′(0)/L′(π) =

(
1 + β

1 − β

)3

, (3.71)

allowing us to conclude that the forward radiation is bigger than the
backwards radiation (and much bigger when the motion approaches the
speed of light).

Exercise 3.2 Trajectory of particle with hyperbolic worldline.

A particle moves on the x-axis along a world line described by

ct(σ) =
1
a

sinh(σ)

x(σ) =
1
a

cosh(σ).
(3.72)

where the dimension of the constant [a] = 1
L , is inverse length, and our

parameter takes any values −∞ < σ < ∞.
Find the

a. trajectory xi(τ),

b. proper velocity ui(τ), and

c. proper acceleration ai(τ).

Answer for Exercise 3.2
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Parametrize by time First note that we can re-parametrize x = x1 in
terms of t. That is

cosh(σ) =

√
1 + sinh2(σ)

=
√

1 + (act)2

= a
√

a−2 + (ct)2.

(3.73)

So

x(t) =
√

a−2 + (ct)2. (3.74)

Asymptotes Squaring and rearranging, shows that our particle is moving
through half of a hyperbolic arc in spacetime (two such paths are possible,
one for strictly positive x and one for strictly negative).

x2 − (ct)2 = a−2. (3.75)

Observe that the asymptotes of this curve are the lightcone boundaries.
Taking derivatives we have

2x
dx

d(ct)
− 2(ct) = 0, (3.76)

and rearranging we have

dx
d(ct)

=
ct
x

=
ct√

(ct)2 + a−2

→ ±1.

(3.77)

Is this timelike? Let us compute the interval between two worldpoints.
That is

s2
12 = (ct(σ1) − ct(σ2))2 − (x(σ1) − x(σ2))2

= a−2(sinhσ1 − sinhσ2)2 − a−2(coshσ1 − coshσ2)2

= 2a−2 (−1 − sinhσ1 sinhσ2 + coshσ1 coshσ2)

= 2a−2 (cosh(σ2 −σ1) − 1) ≥ 0.

(3.78)

Yes, this is timelike. That is what we want for a particle that is realistic
moving along a worldline in spacetime. If the spacetime interval between
any two points were to be negative, we would be talking about something
of tachyon like hypothetical nature.
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Part a. Reparametrize by proper time. Our first task is to compute xi(τ).
We have xi(σ) so we need the relation between our proper length τ and
the worldline parameter σ. Such a relation is implicitly provided by the
differential spacetime interval(

dτ
dσ

)2

=
1
c2

(
ds
dσ

)2

=
1
c2

(d(x0)
dσ

)2

−

(
d(x1)
dσ

)2
=

1
c2

(
a−2 cosh2 σ − a−2 sinh2 σ

)
=

1
a2c2 .

(3.79)

Taking roots we have

dτ
dσ

= ±
1
ac
, (3.80)

We take the positive root, so that the worldline is traversed in a strictly
increasing fashion, and then integrate once

τ =
1
ac
σ + τs. (3.81)

We are free to let τs = 0, effectively starting our proper time at t = 0.

xi(τ) = (a−1 sinh(acτ), a−1 cosh(acτ), 0, 0). (3.82)

As noted already this is a hyperbola (or degenerate hyperboloid) in space-
time, with asymptote 1 (ie: approaching the speed of light).

Part b. Proper velocity The next computational task is now simple.

ui =
dxi

ds
=

1
c

dxi

dτ
= (cosh(acτ), sinh(acτ), 0, 0). (3.83)

Is this light like or time like? We can answer this by considering the four
vector square

u · u. (3.84)
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Time like vectors What is a light like or a time like vector?
Recall that we have defined lightlike, spacelike, and timelike intervals.

A lightlike interval between two world points had (ct − ct̃)2 − (x − x̃)2 = 0,
whereas a timelike interval had (ct − ct̃)2 − (x − x̃)2 > 0. Taking the vector
(ct̃, x̃) as the origin, the distance to any single four vector from the origin
is then just that vector’s square, so it logically makes sense to call a vector
light like if it has a zero square, and time like if it has a positive square.

Consider the very simplest example of a time like trajectory, that of a
particle at rest at a fixed position x0. Such a particle’s worldline is

X = (ct, x0). (3.85)

While we interpret t here as time, it functions as a parametrization of the
curve, just as σ does in this question. If we want to compute the proper
time interval between two points on this worldline we have

τb − τ0 =
1
c

∫ tb

λ=ta

√
dX(λ)

dλ
·

dX(λ)
dλ

dλ

=
1
c

∫ tb

λ=ta

√
(c, 0)2dλ

=
1
c

∫ tb

λ=ta
cdλ

= tb − ta.

(3.86)

The conclusion (arrived at the hard way, but methodologically) is that
proper time on this worldline is just the parameter t itself.

Now examine the proper velocity for this trajectory. This is

u =
dX
ds

= (1, 0, 0, 0). (3.87)

We can compute the dot product u · u = 1 > 0 easily enough, and in this
case for the particle at rest (but moving in time) we see that this four-vector
velocity does have a time like separation from the origin, and it therefore
makes sense to label the four-velocity vector itself as time like.

Now, let us return to our non-inertial system. Is our four velocity vector
time like? Let us compute its square to check

u · u = cosh2 − sinh2 = 1 > 0. (3.88)

Yes, it is timelike.
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Spatial velocity Now, let us calculate our spatial velocity

vα =
dxα

dt
=

dxα

ds
c

dτ
dt
. (3.89)

Since ct = sinh(acτ)/a we have

c =
1
a

ac cosh(acτ)
dτ
dt
, (3.90)

or

dτ
dt

=
1

cosh(acτ)
. (3.91)

Similarly from eq. (3.82), we have

dx1

ds
=

1
c

dx1

dτ
= sinh(acτ). (3.92)

So our spatial velocity is sinh/cosh = tanh, and we have

vα = (c tanh(acτ), 0, 0). (3.93)

Note how tricky this index notation is. For our four vector velocity we
use ui = dxi/ds, whereas our spatial velocity is distinguished by a change
of letter as well as the indices, so when we write vα we are taking our
derivatives with respect to time and not proper time (i.e. vα = dxα/dt).

Part c. Four-acceleration From eq. (3.83), we have

wi =
dui

ds
= axi. (3.94)

Observe that our four-velocity square is

w ·w = a2a−1(−1). (3.95)

What does this really signify? Think on this. A check to verify that things
are okay is to see if this four-acceleration is orthogonal to our four-velocity
as expected

w · u = a(a−1 sinh(acτ), a−1 cosh(acτ), 0, 0) · (cosh(acτ), sinh(acτ), 0, 0)

= (sinh(acτ) cosh(acτ) − cosh(acτ) sinh(acτ))

= 0.
(3.96)
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Spatial acceleration A last beastie that we can compute is the spatial
acceleration.

aα =
d2xα

dt2

=
d
dt

dxα

dt

=
d
dt

(
dxα

ds
c

dτ
dt

)
=

d
dt

(
cuα

dτ
dt

)
=

d
dt

(
c

sinh(acτ)
cosh(acτ)

)
=

d
dτ

(
c

sinh(acτ)
cosh(acτ)

)
dτ
dt

=
ac2

cosh2(acτ)
1

cosh(acτ)

=
ac2

cosh3(acτ)
.

(3.97)

Summary Collecting all results we have

xi(τ) =
(
a−1 sinh(acτ), a−1 cosh(acτ), 0, 0

)
ui(τ) = (cosh(acτ), sinh(acτ), 0, 0)

vα(τ) = (c tanh(acτ), 0, 0)

wi(τ) = axi(τ)

aα(τ) =

(
ac2

cosh3(acτ)
, 0, 0

)
.

(3.98)

XX

Exercise 3.3 Motion in an constant uniform Electric field.

Given

E = Ex̂, (3.99)

we want to solve the problem

F =
dp
dt

= e
(
E +

v
c
×B

)
= eE. (3.100)
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Unlike second year classical physics, we will use relativistic momentum,
so for only a constant electric field, our Lorentz force equation to solve
becomes

dp
dt

=
d(mγv)

dt
= eE. (3.101)

Answer for Exercise 3.3

In components this is

ṗx = eE

ṗy = constant.
(3.102)

Integrating the x component we have

eEt + px(0) =
mẋ√

1 − (ẋ2 + ẏ2)/c2
. (3.103)

If we let px(0) = 0, square and rearrange a bit we have

m2

(eEt)2 ẋ2 = 1 −
ẋ2 + ẏ2

c2 . (3.104)

For

ẋ2 =
c2 − ẏ2

1 + ( mc
eEt )

2 . (3.105)

Now for the y components, with py(0) = p0, our equation to solve is

mẏ√
1 − (ẋ2 + ẏ2)/c2

= p0. (3.106)

Squaring this one we have

c2m2

p2
0

ẏ2 = c2 − ẋ2 − ẏ2, (3.107)

and

ẏ2 =
c2 − ẋ2

1 + m2c2

p2
0

. (3.108)
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Observe that our energy is

E2 = p2c2 + m2c4, (3.109)

and for t = 0

E2
0 = p2

0c2 + m2c4. (3.110)

We can then write

ẏ2 =
c2 p2

0(c2 − ẋ2)

E2
0

. (3.111)

Some messy substitution, using eq. (3.105), yields

ẋ =
c2eEt√
E2

0 + (ecEt)2

ẏ =
c2 p0√

E2
0 + (ecEt)2

.

(3.112)

Solving for x we have

x(t) = c2eE
∫

dt′t′√
E2

0 + (ecEt′)2
. (3.113)

Can solve with hyperbolic substitution or

x(t) = c2eE
∫

dt′t′√
E2

0 + (ecEt′)2
. (3.114)

d(u2) = 2udu =⇒ udu =
1
2

d(u2). (3.115)

x(t) =
c2eE
2E0

∫
d(u2)√

1 +

(
ecE
E0

)2

u2

. (3.116)

Now we have something of the form∫
dv

√
1 + av

=
2
a

√
1 + av, (3.117)
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so our final solution for x(t) is

x(t) =
1

eE

√
E2

0 + (ecEt)2. (3.118)

or

x2 − c2t2 =
E2

0

e2E2 = a−2. (3.119)

Now for y(t) we have

y(t) = c2 p0

∫
dt√

E2
0 + (ecEt)2

. (3.120)

t =
E0

ecE
sinh(u). (3.121)

dt =
E0

ecE
cosh(u)du. (3.122)

y(t) =
c2 p0

E0

∫
dt√

1 + (
ecE
E0

)2t2

=
c2 p0

E0

E0

ecE

∫
du cosh u√
1 + sinh2 u

=
cp0

eE
u.

(3.123)

A final bit of substitution, including a sort of odd seeming parametrization
of x in terms of y in terms of t, we have

y(t) =
cp0

eE
sinh−1

(
ecEt
E0

)
x(y) =

E0

cE cosh
(

yeE
cp0

) . (3.124)
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Checks FIXME: check the checks.

v→ c, t → ∞. (3.125)

v << c, t → 0. (3.126)

mvx = eEt + ...

x ∼ t2.
(3.127)

mvy = p0 → y ∼ t. (3.128)

x(y) ∼ y2. (3.129)

(a parabola)

An alternate way There is also a tricky way (as in the text), with

p = mγv
E = γmc2.

(3.130)

We can solve this for p

mγ =
p · v
v2 =

E

c2

p × v = 0.
(3.131)

With the cross product zero, p has only a component in the direction of v,
and we can invert to yield

p =
Ev
c2 . (3.132)

This implies

ẋ =
c2 px

E
, (3.133)

and one can work from there as well.

Exercise 3.4 Motion in an constant uniform Magnetic field.

Calculate a particle motion in a uniform magnetic field.
Answer for Exercise 3.4
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Work by the magnetic field Note that the magnetic field does no work

F =
e
c

v ×B. (3.134)

dW = F · dl

=
e
c

(v ×B) · dl

=
e
c

(v ×B) · vdt

= 0.

(3.135)

Because v and v ×B are necessarily perpendicular we are reminded that
the magnetic field does no work (even in this relativistic sense).

Initial energy of the particle Because no work is done, the particle’s
energy is only the initial time value

E = .... + eA0. (3.136)

Simon asked if we would calculated this (i.e. the Hamiltonian in class).
We would calculated the conservation for time invariance, the Hamiltonian
(and called it E). We would also calculated the Hamiltonian for the free
particle

E2 = p2c2 + (mc2)2. (3.137)

We had not done this calculation for the Lorentz force Lagrangian, so lets
do it now. Recall that this Lagrangian was

L = −mc2

√
1 −

v2

c2 − eφ +
e
c

v ·A, (3.138)

with generalized momentum of

∂L

∂v
=

mv√
1 −

v2

c2

+
e
c

A. (3.139)

Our Hamiltonian is thus

E =
mv2√
1 −

v2

c2

+
e
c

A · v + mc2

√
1 −

v2

c2 + eφ −
e
c

v ·A, (3.140)
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which gives us

E = eφ +
mc2√
1 −

v2

c2

.
(3.141)

So we see that our “energy”, defined as a quantity that is conserved, as
a result of the symmetry of time translation invariance, has a component
due to the electric field (but not the vector potential field A), plus the free
particle “energy”.

Is this right? With A and φ being functions of space and time, perhaps
we need to be more careful with this argument. Perhaps this actually only
applies to a statics case where A and φ are constant.

Since it was hinted to us that the energy component of the Lorentz force
equation was proportional to F0 ju j, and we can peek ahead to find that
Fi j = ∂iA j − ∂ jAi, let us compare to that

eF0 ju j = e(∂0A j − ∂ jA0)u j

= e(∂0Aα − ∂αA0)uα

= e
(
1
c
∂Aα

∂t
+ ∂αA0

)
1
c

dxα
dτ

= −e
(
1
c
∂Aα

∂t
+
∂φ

∂xα

)
1
c

dxα

dt
γ,

(3.142)

which is

eF0 ju j = e
(
E ·

v
c

)
γ. (3.143)

So if we have

dp
dt

= e
(
E +

v
c
×B

)
. (3.144)

I had guess that we have

d(E/c)
dτ

∼ eF0 ju j, (3.145)

which is, using eq. (3.143)

d(E/c)
dt

∼ e
(
E ·

v
c

)
. (3.146)
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Can the left hand side be integrated to yield eφ? Yes, but only in the statics
case when ∂A/∂t = 0, and φ(x, t) = φ(x) for which we have

E ∼ e
∫ b

a
E · vdt

= −e
∫ b

a
(∇φ) ·

dx
dt

dt

= −e
∫ b

a
(∇φ) · dx

= −e
∫ b

a

∂φ

∂xα
dxα

= −e(φb − φa).

(3.147)

FIXME: My suspicion is that the result eq. (3.146), is generally true, but
that we have dropped terms from the Hamiltonian calculation that need to
be retained when φ and A are functions of time.

Expressing the field and the force equation We will align our field with
the z axis, and write

B = Hẑ, (3.148)

or, in components

δα3H = Hα. (3.149)

Because the energy is only due to the initial value, we write

E(t) = E0. (3.150)

p = E
v
c2 = E0

v
c2 . (3.151)

implies

v = p
c2

E0
. (3.152)

v̇ = ṗ
c2

E0
. (3.153)
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v̇α =
ec
E0
εαβγvβHγ. (3.154)

Write

ω =
ecH
E0

, (3.155)

and evaluating the delta

v̇α = ωεαβ3vβ. (3.156)

v̇1 = ωε1β3vβ = ωv2

v̇2 = ωε2β3vβ = −ωv1

v̇3 = ωε3β3vβ = 0.

(3.157)

Looks like circular motion, so it is natural to use complex variables. With

z = v1 + iv2. (3.158)

Using this we have

d
dt

(v1 + iv2) = ωv2 − iωv1

= −iω(v1 + iv2),
(3.159)

which comes out nicely

dz
dt

= −iωz, (3.160)

for

z = V0e−iωzt+iα. (3.161)

Real and imaginary parts are

v1(t) = V0 cos(ωzt + α)

v2(t) = −V0 sin(ωzt + α).
(3.162)

Integrating

x1(t) = x1(0) + V0 sin(ωzt + α)

x2(t) = x2(0) + V0 cos(ωzt + α),
(3.163)

which is a helix. PICTURE: ...
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Exercise 3.5 Particle collision.

A particle of rest mass m whose energy is three times its rest energy
collides with an identical particle at rest. Suppose they stick together. Use
conservation laws to find the mass of the resulting particle and its velocity.
Is its mass greater or smaller than 2m? Comment.
Answer for Exercise 3.5

The energy of the initially moving particle before collision is

E =
mc2√
1 −

v2

c2

= 3mc2. (3.164)

Solving for the velocity we have∣∣∣∣∣vc
∣∣∣∣∣ =

2
√

2
3

. (3.165)

Our four velocity is

ui = γ
(
1,

v
c

)
= (3, 2

√
2). (3.166)

Designate the four momentum for this particle as

pi
(1) = mc(3, 2

√
2). (3.167)

For the second particle we have

pi
(2) = mc(1, 0). (3.168)

Our initial and final four momentum will be equal, and our resulting
velocity can only be in the direction of the initial particle. This leaves us
with

pi
( f ) = Mc

1√
1 −

v2
f

c2

(
1,

v f

c

)

= mc(1, 0) + mc(3, 2
√

2)

= mc(4, 2
√

2)

= 4mc
(
1,

1
√

2

)
.

(3.169)
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Our final velocity is v f = c/
√

2.
We have Mγ = 4 for the final particle, but we have

γ =
1√

1 − 1/2
=
√

2, (3.170)

so our final mass is

M =
4
√

2
= 2
√

2 > 2. (3.171)

Relativistically, we have conservation of four-momentum, not conservation
of mass, so a composite body will not necessarily have a mass measurement
that is the sum of the parts. One possible way to reconcile this statement
with intuition is to define mass in terms of the four momentum

m2 =
pi pi

c2 , (3.172)

and think of it as a derived quantity, not fundamental.

Exercise 3.6 Particle in an electromagnetic field.

This problem has three parts

a. Express the “normal” (i.e. not 4-, but 3-) acceleration, equal to v̇,
or a particle in terms of its velocity, E, and B, using the equation
of motion of a relativistic particle in an external electromagnetic
field.

b. Consider now a beam of electrons, moving along the x direction
with a known energy E, entering a region with constant homoge-
neous E and B fields. The fields are perpendicular, E is along the y
direction while B is along the z direction.

1. Show that by tuning the values of E and B it is possible to
balance electric and magnetic forces so that the beam does
not deviate from its original direction (and, say, hits a screen
directly ahead).

2. Find a relation determining the mass of the electron using E
and the measured values of the fields for which no deviation
occurs. Do not assume a non-relativistic limit and elucidate
which part of this problem (a way to measure the mass of the
electron) is affected by relativity.
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c. Solve for the motion (i.e. find the trajectories) of a relativistic
charged particle in perpendicular constant and homogeneous elec-
tric and magnetic fields; do not assume E = B.

Answer for Exercise 3.6

Part a. Finding v̇. With the particle’s energy given by

E = γmc2, (3.173)

we note that

Ev = (γmv)c2 = pc2. (3.174)

Taking derivatives we have

c2 dp
dt

= v
dE
dt

+
dv
dt
E

= v(eE · v) +
dv
dt
E.

(3.175)

Rearranging we have

dv
dt

=
c2e

(
E + v

c ×B
)
− v(eE · v)

E
. (3.176)

which leaves us with the desired result

v̇ =
e
m

√
1 −

v2

c2

(
E +

v
c
×B −

v
c

(
E ·

v
c

))
. (3.177)

Part b. On the energy change rate. Note that when the problem set was
assigned, the relation

dE
dt

= eE · v. (3.178)

had not been demonstrated. To show this observe that we have
d
dt
E = mc2 dγ

dt

= mc2 d
dt

1√
1 −

v2

c2

= mc2
v
c2 ·

dv
dt(

1 − v2

c2

)3/2

=
mγv · dv

dt

1 − v2

c2

.

(3.179)
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We also have

v ·
dp
dt

= v ·
d
dt

mv√
1 −

v2

c2

= mv2 dγ
dt

+ mγv ·
dv
dt

= mv2 dγ
dt

+ mc2 dγ
dt

(
1 −

v2

c2

)
= mc2 dγ

dt
.

(3.180)

Utilizing the Lorentz force equation, we have

v ·
dp
dt

= e
(
E +

v
c
×B

)
· v = eE · v, (3.181)

and are able to assemble the above, and find that we have

d(mc2γ)
dt

= eE · v. (3.182)

2. (a). Tuning E and B Using our previous result with E = Eŷ and
B = Bẑ, our system of equations takes the form

v̇ =
e
m

√
1 −

v2

c2

(
Eŷ + x̂

vy

c
B− ŷ

yx

B
−

v
c

E
vy

c

)
. (3.183)

This is really three equations, but they are coupled with the nasty

√
1 −

v2

c2
term. However, since it is specified that the particles have a known energy
E, and that energy is

E =
mc2√
1 −

v2

c2

, (3.184)

we can write√
1 −

v2

c2 =
mc2

E
. (3.185)



3.5 problems 57

This eliminates the worst of the coupling, leaving three less hairy equations
to solve

v̇x =
ec2

E

(vy

c
B−

vxvy

c2 E
)

v̇y =
ec2

E

E −
vx

c
B−

v2
y

c2 E


v̇z =

ec2

E

(
−

vyvz

c2 E
)
.

(3.186)

We do not actually want to compute general solutions for these equations.
Instead we just wish to examine the constraints on E and B that will keep
vy = vz = 0.

First off we see from the v̇z equation above that if vy = 0 or vz = 0
initially, then v̇z = 0, and vz(t) = constant = vz(0) = 0. So, if the beam is
initially aligned with the x direction, it will not deviate towards the z axis
(in the direction of the magnetic field) at all.

Next, if we initially have vy = 0, then at that point of time, our equation
for v̇x and v̇y are respectively

v̇x = 0

v̇y =
ec2

E

(
E −

vx

c
B
)
.

(3.187)

We are able to solve for the time evolution of the velocities directly

vx(t) = constant = vx(0)

vy(t) =
ec2

E

(
E −

vx(0)
c

B
)

t.
(3.188)

We can maintain zero deviation in the y direction (vy(t) = 0) provided we
pick

E =
vx(0)

c
B. (3.189)

3.5.0.1 2. (b). Finding the mass of the electron.

After measuring the fields that once adjusted produce no deviation in the y
and z directions, our particles velocity must then be

vx

c
=

E
B
. (3.190)
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If the energy has also been measured, we have a relation between the mass
from

E =
mc2√

1 − v2
x/c2

=
mc2√

1 − E2/B2
. (3.191)

With a slight rearrangement, our mass can then be calculated from the
energy E, and field measurements

m =
E

c2

√
1 − E2/B2. (3.192)

Part c. Solve for the relativistic trajectory of a particle in perpendicular
fields. Our equation to solve is

dui

ds
=

e
mc2 Fi jg jkuk, (3.193)

where

∥∥∥Fi jg jk
∥∥∥ =


0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1



=


0 Ex Ey Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0


.

(3.194)

However, with the fields being perpendicular, we are free to align them
with our choice of axis. As above, let us use E = Eŷ, and B = Bẑ. Writing
u for the column vector with components ui we have a matrix equation to
solve

du
ds

=
e

mc2


0 0 E 0

0 0 B 0

E −B 0 0

0 0 0 0


u = Fu. (3.195)
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It is simple to verify that our characteristic equation is

0 = |F − λI|

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ 0 E 0

0 −λ B 0

E −B −λ 0

0 0 0 −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −λ2(−λ2 − B2 + E2).

(3.196)

so that our eigenvalues are

λ = 0, 0,±
√

E2 − B2. (3.197)

Since the fields are constant, we can diagonalize this, and solve by expo-
nentiation.

Let

D =
√

E2 − B2. (3.198)

To solve for the eigenvector eD for λ = D we need solutions to
−D 0 E 0

0 −D B 0

E −B −D 0

0 0 0 −D




a

b

c

d


= 0, (3.199)

and it is straightforward to compute

eD =
1
√

2E


E

B

D

0


. (3.200)

Similarly for the λ = −D eigenvector e−D we wish to solve
D 0 E 0

0 D B 0

E −B D 0

0 0 0 D




a

b

c

d


= 0, (3.201)
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and find that

e−D =
1
√

2E


E

B

−D

0


. (3.202)

We can also pick orthonormal eigenvectors for the degenerate zero eigen-
values from the null space of the matrix

0 0 E 0

0 0 B 0

E −B 0 0

0 0 0 0


. (3.203)

By inspection, two such eigenvectors are

1√
E2 + B2


B

E

0

0


,


0

0

0

1


. (3.204)

Unfortunately, the first is not generally orthonormal to either of e±D, so
our similarity transformation matrix is not invertible by Hermitian transpo-
sition. Regardless, we are now well on track to putting the matrix equation
we wish to solve into a much simpler form. With

S =


1√
2E


E

B

D

0


1√
2E


E

B

−D

0


1√

E2 + B2


B

E

0

0




0

0

0

1




, (3.205)

and

Σ =


D 0 0 0

0 −D 0 0

0 0 0 0

0 0 0 0


. (3.206)
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observe that our Lorentz force equation can now be written

du
ds

=
e

mc2 S ΣS −1u. (3.207)

This we can rearrange, leaving us with a diagonal system that has a trivial
solution

d
ds

(S −1u) =
e

mc2 Σ(S −1u). (3.208)

Let us write

v = S −1u, (3.209)

and introduce a sort of proper distance wave number

k =
e
√

E2 − B2

mc2 . (3.210)

With this the Lorentz force equation is left in the form

dv
ds

=


k 0 0 0

0 −k 0 0

0 0 0 0

0 0 0 0


v. (3.211)

Integrating once, our solution is

v(s) =


eks 0 0 0

0 e−ks 0 0

0 0 1 0

0 0 0 1


v(s = 0). (3.212)

Our proper velocity is thus given by

u =
dX
ds

= S


eks 0 0 0

0 e−ks 0 0

0 0 1 0

0 0 0 1


S −1u(s = 0). (3.213)
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We can integrate once more for our trajectory, parametrized by proper
distance on the worldline of the particle. That is

X(s)− X(0) = S


∫ s

s′=0
ds′


eks′ 0 0 0

0 e−ks′ 0 0

0 0 1 0

0 0 0 1




S −1u(s = 0). (3.214)

With u(0) = γ0(1, v0/c), and X = (ct0, x0), plus the defining relations
eq. (3.205), and eq. (3.210) our parametric equation for the trajectory is
fully specifiedct(s)

xT(s)

 −
ct0
xT

0



= S


1
k (eks − 1) 0 0 0

0 − 1
k (e−ks − 1) 0 0

0 0 s 0

0 0 0 s


S −1 1√

1 − (v0)2/c2

 1

vT
0/c

 .
(3.215)

Observe that for the case E2 > B2, our value k is real, so the solution
is entirely composed of linear combinations of the hyperbolic functions
cosh(ks) and sinh(ks). However, for the E2 < B2 case where our eigen-
values are purely imaginary, the constant k is also purely imaginary (and
our eigenvectors e±D are complex). In that case, we can take the real part
of this equation, and will be left with a solution that is formed of linear
combinations of sin(ks) and cos(ks) terms. The E = B case would have to
be handled separately, and this is done in depth in the text, so there is little
value repeating it here.

Exercise 3.7 Transformation of fields.

In class, we introduced the 4-vector potential Ai and its transformation
law under Lorentz transformations. While we have not yet discussed how
E and B transform, knowing how Ai transforms is enough to solve some
concrete problems. Suppose in one (unprimed) frame there is a charge at
rest, which creates an electrostatic field: A0 = φ =

q
r ,A = 0.

a. Find the values of E and B in this frame.
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b. Consider now the same field in a (primed) frame moving in the
x-direction with velocity v. Using the transformation law of the
vector potential, find Ai′ in the primed frame.

c. Use the relations between electric and magnetic field strengths
and vector potential (valid in every frame) to find the electric and
magnetic fields in the primed frame (i.e. find the electromagnetic
field of a moving charge). Sketch the lines of constant electric and
magnetic field and comment on the result.

Answer for Exercise 3.7

Part a. In the unprimed frame we have

E = −∇φ −
1
c
∂A
∂t

= −∇φ

= −r̂q∂r(1/r)

= r̂
q
r2 ,

(3.216)

and

B = ∇ ×A = 0. (3.217)

Part b. The coordinates in the moving frame, assuming the frames are
overlapping at t = 0, are related to the unprimed coordinates by

ct′

x′

y′

z′


=


γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1




ct

x

y

z


. (3.218)

Our four vector potential also transforms in the same fashion, and we have


φ′

A′x
A′y
A′z


=


γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1




φ

0

0

0


= γφ(1,−β, 0, 0), (3.219)
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so in the primed frame we have

φ′ = γ
q
r

A′x = −γβ
q
r

A′y = 0

A′z = 0.

(3.220)

Part c. In the primed frame our electric and magnetic fields are

E′ = −∇′φ′ −
1
c
∂A′

∂t′

B′ = ∇′ ×A′.
(3.221)

We have φ′ and A′ expressed in terms of the unprimed coordinates, so
need to calculate the transformation of the gradient and time partial too.
These partials transform as

∂

∂ct′
=
∂ct
∂ct′

∂

∂ct
+
∂x
∂ct′

∂

∂x
∂

∂x′
=
∂ct
∂x′

∂

∂ct
+
∂x
∂x′

∂

∂x
∂

∂y′
=

∂

∂y
∂

∂z′
=
∂

∂z
.

(3.222)

Utilizing the inverse transformation
ct

x

y

z


=


γ γβ 0 0

γβ γ 0 0

0 0 1 0

0 0 0 1




ct′

x′

y′

z′


, (3.223)

we have
∂

∂ct′
= γ

∂

∂ct
+ γβ

∂

∂x
∂

∂x′
= γβ

∂

∂ct
+ γ

∂

∂x
∂

∂y′
=

∂

∂y
∂

∂z′
=
∂

∂z
.

(3.224)
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Since neither φ′ nor A′ have time dependence, we have for electric field in
the primed frame

E′ = −∇′φ′ −
1
c
∂A′

∂t′

= −

(
γ
∂

∂x
,
∂

∂y
,
∂

∂z

)
φ′ − γβ

∂A′

∂x

= −

(
γ
∂

∂x
,
∂

∂y
,
∂

∂z

)
γ

q
r
− γβ

∂

∂x

(
−γβ

q
r
, 0, 0

)
= −q

(
γ2(1 − β2)

∂

∂x
, γ

∂

∂y
, γ

∂

∂z

)
1
r

= −q
(
∂

∂x
, γ

∂

∂y
, γ

∂

∂z

)
1
r
.

(3.225)

Our electric field in the primed frame is thus

E′ =
q
r3 (x, γy, γz) . (3.226)

Now for the magnetic field. We want

B′ =

∣∣∣∣∣∣∣∣∣∣∣
x̂ ŷ ẑ
∂x′ ∂y′ ∂z′

−γβq/r 0 0

∣∣∣∣∣∣∣∣∣∣∣
= (0, ∂z′ ,−∂y′)

−γβq
r

.

(3.227)

B′ =
qγβ
r3 (0,−z, y) . (3.228)

FIXME: sketch and comment.

Notes on grading of my solution I lost two marks for not reducing my
solution for the trajectory in eq. (3.215) to x(t), y(t) or x(y) form. That
is difficult in the form that I solved this for arbitrary initial conditions
(this is easy for ui = (1, 0, 0, 0) when B = 0). I will be curious to see the
Professor’s approach later.

FIXME: I had expanded out the trajectory in the way that appears to
have been desired on paper for the special case above. Re-do this and
include it here (at least as a check of my final result since I switched the
orientation of the fields when I typed it up). Also include a similar special
case expansion for the case where the invariant E2 − B2 is negative.
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Exercise 3.8 Fun with εαβγ, εi jkl, Fi j, and Maxwell duality.

a. rank 3 spatial antisymmetric tensor identities Prove that

εαβγεµνγ = δαµδβν − δανδβµ. (3.229)

and use it to find the familiar relation for

(A ×B) · (C ×D). (3.230)

Also show that

εαβγεµβγ = 2δαµ. (3.231)

(Einstein summation implied all throughout this problem).

b. Determinant of three by three matrix Prove that for any 3×3 matrix∥∥∥Aαβ
∥∥∥: εµνλAαµAβνAγλ = εαβγ det A and that εαβγεµνλAαµAβνAγλ =

6 det A.

c. Rotational invariance of 3D antisymmetric tensor Use the previous
results to show that εµνλ is invariant under rotations.

d. Rotational invariance of 4D antisymmetric tensor Use the previous
results to show that εi jkl is invariant under Lorentz transformations.

e. Sum of contracting symmetric and antisymmetric rank 2 tensors
Show that Ai jBi j = 0 if A is symmetric and B is antisymmetric.

f. Characteristic equation for the electromagnetic strength tensor
Show that P(λ) = det

∥∥∥Fi j − λgi j
∥∥∥ is invariant under Lorentz trans-

formations. Consider the polynomial of P(λ), also called the char-
acteristic polynomial of the matrix

∥∥∥Fi j
∥∥∥. Find the coefficients of

the expansion of P(λ) in powers of λ in terms of the components
of

∥∥∥Fi j
∥∥∥. Use the result to argue that E ·B and E2 −B2 are Lorentz

invariant.

g. Show that the pseudoscalar invariant has only boundary effects
Use integration by parts to show that

∫
d4xεi jklFi jFkl only depends

on the values of Ai(x) at the “boundary” of spacetime (e.g. the
“surface” depicted on page 105 of the notes) and hence does not
affect the equations of motion for the electromagnetic field.

h. Electromagnetic duality transformations Show that the Maxwell
equations in vacuum are invariant under the transformation: Fi j →
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F̃i j, where F̃i j = 1
2εi jklFkl is the dual electromagnetic stress ten-

sor. Replacing F with F̃ is known as “electric-magnetic duality”.
Explain this name by considering the transformation in terms of
E and B. Are the Maxwell equations with sources invariant under
electric-magnetic duality transformations?

Answer for Exercise 3.8

Part a. We can explicitly expand the (implied) sum over indices γ. This
is

εαβγεµνγ = εαβ1εµν1 + εαβ2εµν2 + εαβ3εµν3. (3.232)

For any α , β only one term is non-zero. For example with α, β = 2, 3, we
have just a contribution from the γ = 1 part of the sum

ε231εµν1. (3.233)

The value of this for (µ, ν) = (α, β) is

(ε231)2. (3.234)

whereas for (µ, ν) = (β, α) we have

−(ε231)2. (3.235)

Our sum has value one when (α, β) matches (µ, ν), and value minus one
for when (µ, ν) are permuted. We can summarize this, by saying that when
α , β we have

εαβγεµνγ = δαµδβν − δανδβµ. (3.236)

However, observe that when α = β the RHS is

δαµδαν − δανδαµ = 0, (3.237)

as desired, so this form works in general without any α , β qualifier,
completing this part of the problem.

(A ×B) · (C ×D) = (εαβγeαAβBγ) · (εµνσeµCνDσ)

= εαβγAβBγεανσCνDσ

= (δβνδγσ − δβσδγν)AβBγCνDσ

= AνBσCνDσ − AσBνCνDσ.

(3.238)
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This gives us

(A ×B) · (C ×D) = (A ·C)(B ·D) − (A ·D)(B ·C). (3.239)

We have one more identity to deal with.

εαβγεµβγ. (3.240)

We can expand out this (implied) sum slow and dumb as well

εαβγεµβγ = εα12εµ12 + εα21εµ21

+ εα13εµ13 + εα31εµ31

+ εα23εµ23 + εα32εµ32

= 2εα12εµ12 + 2εα13εµ13 + 2εα23εµ23.

(3.241)

Now, observe that for any α ∈ (1, 2, 3) only one term of this sum is picked
up. For example, with no loss of generality, pick α = 1. We are left with
only

2ε123εµ23. (3.242)

This has the value

2(ε123)2 = 2, (3.243)

when µ = α and is zero otherwise. We can therefore summarize the
evaluation of this sum as

εαβγεµβγ = 2δαµ, (3.244)

completing this problem.

Part b. In class Simon showed us how the first identity can be arrived at
using the triple product a · (b× c) = det(abc). It occurred to me later that I
had seen the identity to be proven in the context of Geometric Algebra, but
hhad not recognized it in this tensor form. Basically, a wedge product can
be expanded in sums of determinants, and when the dimension of the space
is the same as the vector, we have a pseudoscalar times the determinant of
the components.

For example, in R2, let us take the wedge product of a pair of vectors.
As preparation for the relativistic R4 case We will not require an orthonor-
mal basis, but express the vector in terms of a reciprocal frame and the
associated components

a = aiei = a je j, (3.245)
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where

ei · e j = δi
j. (3.246)

When we get to the relativistic case, we can pick (but do not have to) the
standard basis

e0 = (1, 0, 0, 0)

e1 = (0, 1, 0, 0)

e2 = (0, 0, 1, 0)

e3 = (0, 0, 0, 1),

(3.247)

for which our reciprocal frame is implicitly defined by the metric

e0 = (1, 0, 0, 0)

e1 = (0,−1, 0, 0)

e2 = (0, 0,−1, 0)

e3 = (0, 0, 0,−1).

(3.248)

Anyways. Back to the problem. Let us examine the R2 case. Our wedge
product in coordinates is

a∧ b = aib j(ei ∧ e j). (3.249)

Since there are only two basis vectors we have

a∧ b = (a1b2 − a2b1)e1 ∧ e2 = det
∥∥∥aib j

∥∥∥ (e1 ∧ e2). (3.250)

Our wedge product is a product of the determinant of the vector coordi-
nates, times the R2 pseudoscalar e1 ∧ e2.

This does not look quite like the R3 relation that we want to prove,
which had an antisymmetric tensor factor for the determinant. Observe
that we get the determinant by picking off the e1 ∧ e2 component of the
bivector result (the only component in this case), and we can do that by
dotting with e2 · e1. To get an antisymmetric tensor times the determinant,
we have only to dot with a different pseudoscalar (one that differs by a
possible sign due to permutation of the indices). That is

(et ∧ es) · (a∧ b) = aib j(et ∧ es) · (ei ∧ e j)

= aib j (δs
iδ

t
j − δ

t
iδ

s
j)

= aib jδ[t
jδ

s]
i

= aib jδt
[ jδ

s
i]

= a[ib j]δt
jδ

s
i

= a[sbt].

(3.251)
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Now, if we write ai = A1i and b j = A2 j we have

(et ∧ es) · (a∧ b) = A1sA2t − A1tA2s. (3.252)

We can write this in two different ways. One of which is

A1sA2t − A1tA2s = ε st det
∥∥∥Ai j

∥∥∥ . (3.253)

and the other of which is by introducing free indices for 1 and 2, and
summing antisymmetrically over these. That is

A1sA2t − A1tA2s = AasAbtεab. (3.254)

So, we have

AasAbtεab = A1iA2 jδ[t
jδ

s]
i = ε st det

∥∥∥Ai j
∥∥∥ . (3.255)

This result hold regardless of the metric for the space, and does not
require that we were using an orthonormal basis. When the metric is
Euclidean and we have an orthonormal basis, then all the indices can be
dropped.

The R3 and R4 cases follow in exactly the same way, we just need more
vectors in the wedge products.

For the R3 case we have

(eu ∧ et ∧ es) · (a∧ b∧ c) = aib jck(eu ∧ et ∧ es) · (ei ∧ e j ∧ ek)

= aib jckδ[u
kδ

t
jδ

s]
i

= a[sbtcu].

(3.256)

Again, with ai = A1i and b j = A2 j, and ck = A3k we have

(eu ∧ et ∧ es) · (a∧ b∧ c) = A1iA2 jA3kδ[u
kδ

t
jδ

s]
i, (3.257)

and we can choose to write this in either form, resulting in the identity

ε stu det
∥∥∥Ai j

∥∥∥ = A1iA2 jA3kδ[u
kδ

t
jδ

s]
i = εabcAasAbtAcu. (3.258)

The R4 case follows exactly the same way, where we have

(ev ∧ eu ∧ et ∧ es) · (a∧ b∧ c∧ d)

= aib jckdl(ev ∧ eu ∧ et ∧ es) · (ei ∧ e j ∧ ek ∧ el)

= aib jckdlδ[v
lδ

u
kδ

t
jδ

s]
i

= a[sbtcudv].

(3.259)
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This time with ai = A0i and b j = A1 j, and ck = A2k, and dl = A3l we have

ε stuv det
∥∥∥Ai j

∥∥∥ = A0iA1 jA2kA3lδ[v
lδ

u
kδ

t
jδ

s]
i = εabcdAasAbtAcuAdv.

(3.260)

This one is almost the identity to be established later in problem 1.4. We
have only to raise and lower some indices to get that one. Note that in the
Minkowski standard basis above, because s, t, u, v must be a permutation
of 0, 1, 2, 3 for a non-zero result, we must have

ε stuv = (−1)3(+1)εstuv. (3.261)

So raising and lowering the identity above gives us

−εstuv det
∥∥∥Ai j

∥∥∥ = εabcdAasAbtAcuAdu. (3.262)

No sign changes were required for the indices a, b, c, d, since they are
paired.

Until we did the raising and lowering operations here, there was no
specific metric required, so our first result eq. (3.260) is the more general
one.

There is one more part to this problem, doing the antisymmetric sums
over the indices s, t, · · ·. For the R2 case we have

εstεabAasAbt = εstε
st det

∥∥∥Ai j
∥∥∥

=
(
ε12ε

12 + ε21ε
21

)
det

∥∥∥Ai j
∥∥∥

=
(
12 + (−1)2

)
det

∥∥∥Ai j
∥∥∥ . (3.263)

We conclude that

εstεabAasAbt = 2! det
∥∥∥Ai j

∥∥∥ . (3.264)

For the R3 case we have the same operation

εstuεabcAasAbtAcu = εstuε
stu det

∥∥∥Ai j
∥∥∥

=
(
ε123ε

123 + ε132ε
132 + · · ·

)
det

∥∥∥Ai j
∥∥∥

= (±1)2(3! ) det
∥∥∥Ai j

∥∥∥ . (3.265)

So we conclude

εstuεabcAasAbtAcu = 3! det
∥∥∥Ai j

∥∥∥ . (3.266)
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It is clear what the pattern is, and if we evaluate the sum of the antisym-
metric tensor squares in R4 we have

εstuvεstuv = ε0123ε0123 + ε0132ε0132 + ε0213ε0213 + · · ·

= (±1)2(4! ),
(3.267)

So, for our SR case we have

εstuvεabcdAasAbtAcuAdv = 4! det
∥∥∥Ai j

∥∥∥ . (3.268)

This was part of question 1.4, albeit in lower index form. Here since all
indices are matched, we have the same result without major change

ε stuvεabcdAasAbtAcuAdv = 4! det
∥∥∥Ai j

∥∥∥ . (3.269)

The main difference is that we are now taking the determinant of a lower
index tensor.

Part c. We apply transformations to coordinates (and thus indices) of
the form

xµ → Oµνxν. (3.270)

With our tensor transforming as its indices, we have

εµνλ → εαβσOµαOνβOλσ. (3.271)

We have got eq. (3.258), which after dropping indices, because we are in a
Euclidean space, we have

εµνλ det
∥∥∥Ai j

∥∥∥ = εαβσAαµAβνAσλ. (3.272)

Let Ai j = O ji, which gives us

εµνλ → εµνλ det AT. (3.273)

but since det O = det OT, we have shown that εµνλ is invariant under
rotation.
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Part d. This follows the same way. We assume a transformation of
coordinates of the following form

(x′)i = Oi
jx j

(x′)i = Oi
jx j,

(3.274)

where the determinant of Oi
j = 1 (sanity check of sign: Oi

j = δi
j).

Our antisymmetric tensor transforms as its coordinates individually

εi jkl → εabcdOi
aO j

bOk
cOl

d

= εabcdOiaO jbOkcOld.
(3.275)

Let Pi j = O ji, and raise and lower all the indices in eq. (3.276) for

−εstuv det
∥∥∥Pi j

∥∥∥ = εabcdPasPbtPcuPdv. (3.276)

We have

εi jkl = εabcdPaiPa jPakPal

= −εi jkl det
∥∥∥Pi j

∥∥∥
= −εi jkl det

∥∥∥Oi j
∥∥∥

= −εi jkl det
∥∥∥gimOm

j
∥∥∥

= −εi jkl(−1)(1)

= εi jkl.

(3.277)

Since εi jkl = −εi jkl both are therefore invariant under Lorentz transforma-
tion.

Part e. We swap indices in B, switch dummy indices, then swap indices
in A

Ai jBi j = −Ai jB ji

= −A jiBi j

= −Ai jBi j.

(3.278)

Our result is the negative of itself, so must be zero.

Part f.
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The invariance of the determinant Let us consider how any lower index
rank 2 tensor transforms. Given a transformation of coordinates

(xi)′ = Oi
jx j

(xi)′ = Oi
jx j,

(3.279)

where det
∥∥∥Oi

j
∥∥∥ = 1, and Oi

j = Om
ngimg jn. Let us reflect briefly on why

this determinant is unit valued. We have

(xi)′(xi)′ = Oi
axaOi

bxb = xbxb, (3.280)

which implies that the transformation product is

Oi
aOi

b = δa
b, (3.281)

the identity matrix. The identity matrix has unit determinant, so we must
have

1 = (det Ĝ)2(det
∥∥∥Oi

j
∥∥∥)2. (3.282)

Since det Ĝ = −1 we have

det
∥∥∥Oi

j
∥∥∥ = ±1, (3.283)

which is all that we can say about the determinant of this class of transfor-
mations by considering just invariance. If we restrict the transformations
of coordinates to those of the same determinant sign as the identity matrix,
we rule out reflections in time or space. This seems to be the essence of
the S O(1, 3) labeling.

Why dwell on this? Well, I wanted to be clear on the conventions I had
chosen, since parts of the course notes used Ô =

∥∥∥Oi j
∥∥∥, and X′ = ÔX, and

gave that matrix unit determinant. That Oi j looks like it is equivalent to
my Oi

j, except that the one in the course notes is loose when it comes to
lower and upper indices since it gives (x′)i = Oi jx j.

I will write

Ô =
∥∥∥Oi

j
∥∥∥ , (3.284)

and require this (not
∥∥∥Oi j

∥∥∥) to be the matrix with unit determinant. Having
cleared the index upper and lower confusion I had trying to reconcile the
class notes with the rules for index manipulation, let us now consider the
Lorentz transformation of a lower index rank 2 tensor (not necessarily
antisymmetric or symmetric)
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We have, transforming in the same fashion as a lower index coordinate
four vector (but twice, once for each index)

Ai j → AkmOi
kO j

m. (3.285)

The determinant of the transformation tensor Oi
j is

det
∥∥∥Oi

j
∥∥∥ = det

∥∥∥gimOm
ngn j

∥∥∥ = (det Ĝ)(1)(det Ĝ) = (−1)2(1) = 1. (3.286)

We see that the determinant of a lower index rank 2 tensor is invariant under
Lorentz transformation. This would include our characteristic polynomial
P(λ).

Expanding the determinant Utilizing eq. (3.269) we can now calculate
the characteristic polynomial. This is

det
∥∥∥Fi j − λgi j

∥∥∥ =
1
4!
ε stuvεabcd(Fas − λgas)(Fbt − λgbt)(Fcu − λgcu)(Fdv − λgdv)

=
1
24
ε stuvεabcd(Fa

s − λga
s)(F

b
t − λgb

t)(F
c

u − λgc
u)(Fd

v − λgd
v).

(3.287)

However, ga
b = gbcgac, or

∥∥∥ga
b

∥∥∥ = Ĝ2 = I. This means we have

ga
b = δa

b, (3.288)

and our determinant is reduced to

P(λ) =
1
24
ε stuvεabcd(Fa

sFb
t − λ(δa

sFb
t + δb

tFa
s) + λ2δa

sδ
b

t)

× (Fc
uFd

v − λ(δc
uFd

v + δd
vFc

u) + λ2δc
uδ

d
v).

(3.289)

If we expand this out we have our powers of λ coefficients are

λ0 :
1
24
ε stuvεabcdFa

sFb
tFc

uFd
v

λ1 :
1
24
ε stuvεabcd(−(δc

uFd
v + δd

vFc
u)Fa

sFb
t − (δa

sFb
t + δb

tFa
s)Fc

uFd
v)

λ2 :
1
24
ε stuvεabcd

(
δc

uδ
d

vFa
sFb

t + (δa
sFb

t + δb
tFa

s)(δc
uFd

v + δd
vFc

u)

+ δa
sδ

b
tFc

uFd
v

)
λ3 :

1
24
ε stuvεabcd(−(δa

sFb
t + δb

tFa
s)δc

uδ
d

v − δ
a

sδ
b

t(δc
uFd

v + δd
vFc

u))

λ4 :
1
24
ε stuvεabcd(δ

a
sδ

b
tδ

c
uδ

d
v).
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(3.290)

By eq. (3.269) the λ0 coefficient is just det
∥∥∥Fi j

∥∥∥.
The λ3 terms can be seen to be zero. For example, the first one is

−
1
24
ε stuvεabcdδ

a
sFb

tδ
c

uδ
d

v = −
1

24
ε stuvεsbuvFb

t

= −
1
12
δt

bFb
t

= −
1
12

Fb
b

= −
1
12

Fbugub

= 0,

(3.291)

where the final equality to zero comes from summing a symmetric and
antisymmetric product.

Similarly the λ coefficients can be shown to be zero. Again the first as a
sample is

−
1
24
ε stuvεabcdδ

c
uFd

vFa
sFb

t = −
1

24
εustvεuabdFd

vFa
sFb

t

= −
1

24
δ[s

a δ
t
bδ

v]
d Fd

vFa
sFb

t

= −
1

24
Fa

[sFb
tFd

v].

(3.292)

Disregarding the −1/24 factor, let us just expand this antisymmetric sum

Fa
[aFb

bFd
d] = Fa

aFb
bFd

d + Fa
dFb

aFd
b + Fa

bFb
dFd

a

− Fa
aFb

dFd
b − Fa

dFb
bFd

a − Fa
bFb

aFd
d

= Fa
dFb

aFd
b + Fa

bFb
dFd

a.

(3.293)

Of the two terms above that were retained, they are the only ones without
a zero Fi

i factor. Consider the first part of this remaining part of the sum.
Employing the metric tensor, to raise indices so that the antisymmetry of
Fi j can be utilized, and then finally relabeling all the dummy indices we
have

Fa
dFb

aFd
b = FauFbvFdwgdugavgbw

= (−1)3FuaFvbFwdgdugavgbw

= −(Fuagav)(Fvbgbw)(Fwdgdu)

= −Fu
vFv

wFw
u

= −Fa
bFb

dFd
a.

(3.294)
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This is just the negative of the second term in the sum, leaving us with
zero.

Finally, we have for the λ2 coefficient (×24)

ε stuvεabcd(δ
c

uδ
d

vFa
sFb

t + δa
sFb

tδ
c

uFd
v + δb

tFa
sδ

d
vFc

u

+ δb
tFa

sδ
c

uFd
v + δa

sFb
tδ

d
vFc

u + δa
sδ

b
tFc

uFd
v)

= ε stuvεabuvFa
sFb

t + ε stuvεsbudFb
tFd

v + ε stuvεatcvFa
sFc

u

+ ε stuvεatudFa
sFd

v + ε stuvεsbcvFb
tFc

u + ε stuvεstcdFc
uFd

v

= ε stuvεabuvFa
sFb

t + εtvsuεbdsuFb
tFd

v + ε sutvεactvFa
sFc

u

+ ε svtuεadtuFa
sFd

v + εtusvεbcsvFb
tFc

u + εuvstεcdstFc
uFd

v

= 6ε stuvεabuvFa
sFb

t

= 6(2)δ[s
aδ

t]
bFa

sFb
t

= 12Fa
[aFb

b]

= 12(Fa
aFb

b − Fa
bFb

a)

= −12Fa
bFb

a

= −12FabFba

= 12FabFab.

(3.295)

Therefore, our characteristic polynomial is

P(λ) = det
∥∥∥Fi j

∥∥∥ +
λ2

2
FabFab + λ4. (3.296)

Observe that in matrix form our strength tensors are

∥∥∥Fi j
∥∥∥ =


0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0


∥∥∥Fi j

∥∥∥ =


0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0


.

(3.297)

From these we can compute FabFab easily by inspection

FabFab = 2(B2 −E2). (3.298)
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Computing the determinant is not so easy. The dumb and simple way of
expanding by cofactors takes two pages, and yields eventually

det
∥∥∥Fi j

∥∥∥ = (E ·B)2. (3.299)

That supplies us with a relation for the characteristic polynomial in E and
B

P(λ) = (E ·B)2 + λ2(B2 −E2) + λ4. (3.300)

Observe that we found this for the special case where E and B were
perpendicular in homework 2. Observe that when we have that perpendic-
ularity, we can solve for the eigenvalues by inspection

λ ∈ {0, 0,±
√

E2 −B2}, (3.301)

and were able to diagonalize the matrix Fi
j to solve the Lorentz force

equation in parametric form. When |E| > |B| we had real eigenvalues and
an orthogonal diagonalization when B = 0. For the |B| > |E|, we had a
two purely imaginary eigenvalues, and when E = 0 this was a Hermitian
diagonalization. For the general case, when one of E, or B was zero, things
did not have the same nice closed form solution.

In general our eigenvalues are

λ = ±
1
√

2

√
E2 −B2 ±

√
(E2 −B2)2 − 4(E ·B)2. (3.302)

For the purposes of this problem we really only wish to show that E · B
and E2 −B2 are Lorentz invariants. When λ = 0 we have P(λ) = (E ·B)2,
a Lorentz invariant. This must mean that E ·B is itself a Lorentz invariant.
Since that is invariant, and we require P(λ) to be invariant for any other
possible values of λ, the difference E2 −B2 must also be Lorentz invariant.

Part g. This proceeds in a fairly straightforward fashion∫
d4xεi jklFi jFkl =

∫
d4xεi jkl(∂iA j − ∂ jAi)Fkl

=

∫
d4xεi jkl(∂iA j)Fkl − ε

jikl(∂iA j)Fkl

= 2
∫

d4xεi jkl(∂iA j)Fkl

= 2
∫

d4xεi jkl
(
∂

∂xi (A jFkl − A j
∂Fkl

∂xi

)
.

(3.303)
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Now, observe that by the Bianchi identity, this second term is zero

εi jkl ∂Fkl

∂xi = −ε jikl∂iFkl = 0. (3.304)

Now we have a set of perfect differentials, and can integrate∫
d4xεi jklFi jFkl = 2

∫
d4xεi jkl ∂

∂xi (A jFkl)

= 2
∫

dx jdxkdxlεi jkl (A jFkl)
∣∣∣
∆xi .

(3.305)

We are left with a only contributions to the integral from the boundary
terms on the spacetime hypervolume, three-volume normals bounding the
four-volume integration in the original integral.

Part h. Let us first consider the explanation of the name. First recall
what the expansions are of Fi j and Fi j in terms of E and E. These are

F0α = ∂0Aα − ∂αA0

= −
1
c
∂Aα

∂t
−
∂φ

∂xα

= Eα.

(3.306)

with F0α = −Eα, and Eα = Eα.
The magnetic field components are

Fβα = ∂βAα − ∂αAβ
= −∂βAα + ∂αAβ

= εαβσBσ.

(3.307)

with Fβα = εαβσBσ and Bσ = Bσ.
Now let us expand the dual tensors. These are

F̃0α =
1
2
ε0αi jFi j

=
1
2
ε0αβσFβσ

=
1
2
ε0αβσε

σβµBµ

= −
1
2
ε0αβσε

µβσBµ

= −
1
2

(2! )δαµBµ

= −Bα.

(3.308)
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and

F̃βα =
1
2
εβαi jFi j

=
1
2

(
εβα0σF0σ + εβασ0Fσ0

)
= ε0βασ(−Eσ)

= εαβσEσ.

(3.309)

Summarizing we have

F0α = Eα

F0α = −Eα

Fβα = Fβα = εαβσBσ

F̃0α = −Bα
F̃0α = Bα
F̃βα = F̃βα = εαβσEσ.

(3.310)

Is there a sign error in the F̃0α = −Bα result? Other than that we have the
same sort of structure for the tensor with E and B switched around.

Let us write these in matrix form, to compare

∥∥∥F̃i j
∥∥∥ =


0 −Bx −By −Bz

Bx 0 −Ez Ey

By Ez 0 Ex

Bz −Ey −Ex 0


∥∥∥F̃i j

∥∥∥ =


0 Bx By Bz

−Bx 0 −Ez Ey

−By Ez 0 −Ex

−Bz −Ey Ex 0


∥∥∥Fi j

∥∥∥ =


0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0


∥∥∥Fi j

∥∥∥ =


0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0


.

.

(3.311)

From these we can see by inspection that we have

F̃i jFi j = F̃i jFi j = 4(E ·B). (3.312)

This is consistent with the stated result in [18] (except for a factor of c due
to units differences), so it appears the signs above are all kosher.
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Now, let us see if the if the dual tensor satisfies the vacuum equations.

∂ jF̃i j = ∂ j
1
2
εi jklFkl

=
1
2
εi jkl∂ j(∂kAl − ∂lAk)

=
1
2
εi jkl∂ j∂kAl −

1
2
εi jlk∂kAl

=
1
2

(εi jkl − εi jkl∂kAl

= 0. �.

(3.313)

So the first checks out, provided we have no sources. If we have sources,
then we see here that Maxwell’s equations do not hold since this would
imply that the four current density must be zero.

How about the Bianchi identity? That gives us

εi jkl∂ jF̃kl = εi jkl∂ j
1
2
εklabFab

=
1
2
εkli jεklab∂ jFab

=
1
2

(2! )δi
[aδ

j
b]∂ jFab

= ∂ j(Fi j − F ji)

= 2∂ jFi j.

(3.314)

The factor of two is slightly curious. Is there a mistake above? If there is a
mistake, it does not change the fact that Maxwell’s equation

∂kFki =
4π
c

ji. (3.315)

Gives us zero for the Bianchi identity under source free conditions of
ji = 0.

Exercise 3.9 Transformation properties of E,B again.

a. Use the form of Fi j from page 82 in the class notes, the trans-
formation law for

∥∥∥Fi j
∥∥∥ given further down that same page, and

the explicit form of the S O(1, 3) matrix Ô (say, corresponding
to motion in the positive x1 direction with speed v) to derive the
transformation law of the fields E and B. Use the transformation
law to find the electromagnetic field of a charged particle moving
with constant speed v in the positive x1 direction and check that
the result agrees with the one that you obtained in Homework 2.
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b. A particle is moving with velocity v in perpendicular E and B
fields, all given in some particular “stationary” frame of reference.

1. Show that there exists a frame where the problem of finding
the particle trajectory can be reduced to having either only an
electric or only a magnetic field.

2. Explain what determines which case takes place.

3. Find the velocity v0 of that frame relative to the “stationary”
frame.

Answer for Exercise 3.9

Part a. Given a transformation of coordinates

x′i → Oi
jx j. (3.316)

our rank 2 tensor Fi j transforms as

Fi j → Oi
aFabO j

b. (3.317)

Introducing matrices

Ô =
∥∥∥Oi

j
∥∥∥

F̂ =
∥∥∥Fi j

∥∥∥ =


0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0


.

(3.318)

and noting that ÔT =
∥∥∥O j

i
∥∥∥, we can express the electromagnetic strength

tensor transformation as

F̂ → ÔF̂ÔT. (3.319)

The class notes use x′i → Oi jx j, which violates our conventions on mixed
upper and lower indices, but the end result eq. (3.319) is the same.

∥∥∥Oi
j
∥∥∥ =


coshα − sinhα 0 0

− sinhα coshα 0 0

0 0 1 0

0 0 0 1


. (3.320)
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Writing

C = coshα = γ

S = − sinhα = −γβ,
(3.321)

we can compute the transformed field strength tensor

F̂′ =


C S 0 0

S C 0 0

0 0 1 0

0 0 0 1




0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0




C S 0 0

S C 0 0

0 0 1 0

0 0 0 1



=


C S 0 0

S C 0 0

0 0 1 0

0 0 0 1




−S Ex −CEx −Ey −Ez

CEx S Ex −Bz By

CEy + S Bz S Ey + CBz 0 −Bx

CEz − S By S Ez −CBy Bx 0



=


0 −Ex −CEy − S Bz −CEz + S By

Ex 0 −S Ey −CBz −S Ez + CBy

CEy + S Bz S Ey + CBz 0 −Bx

CEz − S By S Ez −CBy Bx 0



=


0 −Ex −γ(Ey − βBz) −γ(Ez + βBy)

Ex 0 −γ(−βEy + Bz) γ(βEz + By)

γ(Ey − βBz) γ(−βEy + Bz) 0 −Bx

γ(Ez + βBy) −γ(βEz + By) Bx 0


.

(3.322)

As a check we have the antisymmetry that is expected. There is also a
regularity to the end result that is aesthetically pleasing, hinting that things
are hopefully error free. In coordinates for E and B this is

Ex → Ex

Ey → γ(Ey − βBz)

Ez → γ(Ez + βBy)

Bz → Bx

By → γ(By + βEz)

Bz → γ(Bz − βEy).

(3.323)
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Writing β = e1β, we have

β ×B =

∣∣∣∣∣∣∣∣∣∣∣
e1 e2 e3

β 0 0

Bx By Bz

∣∣∣∣∣∣∣∣∣∣∣ = e2(−βBz) + e3(βBy), (3.324)

which puts us enroute to a tidier vector form

Ex → Ex

Ey → γ(Ey + (β ×B)y)

Ez → γ(Ez + (β ×B)z)

Bz → Bx

By → γ(By − (β ×E)y)

Bz → γ(Bz − (β ×E)z).

(3.325)

For a vector A, write A‖ = (A · v̂)v̂, A⊥ = A −A‖, allowing a compact
description of the field transformation

E→ E‖ + γE⊥ + γ(β ×B)⊥
B→ B‖ + γB⊥ − γ(β ×E)⊥.

(3.326)

Now, we want to consider the field of a moving particle. In the particle’s
(unprimed) rest frame the field due to its potential φ = q/r is

E =
q
r2 r̂

B = 0.
(3.327)

Coordinates for a “stationary” observer, who sees this particle moving
along the x-axis at speed v are related by a boost in the −v direction

ct′

x′

y′

z′




γ γ(v/c) 0 0

γ(v/c) γ 0 0

0 0 1 0

0 0 0 1




ct

x

y

z


. (3.328)

Therefore the fields in the observer frame will be

E′ = E‖ + γE⊥ − γ
v
c

(e1 ×B)⊥ = E‖ + γE⊥

B′ = B‖ + γB⊥ + γ
v
c

(e1 ×E)⊥ = γ
v
c

(e1 ×E)⊥.
(3.329)
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More explicitly with E =
q
r3 (x, y, z) this is

E′ =
q
r3 (x, γy, γz)

B′ = γ
qv
cr3 (0,−z, y).

(3.330)

Comparing to Problem 3 in Problem set 2, I see that this matches the result
obtained by separately transforming the gradient, the time partial, and
the scalar potential. Actually, if I am being honest, I see that I made a
sign error in all the coordinates of E′ when I initially did (this ungraded
problem) in problem set 2. That sign error should have been obvious by
considering the v = 0 case which would have mysteriously resulted in
inversion of all the coordinates of the observed electric field.

Part b.

Part 1 and 2: Existence of the transformation. In the single particle
Lorentz trajectory problem we wish to solve

mc
dui

ds
=

e
c

Fi ju j, (3.331)

which in matrix form we can write as

dU
ds

=
e

mc2 F̂ĜU. (3.332)

where we write our column vector proper velocity as U =
∥∥∥ui

∥∥∥. Under
transformation of coordinates u′i = Oi

jx j, with Ô =
∥∥∥Oi

j
∥∥∥, this becomes

Ô
dU
ds

=
e

mc2 ÔF̂ÔTĜÔU. (3.333)

Suppose we can find eigenvectors for the matrix ÔF̂ÔTĜ. That is for some
eigenvalue λ, we can find an eigenvector Σ

ÔF̂ÔTĜΣ = λΣ. (3.334)

Rearranging we have

(ÔF̂ÔTĜ − λI)Σ = 0, (3.335)

and conclude that Σ lies in the null space of the matrix ÔF̂ÔTĜ − λI and
that this difference of matrices must have a zero determinant

det(ÔF̂ÔTĜ − λI) = − det(ÔF̂ÔT − λĜ) = 0. (3.336)
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Since Ĝ = ÔĜÔT for any Lorentz transformation Ô in S O(1, 3), and
det ABC = det A det B det C we have

det(ÔF̂ÔT − λG) = det(F̂ − λĜ). (3.337)

In problem 1.6, we called this our characteristic equation P(λ) = det(F̂ −
λĜ). Observe that the characteristic equation is Lorentz invariant for any
λ, which requires that the eigenvalues λ are also Lorentz invariants.

In problem 1.6 of this problem set we computed that this characteristic
equation expands to

P(λ) = det(F̂ − λĜ) = (E ·B)2 + λ2(B2 −E2) + λ4. (3.338)

The eigenvalues for the system, also each necessarily Lorentz invariants,
are

λ = ±
1
√

2

√
E2 −B2 ±

√
(E2 −B2)2 − 4(E ·B)2. (3.339)

Observe that in the specific case where E ·B = 0, as in this problem, we
must have E′ ·B′ in all frames, and the two non-zero eigenvalues of our
characteristic polynomial are simply

λ = ±
√

E2 −B2. (3.340)

These and E ·B = 0 are the invariants for this system. If we have E2 > B2 in
one frame, we must also have E′2 > B′2 in another frame, still maintaining
perpendicular fields. In particular if B′ = 0 we maintain real eigenvalues.
Similarly if B2 > E2 in some frame, we must always have imaginary
eigenvalues, and this is also true in the E′ = 0 case.

While the problem can be posed as a pure diagonalization problem
(and even solved numerically this way for the general constant fields
case), we can also work symbolically, thinking of the trajectories problem
as simply seeking a transformation of frames that reduce the scope of
the problem to one that is more tractable. That does not have to be the
linear transformation that diagonalizes the system. Instead we are free to
transform to a frame where one of the two fields E′ or B′ is zero, provided
the invariants discussed are maintained.

Part 3: Finding the boost velocity that wipes out one of the fields. Let
us now consider a Lorentz boost Ô, and seek to solve for the boost velocity
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that wipes out one of the fields, given the invariants that must be maintained
for the system

To make things concrete, suppose that our perpendicular fields are given
by E = Ee2 and B = Be3.

Let also assume that we can find the velocity v0 for which one or more
of the transformed fields is zero. Suppose that velocity is

v0 = v0(α1, α2, α3) = v0v̂0, (3.341)

where αi are the direction cosines of v0 so that
∑

i α
2
i = 1. We will want

to compute the components of E and B parallel and perpendicular to this
velocity.

Those are

E‖ = Ee2 · (α1, α2, α3)(α1, α2, α3)

= Eα2(α1, α2, α3).
(3.342)

E⊥ = Ee2 −E‖
= E(−α1α2, 1 − α2

2,−α2α3)

= E(−α1α2, α
2
1 + α2

3,−α2α3).

(3.343)

For the magnetic field we have

B‖ = Bα3(α1, α2, α3), (3.344)

and

B⊥ = Be3 −B‖
= B(−α1α3,−α2α3, α

2
1 + α2

2).
(3.345)

Now, observe that (β ×B)‖ ∼ ((v0 ×B) · v0)v0, but this is just zero. So we
have (β ×B)‖ = β ×B. So our cross products terms are just

v̂0 ×B =

∣∣∣∣∣∣∣∣∣∣∣
e1 e2 e3

α1 α2 α3

0 0 B

∣∣∣∣∣∣∣∣∣∣∣ = B(α2,−α1, 0)

v̂0 ×E =

∣∣∣∣∣∣∣∣∣∣∣
e1 e2 e3

α1 α2 α3

0 E 0

∣∣∣∣∣∣∣∣∣∣∣ = E(−α3, 0, α1).

(3.346)
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We can now express how the fields transform, given this arbitrary boost
velocity. From eq. (3.326), this is

E→ Eα2(α1, α2, α3) + γE(−α1α2, α
2
1 + α2

3,−α2α3) + γ
v2

0

c2 B(α2,−α1, 0)

B→ Bα3(α1, α2, α3) + γB(−α1α3,−α2α3, α
2
1 + α2

2) − γ
v2

0

c2 E(−α3, 0, α1).

(3.347)

Zero Electric field case Let us tackle the two cases separately. First
when |B| > |E|, we can transform to a frame where E′ = 0. In coordinates
from eq. (3.347) this supplies us three sets of equations. These are

0 = Eα2α1(1 − γ) + γ
v2

0

c2 Bα2

0 = Eα2
2 + γE(α2

1 + α2
3) − γ

v2
0

c2 Bα1

0 = Eα2α3(1 − γ).

(3.348)

With an assumed solution the e3 coordinate equation implies that one of α2

or α3 is zero. Perhaps there are solutions with α3 = 0 too, but inspection
shows that α2 = 0 nicely kills off the first equation. Since α2

1 +α2
2 +α2

3 = 1,
that also implies that we are left with

0 = E −
v2

0

c2 Bα1. (3.349)

Or

α1 =
E
B

c2

v2
0

α2 = 0

α3 =

√
1 −

E2

B2

c4

v4
0

.

(3.350)

Our velocity was v0 = v0(α1, α2, α3) solving the problem for the |B|2 > |E|2

case up to an adjustable constant v0. That constant comes with constraints
however, since we must also have our cosine α1 ≤ 1. Expressed another
way, the magnitude of the boost velocity is constrained by the relation

v2
0

c2 ≥

∣∣∣∣∣EB
∣∣∣∣∣. (3.351)
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It appears we may also pick the equality case, so one velocity (not unique)
that should transform away the electric field is

v0 = c

√∣∣∣∣∣EB
∣∣∣∣∣e1 = ±c

√∣∣∣∣∣EB
∣∣∣∣∣E ×B
|E||B|

. (3.352)

This particular boost direction is perpendicular to both fields. Observe
that this highlights the invariance condition

∣∣∣E
B

∣∣∣ < 1 since we see this is
required for a physically realizable velocity. Boosting in this direction will
reduce our problem to one that has only the magnetic field component.

Zero Magnetic field case Now, let us consider the case where we trans-
form the magnetic field away, the case when our characteristic polynomial
has strictly real eigenvalues λ = ±

√
E2 −B2. In this case, if we write

out our equations for the transformed magnetic field and require these to
separately equal zero, we have

0 = Bα3α1(1 − γ) + γ
v2

0

c2 Eα3

0 = Bα2α3(1 − γ)

0 = B(α2
3 + γ(α2

1 + α2
2)) − γ

v2
0

c2 Eα1.

(3.353)

Similar to before we see that α3 = 0 kills off the first and second equations,
leaving just

0 = B−
v2

0

c2 Eα1. (3.354)

We now have a solution for the family of direction vectors that kill the
magnetic field off

α1 =
B
E

c2

v2
0

α2 =

√
1 −

B2

E2

c4

v4
0

α3 = 0.

(3.355)

In addition to the initial constraint that
∣∣∣ B
E

∣∣∣ < 1, we have as before, con-
straints on the allowable values of v0

v2
0

c2 ≥

∣∣∣∣∣ BE
∣∣∣∣∣. (3.356)
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Like before we can pick the equality α2
1 = 1, yielding a boost direction of

v0 = c

√∣∣∣∣∣ BE
∣∣∣∣∣e1 = ±c

√∣∣∣∣∣ BE
∣∣∣∣∣E ×B
|E||B|

. (3.357)

Again, we see that the invariance condition |B| < |E| is required for a
physically realizable velocity if that velocity is entirely perpendicular to
the fields.

Notes on grading of my solution I lost two marks on this problem. One
for eq. (3.330) where he wanted primes on the variables

E′ =
q

r′3
(x′, γy′, γz′)

B′ = γ
qv

cr′3
(0,−z′, y′),

(3.358)

however, I do not think that is correct. Compare to problem set 2, problem
3, where this exactly matches the expected result, yet is only correct when
the variables are the unprimed ones?

FIXME: Talk to Simon to see what he means.
Also, immediately before eq. (3.352) he underlined “one velocity (not

unique)”, and put an X beside it.
FIXME: is all that logic before eq. (3.352) wrong? (because that shows

the boost velocity is not unique). If I try the very simplest boost applied
to the E = Ee2 and B = Be3 I find a very different result (with no square
root). I think I am guilty of trying to be too general and not going back
and checking for the simplest case. Even so, where are my errors?

Exercise 3.10 Continuity equation, delta function current.

Show explicitly that the electromagnetic 4-current ji for a particle mov-
ing with constant velocity (considered in class, p. 100-101 of notes) is
conserved ∂i ji = 0. Give a physical interpretation of this conservation law,
for example by integrating ∂i ji over some spacetime region and giving an
integral form to the conservation law (∂i ji = 0 is known as the “continuity
equation”).
Answer for Exercise 3.10

First lets review. Our four current was defined as

ji(x) =
∑

A

ceA

∫
x(τ)

dxi
A(τ)δ4(x − xA(τ)). (3.359)
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If each of the trajectories xA(τ) represents constant motion we have

xA(τ) = xA(0) + γAτ(c, vA). (3.360)

The spacetime split of this four vector is

x0
A(τ) = x0

A(0) + γAτc

xA(τ) = xA(0) + γAτv,
(3.361)

with differentials

dx0
A(τ) = γAdτc

dxA(τ) = γAdτvA.
(3.362)

Writing out the delta functions explicitly we have

ji(x) =
∑

A

ceA

∫
x(τ)

dxi
A(τ)δ(x0 − x0

A(0) − γAcτ)δ(x1 − x1
A(0) − γAv1

Aτ)

δ(x2 − x2
A(0) − γAv2

Aτ)δ(x3 − x3
A(0) − γAv3

Aτ).
(3.363)

So our time and space components of the current can be written

j0(x) =
∑

A

c2eAγA

∫
x(τ)

dτδ(x0 − x0
A(0) − γAcτ)δ3(x − xA(0) − γAvAτ)

j(x) =
∑

A

ceAvAγA

∫
x(τ)

dτδ(x0 − x0
A(0) − γAcτ)δ3(x − xA(0) − γAvAτ).

(3.364)

Each of these integrals can be evaluated with respect to the time coordinate
delta function leaving the distribution

j0(x) =
∑

A

ceAδ
3(x − xA(0) −

vA

c
(x0 − x0

A(0)))

j(x) =
∑

A

eAvAδ
3(x − xA(0) −

vA

c
(x0 − x0

A(0))).
(3.365)

With this more general expression (multi-particle case) it should be pos-
sible to show that the four divergence is zero, however, the problem only
asks for one particle. For the one particle case, we can make things really
easy by taking the initial point in space and time as the origin, and aligning
our velocity with one of the coordinates (say x).
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Doing so we have the result derived in class

j = e


c

v

0

0


δ(x − vx0/c)δ(y)δ(z). (3.366)

Our divergence then has only two portions

∂ j0

∂x0 = ec(−v/c)δ′(x − vx0/c)δ(y)δ(z)

∂ j1

∂x
= evδ′(x − vx0/c)δ(y)δ(z).

(3.367)

and these cancel out when summed. Note that this requires us to be loose
with our delta functions, treating them like regular functions that are
differentiable.

For the more general multiparticle case, we can treat the sum one particle
at a time, and in each case, rotate coordinates so that the four divergence
only picks up one term.

As for physical interpretation via integral, we have using the four di-
mensional divergence theorem∫

d4x∂i ji =

∫
jidS i. (3.368)

where dS i is the three-volume element perpendicular to a xi = constant
plane. These volume elements are detailed generally in the text [11], how-
ever, they do note that one special case specifically dS 0 = dxdydz, the
element of the three-dimensional (spatial) volume “normal” to hyperplanes
ct = constant.

Without actually computing the determinants, we have something that
is roughly of the form

0 =

∫
jidS i =

∫
cρdxdydz +

∫
j · (nxcdtdydz + nycdtdxdz + nzcdtdxdy).

(3.369)

This is cheating a bit to just write nx,ny,nz. Are there specific orienta-
tions required by the metric? One way to be precise about this would be
calculate the determinants detailed in the text, and then do the duality
transformations.
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Per unit time, we can write instead

∂

∂t

∫
ρdV = −

∫
j · (nxdydz + nydxdz + nzdxdy). (3.370)

Rather loosely this appears to roughly describe that the rate of change of
charge in a volume must be matched with the “flow” of current through
the surface within that amount of time.

Exercise 3.11 Collision of photon and electron.

Determine the velocity of an electron, initially at rest, after absorbing a
photon.
Answer for Exercise 3.11

I made a dumb error on the exam on this one. I setup the four momentum
conservation statement, but then did not multiply out the cross terms
properly. This led me to incorrectly assume that I had to try doing this the
hard way (something akin to what I did on the midterm). Simon later told
us in the tutorial the simple way, and that is all we needed here too. Here
is the setup.

An electron at rest initially has four momentum

(mc, 0). (3.371)

where the incoming photon has four momentum(
h̄
ω

c
, h̄k

)
. (3.372)

After the collision our electron has some velocity so its four momentum
becomes (say)

γ(mc,mv), (3.373)

and our new photon, going off on an angle θ relative to k has four momen-
tum (

h̄
ω′

c
, h̄k′

)
. (3.374)

Our conservation relationship is thus

(mc, 0) +

(
h̄
ω

c
, h̄k

)
= γ(mc,mv) +

(
h̄
ω′

c
, h̄k′

)
. (3.375)
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I squared both sides, but dropped my cross terms, which was just plain
wrong, and costly for both time and effort on the exam. What I should have
done was just

γ(mc,mv) = (mc, 0) +

(
h̄
ω

c
, h̄k

)
−

(
h̄
ω′

c
, h̄k′

)
, (3.376)

and then square this (really making contractions of the form pi pi). That
gives (and this time keeping my cross terms)

(γ(mc,mv))2 = γ2m2(c2 − v2)

= m2c2

= m2c2 + 0 + 0 + 2(mc, 0) ·
(

h̄
ω

c
, h̄k

)
− 2(mc, 0) ·

(
h̄
ω′

c
, h̄k′

)
− 2

(
h̄
ω

c
, h̄k

)
·

(
h̄
ω′

c
, h̄k′

)
= m2c2 + 2mc h̄

ω

c
− 2mc h̄

ω′

c
− 2 h̄2

(
ω

c
ω′

c
− k · k′

)
= m2c2 + 2mc h̄

ω

c
− 2mc h̄

ω′

c
− 2 h̄2ω

c
ω′

c
(1 − cos θ).

(3.377)

Rearranging a bit we have

ω′
(
m +

h̄ω
c2 (1 − cos θ)

)
= mω, (3.378)

or

ω′ =
ω

1 + h̄ω
mc2 (1 − cos θ)

. (3.379)

Exercise 3.12 Pion decay.

FIXME: What was the exact question? Looks like calculating the muon
energy was desired, but this write up is confused, with discussion of
multiple problems.
Answer for Exercise 3.12

The problem above is very much like a midterm problem we had, so
there was no justifiable excuse for messing up on it. That midterm problem
was to consider the split of a pion at rest into a neutrino (massless) and a



3.5 problems 95

muon, and to calculate the energy of the muon. That one also follows the
same pattern, a calculation of four momentum conservation, say

(mπc, 0) = h̄
ω

c
(1, k̂) + (Eµ/c,pµ). (3.380)

Here ω is the frequency of the massless neutrino. The massless nature is
encoded by a four momentum that squares to zero, which follows from
(1, k̂) · (1, k̂) = 12 − k̂ · k̂ = 0.

When I did this problem on the midterm, I perversely put in a scattering
angle, instead of recognizing that the particles must scatter at 180 degree
directions since spatial momentum components must also be preserved.
This and the combination of trying to work in spatial quantities led to a
mess and I did not get the end result in anything that could be considered
tidy.

The simple way to do this is to just rearrange to put the null vector on
one side, and then square. This gives us

0 =

(
h̄
ω

c
(1, k̂)

)
·

(
h̄
ω

c
(1, k̂)

)
= ((mπc, 0) − (Eµ/c,pµ)) · ((mπc, 0) − (Eµ/c,pµ))

= mπ
2c2 + mν

2c2 − 2(mπc, 0) · (Eµ/c,pµ)

= mπ
2c2 + mν

2c2 − 2mπEµ.

(3.381)

A final re-arrangement gives us the muon energy

Eµ =
1
2

mπ
2 + mν

2

mπ
c2. (3.382)





4
PA RT I C L E AC T I O N A N D R E L AT I V I S T I C
DY NA M I C S .

4.1 dynamics.

In Newtonian dynamics we have

mr̈ = f. (4.1)

An equation of motion should be expressed in terms of vectors. This equa-
tion is written in a way that shows that the law of physics is independent of
the choice of coordinates. We can do this in the context of tensor algebra as
well. Ironically, this will require us to explicitly work with the coordinate
representation, but this work will be augmented by the fact that we require
our tensors to transform in specific ways.

In Newtonian mechanics we can look to symmetries and the invariance
of the action with respect to those symmetries to express the equations of
motion. Our symmetries in Newtonian mechanics leave the action invariant
with respect to spatial translation and with respect to rotation.

We want to express relativistic dynamics in a similar way, and will
have to express the action as a Lorentz scalar. We are going to impose
the symmetries of the Poincare group to determine the relativistic laws
of dynamics, and the next task will be to consider the possibilities for
our relativistic action, and see what that action implies for dynamics in a
relativistic context.

Reading Covering chapter 2 material from the text [11], and lecture
notes RelEMpp52-56.pdf.

4.2 the relativity principle.

The relativity principle implies that the EOM should be expressed in
4-vector form, just like Newton’s EOM are expressed in 3-vector form

mr̈ = f. (4.2)
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Observe that in coordinate form this is

mr̈i = f i, i = 1, 2, 3. (4.3)

or for a rotated frame O′

mr̈′i = f ′i, i = 1, 2, 3. (4.4)

This must be generalized to 4-vectors, so we need 4-velocity and 4-
acceleration.

Later we will study action and Lagrangian, and then relativity will
require that the action be a Lorentz scalar. The analogy for a Newtonian
point particle is a scalar under rotations.

Four vector velocity

Definition: Velocity s the rate of change of position in (ct, x)-space. Po-
sition means specifying both ct and x for a point in spacetime. PICTURE:
x0 = ct axis up, and x1, x2, x3 axis over, with worldline x = x(τ). Here τ
is a parameter for the worldline, and provides a mapping for the curve in
spacetime.

PICTURE: 3D vectors, r(t), r(t + ∆t), and the difference vector r(t +

∆t) − r(t).
We write

v(t) ≡ lim
∆t→0

r(t + ∆t) − r(t)
∆t

. (4.5)

For four vectors we will parametrize the worldline by its “length”, with
O taken from some arbitrary point on it. We can also take τ to be the
proper time, and the only difference will be the factor of c (which becomes
especially easy with the choice c = 1 that is avoided in this class).

xi(τ + ∆τ) − xi(τ)
∆τ

. (4.6)

We will take the limit

dxi

dτ
= lim

∆τ→0

xi(τ + ∆τ) − xi(τ)
∆τ

. (4.7)

and then define a dimensionless “proper velocity”

ui ≡
1
c

dxi

dτ
=

dxi

ds
. (4.8)
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This is a nice quantity, we are dividing a vector by a Lorentz scalar, and
thus get a four vector as a result (i.e. the result transforms as a four vector).

PICTURE: small fragment of a worldline with constant slope over the
infinitesimal interval. dx0 up and dx1 over.

ds2 = (dx0)2 − (dx1)2

= c2
(
(dt)2 −

1
c2 (dx1)2

)
= c2(dt)2

(
1 −

1
c2

dx1

dt2

)
.

(4.9)

Or

ds = cdt

√
1 −

1
c2

dx1

dt2 .
(4.10)

NOTE: Prof admits pulling a fast one, since he has aligned the worldline
along the x1 axis, however this is always possible by rotating the coordinate
system.

u0 =
dx0

ds

=
cdt

cdt
√

1 − v2/c2

=
1√

1 − v2/c2

= γ.

(4.11)

u1 =
dx1

ds

=
dx1

cdt
√

1 − v2/c2

=
v1/c√

1 − v2/c2

= γ
v1

c
.

(4.12)

Similarly

u2 = γ
v2

c

u3 = γ
v2

c
.

(4.13)
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We have now unpacked the four velocity, and have

ui =

(
γ,

v
c
γ
)
. (4.14)

Length of the four velocity vector Recall that this length is

uigi ju j = uiui

= uiui

= (u0)2 − (ui)2

= γ2 − γ2 v
c
·

v
c

= γ2
(
1 −

v2

c2

)
.

(4.15)

The four velocity in physics is

ui =

(
γ,

v
c
γ
)
. (4.16)

but in mathematics the meaning of uiui = 1 means that this quantity is the
unit tangent vector to the worldline.

Four acceleration In Newtonian physics we have

a =
dv
dt
. (4.17)

Our relativistic mapping of this, with v→ ui and t → s, gives

wi =
dui

ds
. (4.18)

Geometrically wi is the normal to the worldline. This follows from uigi ju j =

1, so

d
ds

(
uigi ju j

)
=

dui

ds
gi ju j + uigi j

du j

ds

=
dui

ds
gi ju j + u j g ji

= gi j

dui

ds

=
dui

ds
gi ju j + u jg ji

dui

ds

= 2
dui

ds
gi ju j.

(4.19)
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Note that we have utilized the fact above that the dummy summation
indices can be swapped (or changed to anything else we feel inclined to
use).

The conclusion is that the dot product of the acceleration and the velocity
is zero

wiui = 0. (4.20)

4.3 relativistic action.

S ab =? . (4.21)

What is the action for a worldline from a→ b.
We want something that has velocity dependence (ui not v), but that is

Lorentz invariant and has only first derivatives.
The relativistic length is the simplest so we could form∫

dsuiui. (4.22)

but that is not interesting since uiui = 1. We could form∫
dsui ui

ds
=

∫
dswiui. (4.23)

but then this is just zero.
We could form something like∫

ds
wi

ds
ui. (4.24)

This is non zero and non-constant, but evaluating the EOM for such an
action would produce a result that has higher than second order derivatives.
We are left with

S ab = constant
∫ b

a
ds. (4.25)

To fix this constant we note that if we want to minimize the action over
the infinitesimal interval, then we need a minus sign. Since the Lagrangian
has dimensions of energy, and the dimensions of energy times time are
momentum, our action must then have dimensions of momentum. So one
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possible constant that fixes up our dimensions is mc. Construct an action
with the following form

S ab = −mc
∫ b

a
ds, (4.26)

does the job we want. Here “m” is a characteristic of the particle, which
is a Lorentz scalar. It also happens to have dimensions of mass. With
ds = cdt

√
1 − v2/c2, we have

S ab = −mc2
∫ tb

ta
dt

√
1 −

1
c2

(
dx(t)

dt

)2

. (4.27)

Now everything looks like it was in classical mechanics.

S ab =

∫ tb

ta
L(ẋ(t))dt. (4.28)

L(ẋ(t)) = −mc2. (4.29)

Now find the extremum of S . That problem is really to compute the
variation in the action that results from varying the coordinates around the
stationary point, and equate that variation to zero to find the extremum

δS = S [x(t) + δx(t)] − S [x(t)] = 0. (4.30)

The usual condition is imposed where we have zero variation of the coor-
dinates at the boundaries of the action integral

0 = δx(ta) = δx(tb). (4.31)

Returning to our action we have

d
dt
∂L

∂ẋ
=
∂L

∂x
= 0. (4.32)

This last is zero because it is a free particle with no position dependence.

0 = −mc2 d
dt

∂

∂ẋ

√
1 − ẋ2

= −mc2 d
dt

−ẋ√
1 − ẋ2

= mc2 d
dt
γẋ.

(4.33)
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So we have

d
dt

(γẋ) = 0. (4.34)

By evaluating this, we can eventually show that we can construct a four
vector equation. Doing this we have

d
dt

(γv) =
d
dt

((
1 − v2/c2

)−1/2
v
)

= −2(−1/2)v(v · v̇)/c2
(
1 − v2/c2

)−3/2
+

(
1 − v2/c2

)−1/2
v̇

= γ

(
v(v · v̇)
c2 − v2 + v̇

)
,

(4.35)

or

v(v · v̇)
c2 − v2 + v̇ = 0. (4.36)

Clearly v̇ = 0 is a solution, but is it the only solution? Dotting this with v
we have

0 =
v2(v · v̇)
c2 − v2 + v̇ · v

= (v · v̇)
(
1 +

v2

c2 − v2

)
= (v · v̇)

c2

c2 − v2 .

(4.37)

This implies that v̇ = 0 (a contraction) or that v · v̇ = 0. To examine the
perpendicularity question, let us take cross products. This gives

0 =
(v × v)(v · v̇)

c2 − v2 + v̇ × v. (4.38)

We have found that v · v̇ = 0 and v × v̇ = 0. This can only mean that v̇ = 0,
contradicting the assumption that is non-zero. We conclude that v̇ = 0 is
the only solution to eq. (4.36).

4.4 next time .

We want to finish up and show how this results in a four velocity equation.
We have

d
dt

(γv) = 0. (4.39)
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which is

d
dt

(uα) = 0, for uα = u1, u2, u3. (4.40)

eventually, we will show that we also have

d
dt

(ui) = 0. (4.41)

Reading Covering chapter 2 material from the text [11], and lecture
notes RelEMpp52-56.pdf, and lecture notes RelEMpp56.1-73.pdf.

4.5 finishing previous arguments on action and proper veloc-
ity.

For a free particle, our action is

S = −mc
∫

ds

= −mc2
∫

dt

√
1 −

v2

c2 .

(4.42)

Our Lagrangian is

L = −mc2

√
1 −

v2

c2 . (4.43)

We can also make a non-relativistic velocity approximation

L = −mc2

√
1 −

v2

c2

= −mc2
(
1 −

1
2

v2

c2

)
+ O((v2/c2)2)

≈ −mc2

constant

+
1
2

mv2

Classical Lagrangian for free particle

.

(4.44)

It is good to know that we recover the familiar Newtonian case when our
velocities are small enough.
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Our job is to vary the action between a pair of spacetime points

(ta, xa)→ (tb, xb). (4.45)

The equations of motion that result from this variation, or from the Euler-
Lagrange equations that one can obtain from this variation, are

d
dt

(γv) = 0. (4.46)

We argued last time, by evaluating the derivatives of eq. (4.46), and taking
dot and cross products with v that we also have

dv
dt

= 0. (4.47)

Observe that since dv/dt = 0, we also have dγ/dt = 0

dγ
dt

=
d
dt

1√
1 −

v2

c2

=
d
dt

1(
1 − v2

c2

)3/2 (−1/2)(2)(−v · v̇)/c2

= 0.

(4.48)

We can therefore combine the pair of equations (after adjusting both to
have dimensions of velocity)

d
dt

(γv) = 0

d
dt

(γc) = 0,
(4.49)

into

ui = (u0,u). (4.50)

Here

u0 = γ

u = γ
v
c
.

(4.51)

Since we have dui/dt = 0, pre-multiplying this by γ/c does not change the
equation, and we have

0 =
1

c

√
1 −

v2

c2

dui

dt
. (4.52)
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This now puts things in a nice invariant form, with no bias towards any
specific observer’s time coordinates, and we have for the free particle

dui

ds
= 0. (4.53)

4.6 symmetries of spacetime translation invariance.

The symmetries of S imply conservation laws. Our action has S O(1, 3) ×
T 4 = Lorentz x spacetime translation ≡ Poincaré group of symmetries.

Consider quantities conserved due to T 4 factor

x→ x + a where a is constant

t → t + constant.
(4.54)

Observe that the Lagrangian is not a function of x, or t explicitly

L(x, v, t) = −mc

√
1 −

v2

c2 = L(v). (4.55)

A consequence from this, utilizing the Euler-Lagrange equations is that we
have a zero for the time derivative of the generalized momentum ∂L/∂v

d
dt
∂L

∂v
=
∂L

∂x
= 0. (4.56)

Let us calculate that generalized momentum

∂L

∂v
=

∂

∂v

−mc2

√
1 −

v2

c2


=

∂

∂v

−mc2 (1/2)(−2)v/c2√
1 −

v2

c2


= m

v√
1 −

v2

c2

.

(4.57)

So our generalized momentum is

∂L

∂v
= mvγ. (4.58)
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Evaluating the Euler-Lagrange equations above we find

0 =
d
dt

(mγv)

=
d
dt

(
mcu1,2,3

)
.

(4.59)

Recall that u0 = γ, and that dγ/dt = 0, so we also have

d
dt

(
mcui

)
= 0. (4.60)

and again with multiplication by γ/c we have a Lorentz invariant relation,
mostly a consequence of spacetime translation invariance

d
ds

(
mcui

)
= 0. (4.61)

We define this quantity, the invariant quantity (a four vector), as the rela-
tivistic momentum

pi = mcui. (4.62)

A relativistic particle is characterizes by a conserved 4 vector quantity pi

with

p0 = mcγ

p = mγv
pi = (p0,p).

(4.63)

4.7 time translation invariance.

L(x, v, t) = L(v). (4.64)

However, it helps to consider the more general case

L(x, v, t) = L(x, v). (4.65)

since we have no explicit time dependence.

d
dt
L(v) =

∂L

∂x
· ẋ +

∂L

∂v
· v̇

=

(
d
dt
∂L

∂v

)
· v +

∂L

∂v
·

dv
dt

=
d
dt

(
∂L

∂v
· v

)
.

(4.66)



108 particle action and relativistic dynamics .

Regrouping, to pull all the derivative terms together provides the conserva-
tion identity

d
dt

(
∂L

∂v
· v −L

)
= 0. (4.67)

This quantity ∂L
∂v · v − L is usually identified as the Hamiltonian H, the

energy, but we will call it E here.
In our case, with the relativistic free particle Lagrangian

L = −mc2

√
1 −

v2

c2 , (4.68)

we have

E =
∂L

∂v
· v −L

= v ·

m
1√

1 −
v2

c2

v

 + mc2

√
1 −

v2

c2

=
mv2√
1 −

v2

c2

+ mc2

√
1 −

v2

c2

=
v2 + mc2

(
1 − v2

c2

)
√

1 −
v2

c2

=
mc2√
1 −

v2

c2

.

(4.69)

So we define, for the energy, a conserved quantity under time translation,
we have

E = γmc2 =
mc2√
1 −

v2

c2

. (4.70)

It is only with the v→ 0 that we recover the famous tee-shirt expression

E = mc2. (4.71)
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Since we also know (from the spacetime translation) that p0 = mcγ = E/c,
we get another conserved quantity for free since (p0,p) then is also a
symmetry (i.e. thus a conserved quantity)

p0 = mγc =
E
c

p = mγv.
(4.72)

pi = (p0,p). (4.73)

Note that the only “mass” you ever want to talk about is “m”. This is a
Lorentz scalar, and we will not use the old notions that mass changes with
velocity or “relativistic mass”.

4.8 some properties of the four momentum.

We have

pi pi = (p0)2 − p2

= mc2γ2 −m2γ2v2

= mc2γ2
(
1 −

v2

c2

)
= m2c2.

(4.74)

So we have

pi pi = m2c2. (4.75)

We say that the 4-vector pi represents a particle with mass m.
Since four momentum is a conserved quantity we can use this conserva-

tion property to study relativistic collisions
PICTURE: two particles colliding with two particles resulting (particles

trajectories as arrows)

pi
1 + pi

2

four momentum before

= pi
3 + pi

4

four momentum after

. (4.76)
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p =
mv√
1 −

v2

c2

→ 0 when m→ 0

E =
mc2√
1 −

v2

c2

→ 0 when m→ 0.
(4.77)

except when |v| = c, where if you take m → 0 and |v| = c you can get
anything (any values) in such a limit (limit does not exist).

However, because

E2

c2 − p2 = m2c2 = 0. (4.78)

when m→ 0, E and p for a massless particle must obey E = c|p|.
Massless particles like photons (and gravitons if/when eventually mea-

sured) have lightlike 4 momentum vectors

pi pi = 0. (4.79)

Gravity waves have not been seen yet, but the LIGO and LISA (extremely
large infraferometers) experiments are expected to get some results on this
in the near future.

4.9 where are we?

In the notes there is a review (see that on one’s own). We will also want
to eventually deal with the conservation laws in four vector form, since it
will illustrate how the electric and magnetic fields have to be transformed.
We will get to that eventually.

4.10 interactions.

In classical mechanics we have

Lkinetic =
1
2

mv2. (4.80)

L =
1
2

mv2 −U(r). (4.81)
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Here U(r) is an external potential.

S = S free + S interaction =

∫
dt

1
2

mv2 +

∫
dt(−U(r, t)). (4.82)

The quantity U(r, t) is what we call a potential field.
What is the simplest invariant field we can have? The simplest possibility

is to have a relativistic particle which interacts with an external Lorentz
scalar field. We would imagine that this is due to some other particle or
some distribution of other fields.

Recall that the scalar field under rotations (reminder)
PICTURE: a point with coordinates in a fixed and a rotated coordinate

system
That point is

P = (x, y) = (x′, y′). (4.83)

Similarly we can define a scalar quantity (like temperature or the Coulomb
potential) is then assigned a value at each point

φ(x, y) = φ′(x′, y′). (4.84)

The value of this scalar in the x, y coordinates system at point P equals the
value of this scalar in the x′, y′ coordinates system at the same point P.

A Lorentz scalar field is like this, but for an event P = (ct, x) = (ct′, x′)
is the same.

So, we would have

φ(ct, x) = φ′(ct′, x′). (4.85)

The value of this scalar in the x, ct coordinates system at event P equals
the value of this scalar in the x′, ct′ coordinates system at the same event
P in the primed frame.

Our action would then be

S = −mc
∫

ds + g
∫

dsφ(xi). (4.86)

Here g is a coupling constant, also called the “charge” of a particle under
that scalar field.

Note that unfortunately nature has not provided us with scalar fields that
are stable enough to observe in classical interactions
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We do however have some scalar particles

π0, π±, k0, k±. (4.87)

These are unstable and short ranged.
The LHC is looking for another unstable short lived scalar field (the

Higgs). So we have to unfortunately study a more complicated field, a
vector field. We will do that next time.

Reading Covering chapter 2 material from the text [11], and lecture
notes RelEMpp56.1-73.pdf.

4.11 more on the action.

Action for a relativistic particle in an external 4-scalar field

S = −mc
∫

ds − g
∫

dsφ(x). (4.88)

Unfortunately we have no 4-vector scalar fields (at least for particles that
are long lived and stable).

PICTURE: 3-vector field, some arrows in various directions.
PICTURE: A vector A in an x, y frame, and a rotated (counterclockwise

by angle α) x′, y′ frame with the components in each shown pictorially.
We have

A′x(x′, y′) = cosαAx(x, y) + sinαAy(x, y)

A′y(x′, y′) = − sinαAx(x, y) + cosαAy(x, y).
(4.89)

A′x(x′, y′)

A′y(x′, y′)

 =

 cosαAx(x, y) sinαAy(x, y)

− sinαAx(x, y) cosαAy(x, y)


Ax(x, y)

Ay(x, y)

 . (4.90)

More generally we have
A′x(x′, y′, z′)

A′y(x′, y′, z′)

A′z(x′, y′, z′)

 = Ô


Ax(x, y, z)

Ay(x, y, z)

Az(x, y, z)

 . (4.91)

Here Ô is an S O(3) matrix rotating x→ x′

A(x) · y = A′(x′) · y′. (4.92)
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A ·B = invariant. (4.93)

A four vector field is Ai(x), with x = xi, i = 0, 1, 2, 3 and we would write
(x0)′

(x1)′

(x2)′

(x3)′


= Ô


x0

x1

x2

x3


. (4.94)

Now Ô is an S O(1, 3) matrix. Our four vector field is then
(A0)′

(A1)′

(A2)′

(A3)′


= Ô


A0

A1

A2

A3


. (4.95)

We have

Aigi jxi = invariant = A′igi jx′
i. (4.96)

From electrodynamics we know that we have a scalar field, the electrostatic
potential, and a vector field

What is a plausible action?
How about∫

dsxigi jA j. (4.97)

This is not translation invariant.∫
dsxigi jA j. (4.98)

Next simplest is∫
dsuigi jA j. (4.99)

Could also do∫
dsAigi jA j. (4.100)

but it turns out that this is not gauge invariant (to be defined and discussed
in detail).
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An aside. Dimensions of proper velocity. Note that the convention for
this course is to write

ui =

(
γ, γ

v
c

)
=

dxi

ds
. (4.101)

Where ui is dimensionless (uiui = 1). Some authors use

ui = (γc, γv) =
dxi

dτ
, (4.102)

where uiui = c2, and ui has dimensions of velocity.

Return to the problem The simplest action for a four vector field Ai is
then

S = −mc
∫

ds −
e
c

∫
dsuiAi. (4.103)

(Recall that uiAi = uigi jA j).
In this action e is nothing but a Lorentz scalar, a property of the particle

that describes how it “couples” (or “feels”) the electrodynamics field.
Similarly mc is a Lorentz scalar which is a property of the particle

(inertia).
It turns out that all the electric charges in nature are quantized, and there

are some deep reasons (in magnetic monopoles exist) for this.
Another reason for charge quantization apparently has to do with gauge

invariance and associated compact groups. Poppitz is amusing himself a
bit here, hinting at some stuff that we can eventually learn.

Returning to our discussion, we have

S = −mc
∫

ds −
e
c

∫
dsuigi jA j. (4.104)

with the electrodynamics four vector potential

Ai = (φ,A)

ui =

(
γ, γ

v
c

)
uigi jA j = γφ − γ

v ·A
c

.

(4.105)

S = −mc2
∫

dt

√
1 −

v2

c2 −
e
c

∫
cdt

√
1 −

v2

c2

(
γφ − γ

v
c
·A

)
=

∫
dt

−mc2

√
1 −

v2

c2 − eφ(x, t) +
e
c

v ·A(x, t)
 . (4.106)
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∂L

∂v
=

mc2√
1 −

v2

c2

v
c2 +

e
c

A(x, t). (4.107)

d
dt
∂L

∂v
= m

d
dt

(γv) +
e
c
∂A
∂t

+
e
c
∂A
∂xα

vα. (4.108)

Here α, β = 1, 2, 3 and are summed over.
For the other half of the Euler-Lagrange equations we have

∂L

∂xα
= −e

∂φ

∂xα
+

e
c

vβ
∂Aβ

∂xα
. (4.109)

Equating these, and switching to coordinates for eq. (4.108), we have

m
d
dt

(γvα) +
e
c
∂Aα

∂t
+

e
c
∂Aα

∂xβ
vβ = −e

∂φ

∂xα
+

e
c

vβ
∂Aβ

∂xα
. (4.110)

A final rearrangement yields

d
dt

mγvα = e
(
−

1
c
∂Aα

∂t
−
∂φ

∂xα

)Eα

+
e
c

vβ
(
∂Aβ

∂xα
−
∂Aα

∂xβ

)
. (4.111)

We can identity the second term with the magnetic field but first have to
introduce antisymmetric matrices.

4.12 antisymmetric matrices.

Mµν =
∂Aν

∂xµ
−
∂Aµ

∂xν

= εµνλBλ,
(4.112)

where

εµνλ =

0 if any two indices coincide

1 for even permutations of µνλ

−1 for odd permutations of µνλ

. (4.113)
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Example:

ε123 = 1

ε213 = −1

ε231 = 1.

(4.114)

We can show that

Bλ =
1
2
ελµνMµν. (4.115)

B1 =
1
2

(ε123M23 + ε132M32)

=
1
2

(M23 −M32)

= ∂2A3 − ∂3A2.

(4.116)

Using

εµναεσκα = δµσδνκ − δνσδµκ, (4.117)

we can verify the identity eq. (4.115) by expanding

εµνλBλ =
1
2
εµνλελαβMαβ

=
1
2

(δµαδνβ − δναδµβ)Mαβ

=
1
2

(Mµν −Mνµ)

= Mµν.

(4.118)

Returning to the action evaluation we have

d
dt

(mγvα) = eEα +
e
c
εαβγvβBγ, (4.119)

but

εαβγBγ = (v ×B)α, (4.120)

so
d
dt

(mγv) = eE +
e
c

v ×B, (4.121)

or
d
dt

(p) = e
(
E +

v
c
×B

)
. (4.122)
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What is the energy component of the Lorentz force equation I asked
this, not because I do not know (I could answer this myself from dp/dτ =

F · v/c, in the geometric algebra formalism, but I was curious if he had a
way of determining this from what we have derived so far (intuitively I
had expect this to be possible). Answer was:

Observe that this is almost a relativistic equation, but we are not going
to get to the full equation yet. The energy component can be obtained from

du0

ds
= eF0 ju j. (4.123)

Since the full equation is

dui

ds
= eFi ju j. (4.124)

“take with a grain of salt, may be off by sign, or factors of c”.
Also curious is that he claimed the energy component of this equation

was not very important. Why would that be?

4.13 gauge transformations.

Claim

S interaction = −
e
c

∫
dsuiAi. (4.125)

changes by boundary terms only under
“gauge transformation” :

Ai = A′i +
∂χ

∂xi . (4.126)

where χ is a Lorentz scalar. This ∂/∂xi is the four gradient. Let us see this
Therefore the equations of motion are the same in an external Ai and

A′i.
Recall that the E and B fields do not change under such transformations.

Let us see how the action transforms

S = −
e
c

∫
dsuiAi

= −
e
c

∫
dsui

(
A′i +

∂χ

∂xi

)
= −

e
c

∫
dsuiA′i −

e
c

∫
ds

dxi

ds
∂χ

∂xi .

(4.127)
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Observe that this last bit is just a chain rule expansion

d
ds
χ(x0, x1, x2, x3) =

∂χ

∂x0

dx0

ds
+
∂χ

∂x1

dx1

ds
+
∂χ

∂x2

dx2

ds
+
∂χ

∂x3

dx3

ds

=
∂χ

∂xi

dxi

ds
,

(4.128)

so we have

S = −
e
c

∫
dsuiA′i −

e
c

∫
ds

dχ
ds
. (4.129)

This allows the line integral to be evaluated, and we find that it only
depends on the end points of the interval

S = −
e
c

∫
dsuiA′i −

e
c

(χ(xb) − χ(xa)), (4.130)

which completes the proof of the claim that this gauge transformation
results in an action difference that only depends on the end points of the
interval.

Gauge invariance of A · A action Now that we know what gauge invari-
ance means, let us look at the portion of the potential action eq. (4.100)
discarded because it was not gauge invariant. Under gauge transformation
this becomes∫

dsA′iA′i =

∫
ds

(
Ai +

∂χ

∂xi

) (
Ai +

∂χ

∂xi

)
=

∫
dsAiAi + Ai ∂χ

∂xi + Ai
∂χ

∂xi
+
∂χ

∂xi

∂χ

∂xi

=

∫
dsAiAi + 2Ai ∂χ

∂xi +
∂χ

∂xi

∂χ

∂xi
.

(4.131)

Without the proper velocity term we do not have a way to simply re-pack
the chain rule expansion and eliminate the last two terms as we did with
the Lorentz force action.

Reading Covering chapter 3 material from the text [11], and lecture
notes RelEMpp74-83.pdf.

4.14 significance of action gauge invariance?

We had argued that under a gauge transformation

Ai → Ai +
∂χ

∂xi , (4.132)
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the action for a particle changes by a boundary term

−
e
c

(χ(xb) − χ(xa)). (4.133)

Because S changes by a boundary term only, variation problem is not
affected. The extremal trajectories are then the same, hence the EOM are
the same.

A less high brow demonstration With our four potential split into space
and time components

Ai = (φ,A), (4.134)

the lower index representation of the same vector is

Ai = (φ,−A). (4.135)

Our gauge transformation is then

A0 → A0 +
∂χ

∂x0

−A→ −A +
∂χ

∂x
,

(4.136)

or

φ→ φ +
1
c
∂χ

∂t
A→ A −∇χ.

(4.137)

Now observe how the electric and magnetic fields are transformed

E = −∇φ −
1
c
∂A
∂t

→ −∇

(
φ +

1
c
∂χ

∂t

)
−

1
c
∂

∂t
(A −∇χ) .

(4.138)

Sufficient continuity of χ is assumed, allowing commutation of the space
and time derivatives, and we are left with just E

For the magnetic field we have

B = ∇ ×A
→ ∇ × (A −∇χ).

(4.139)

Again with continuity assumptions, ∇ × (∇χ) = 0, and we are left with
just B. The electromagnetic fields (as opposed to potentials) do not change
under gauge transformations.

We conclude that the {Ai} description is hugely redundant, but despite
that, local L and H can only be written in terms of the potentials Ai.
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Energy term of the Lorentz force. Three vector approach With the La-
grangian for the particle given by

L = −mc2

√
1 −

v2

c2 +
e
c

A · v − eφ, (4.140)

we define the energy as

E = v ·
∂L

∂v
−L. (4.141)

This is not necessarily a conserved quantity, but we define it as the energy
anyways (we do not really have a Hamiltonian when the fields are time
dependent). Associated with this quantity is the general relationship

dE
dt

= −
∂L

∂t
, (4.142)

and when the Lagrangian is invariant with respect to time translation the
energy E will be a conserved quantity (and also the Hamiltonian).

Our canonical momentum is

∂L

∂v
= γmv +

e
c

A, (4.143)

so our energy is

E = γmv2 +
e
c

A · v −
−mc2

√
1 −

v2

c2 +
e
c

A · v − eφ

 , (4.144)

or

E =
mc2√
1 −

v2

c2

(∗)

+ eφ. (4.145)

The contribution of (∗) to the energy E comes from the free (kinetic)

particle portion of the Lagrangian L = −mc2

√
1 −

v2

c2 , and we identify
the remainder as a potential energy

E =
mc2√
1 −

v2

c2

+ eφ

"potential"

. (4.146)
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For the kinetic portion we can also show that we have

d
dt
Ekinetic =

mc2√
1 −

v2

c2

= eE · v. (4.147)

To show this observe that we have

d
dt
Ekinetic = mc2 dγ

dt

= mc2 d
dt

1√
1 −

v2

c2

= mc2
v
c2 ·

dv
dt(

1 − v2

c2

)3/2

=
mγv · dv

dt

1 − v2

c2

.

(4.148)

We also have

v ·
dp
dt

= v ·
d
dt

mv√
1 −

v2

c2

= mv2 dγ
dt

+ mγv ·
dv
dt

= mv2 dγ
dt

+ mc2 dγ
dt

(
1 −

v2

c2

)
= mc2 dγ

dt
.

(4.149)

Utilizing the Lorentz force equation, we have

v ·
dp
dt

= e
(
E +

v
c
×B

)
· v = eE · v, (4.150)

and are able to assemble the above, and find that we have

d(mc2γ)
dt

= eE · v. (4.151)
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4.15 four vector lorentz force.

Using ds =
√

dxidxi our action can be rewritten

S =

∫ (
−mcds −

e
c

uiAids
)

=

∫ (
−mcds −

e
c

dxiAi

)
=

∫ (
−mc

√
dxidxi −

e
c

dxiAi

)
.

(4.152)

xi(τ) is a worldline xi(0) = ai, xi(1) = bi. We want δS = S [x + δx]−S [x] =

0 (to linear order in δx). The variation of our proper length is

δds = δ
√

dxidxi

=
1

2
√

dxidxi

δ(dx jdx j).
(4.153)

Observe that for the numerator we have

δ(dx jdx j) = δ(dx jg jkdxk)

= δ(dx j)g jkdxk + dx jg jkδ(dxk)

= δ(dx j)g jkdxk + dxkgk jδ(dx j)

= 2δ(dx j)g jkdxk

= 2δ(dx j)dx j.

(4.154)

TIP: If this goes too quick, or there is any disbelief, write these all out
explicitly as dx jdx j = dx0dx0 + dx1dx1 + dx2dx2 + dx3dx3 and compute
it that way. For the four vector potential our variation is

δAi = Ai(x + δx) − Ai =
∂Ai

∂x j δx j = ∂ jAiδx j. (4.155)

(i.e. By chain rule)
Completing the proper length variations above we have

δ
√

dxidxi =
1√

dxidxi

δ(dx j)dx j

= δ(dx j)
dx j

ds
= δ(dx j)u j

= dδx ju j.

(4.156)
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We are now ready to assemble results and do the integration by parts

δS =

∫ (
−mcd(δx j)u j −

e
c

d(δxi)Ai −
e
c

dxi∂ jAiδx j
)

=

(
−mc(δx j)u j −

e
c

(δxi)Ai

)∣∣∣∣∣b
a

+

∫ (
mcδx jdu j +

e
c

(δxi)dAi −
e
c

dxi∂ jAiδx j
)
.

(4.157)

Our variation at the endpoints is zero δxi
∣∣∣
a = δxi

∣∣∣
b = 0, killing the non-

integral terms

δS =

∫
δx j

(
mcdu j +

e
c

dA j −
e
c

dxi∂ jAi

)
. (4.158)

Observe that our differential can also be expanded by chain rule

dA j =
∂A j

∂xi dxi = ∂iA jdxi, (4.159)

which simplifies the variation further

δS =

∫
δx j

(
mcdu j +

e
c

dxi(∂iA j − ∂ jAi)
)

=

∫
δx jds

(
mc

du j

ds
+

e
c

ui(∂iA j − ∂ jAi)
)
.

(4.160)

Since this is true for all variations δx j, which is arbitrary, the interior part
is zero everywhere in the trajectory. The antisymmetric portion, a rank 2
4-tensor is called the electromagnetic field strength tensor, and written

Fi j = ∂iA j − ∂ jAi. (4.161)

In matrix form this is

∥∥∥Fi j
∥∥∥ =


0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0


. (4.162)

In terms of the field strength tensor our Lorentz force equation takes the
form

d(mcui)
ds

=
e
c

Fi ju j. (4.163)
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Reading Covering chapter 3 material from the text [11], lecture notes
RelEMpp74-83.pdf, and lecture notes RelEMpp84-102.pdf.

4.16 four vector form of the lorentz force equation.

After much effort, we arrived at

d(mcul)
ds

=
e
c
(∂lAi − ∂iAl) ui, (4.164)

or

dpl

ds
=

e
c

Fliui. (4.165)

Elements of the strength tensor

Claim : there are only 6 independent elements of this matrix (tensor)
0 . . .

0 . .

0 .

0


. (4.166)

This is a no-brainer, for we just have to mechanically plug in the elements
of the field strength tensor

Recall

Ai = (φ,A)

Ai = (φ,−A).
(4.167)

F0α = ∂0Aα − ∂αA0

= −∂0(A)α − ∂αφ,
(4.168)

F0α = Eα. (4.169)

For the purely spatial index combinations we have

Fαβ = ∂αAβ − ∂βAα
= −∂α(A)β + ∂β(A)α.

(4.170)
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Written out explicitly, these are

F12 = ∂2(A)1 − ∂1(A)2

F23 = ∂3(A)2 − ∂2(A)3

F31 = ∂1(A)3 − ∂3(A)1.

(4.171)

We can compare this to the elements of B

B =

∣∣∣∣∣∣∣∣∣∣∣
x̂ ŷ ẑ
∂1 ∂2 ∂3

Ax Ay Az

∣∣∣∣∣∣∣∣∣∣∣ . (4.172)

We see that

(B)z = ∂1Ay − ∂2Ax

(B)x = ∂2Az − ∂3Ay

(B)y = ∂3Ax − ∂1Az.

(4.173)

So we have

F12 = −(B)3

F23 = −(B)1

F31 = −(B)2.

(4.174)

These can be summarized as simply

Fαβ = −εαβγBγ. (4.175)

This provides all the info needed to fill in the matrix above

∥∥∥Fi j
∥∥∥ =


0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0.


. (4.176)

Index raising of rank 2 tensor To raise indices we compute

Fi j = gilg jkFlk. (4.177)
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Justifying the raising operation To justify this consider raising one index
at a time by applying the metric tensor to our definition of Flk. That is

galFlk = gal(∂lAk − ∂kAl)

= ∂aAk − ∂kAa.
(4.178)

Now apply the metric tensor once more

gbkgalFlk = gbk(∂aAk − ∂kAa)

= ∂aAb − ∂bAa.
(4.179)

This is, by definition Fab. Since a rank 2 tensor has been defined as an
object that transforms like the product of two pairs of coordinates, it
makes sense that this particular tensor raises in the same fashion as would
a product of two vector coordinates (in this case, it happens to be an
antisymmetric product of two vectors, and one of which is an operator, but
we have the same idea).

Consider the components of the raised Fi j tensor

F0α = −F0α

Fαβ = Fαβ.
(4.180)

∥∥∥Fi j
∥∥∥ =


0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0


. (4.181)

Back to chewing on the Lorentz force equation

mc
dui

ds
=

e
c

Fi ju j. (4.182)

ui = γ
(
1,

v
c

)
ui = γ

(
1,−

v
c

)
.

(4.183)
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For the spatial components of the Lorentz force equation we have

mc
duα
ds

=
e
c

Fα ju j

=
e
c

Fα0u0 +
e
c

Fαβuβ

=
e
c

(−Eα)γ +
e
c

(−εαβγBγ)
vβ

c
γ,

(4.184)

but

mc
duα
ds

= −m
d(γvα)

ds

= −m
d(γvα)

c

√
1 −

v2

c2 dt

= −γ
d(mγvα)

cdt
.

(4.185)

Canceling the common −γ/c terms, and switching to vector notation, we
are left with

d(mγvα)
dt

= e
(
Eα +

1
c

(v ×B)α

)
. (4.186)

Now for the energy term. We have

mc
du0

ds
=

e
c

F0αuα

=
e
c

Eαγ
vα

c
dmcγ

ds
= .

(4.187)

Putting the final two lines into vector form we have

d(mc2γ)
dt

= eE · v, (4.188)

or
dE
dt

= eE · v. (4.189)

4.17 transformation of rank two tensors.

Transformation of the metric tensor, and some identities With

Ĝ =
∥∥∥gi j

∥∥∥ =
∥∥∥gi j

∥∥∥ . (4.190)
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We claim: The rank two tensor Ĝ transforms in the following sort of
sandwich operation, and this leaves it invariant

Ĝ → ÔĜÔT = Ĝ. (4.191)

To demonstrate this let us consider a transformed vector in coordinate form
as follows

x′i = Oi jx j = Oi
jx j

x′i = Oi jx j = Oi
jx j.

(4.192)

We can thus write the equation in matrix form with

X =
∥∥∥xi

∥∥∥
X′ =

∥∥∥x′i
∥∥∥

Ô =
∥∥∥Oi

j
∥∥∥

X′ = ÔX.

(4.193)

Our invariant for the vector square, which is required to remain unchanged
is

x′ix′i = (Oi jx j)(Oikxk)

= xk(Oi jOik)x j.
(4.194)

This shows that we have a delta function relationship for the Lorentz
transform matrix, when we sum over the first index

OaiOa j = δi
j. (4.195)

It appears we can put eq. (4.195) into matrix form as

ĜÔTĜÔ = I. (4.196)

Now, if one considers that the transpose of a rotation is an inverse rotation,
and the transpose of a boost leaves it unchanged, the transpose of a general
Lorentz transformation, a composition of an arbitrary sequence of boosts
and rotations, must also be a Lorentz transformation, and must then also
leave the norm unchanged. For the transpose of our Lorentz transformation
Ô lets write

P̂ = ÔT. (4.197)
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For the action of this on our position vector let us write

x′′i = Pi jx j = O jix j

x′′i = Pi jx j = O jix j.
(4.198)

so that our norm is

x′′ax′′a = (Okaxk)(O jax j)

= xk(OkaO ja)x j

= x jx j.

(4.199)

We must then also have an identity when summing over the second index

δk
j = OkaO ja. (4.200)

Armed with these facts on the products of Oi j and Oi j we can now consider
the transformation of the metric tensor.

The rule (definition) supplied to us for the transformation of an arbitrary
rank two tensor, is that this transforms as its indices transform individually.
Very much as if it was the product of two coordinate vectors and we
transform those coordinates separately. Doing so for the metric tensor we
have

gi j → Oi
kgkmO j

m

= (Oi
kgkm)O j

m

= OimO j
m

= Oim(Oamga j)

= (OimOam)ga j.

(4.201)

However, by eq. (4.200), we have OamOim = δa
i, and we prove that

gi j → gi j. (4.202)

Finally, we wish to put the above transformation in matrix form, look more
carefully at the very first line

gi j → Oi
kgkmO j

m, (4.203)

which is

Ĝ → ÔĜÔT = Ĝ. (4.204)

We see that this particular form of transformation, a sandwich between Ô
and ÔT, leaves the metric tensor invariant.
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Lorentz transformation of the electrodynamic tensor Having identified a
composition of Lorentz transformation matrices, when acting on the metric
tensor, leaves it invariant, it is a reasonable question to ask how this form
of transformation acts on our electrodynamic tensor Fi j?

Claim: A transformation of the following form is required to maintain
the norm of the Lorentz force equation

F̂ → ÔF̂ÔT, (4.205)

where F̂ =
∥∥∥Fi j

∥∥∥. Observe that our Lorentz force equation can be written
exclusively in upper index quantities as

mc
dui

ds
=

e
c

Fi jg jlul. (4.206)

Because we have a vector on one side of the equation, and it transforms by
multiplication with by a Lorentz matrix in SO(1,3)

dui

ds
→ Ô

dui

ds
. (4.207)

The LHS of the Lorentz force equation provides us with one invariant

(mc)2 dui

ds
dui

ds
. (4.208)

so the RHS must also provide one

e2

c2 Fi jg jlulFikgkmum =
e2

c2 Fi ju jFikuk. (4.209)

Let us look at the RHS in matrix form. Writing

U =
∥∥∥ui

∥∥∥ , (4.210)

we can rewrite the Lorentz force equation as

mcU̇ =
e
c

F̂ĜU. (4.211)

In this matrix formalism our invariant eq. (4.209) is

e2

c2 (F̂ĜU)TĜF̂ĜU =
e2

c2 UTĜF̂TĜF̂ĜU. (4.212)
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If we compare this to the transformed Lorentz force equation we have

mcÔU̇ =
e
c

F̂′ĜÔU. (4.213)

Our invariant for the transformed equation is

e2

c2 (F̂′ĜÔU)TĜF̂′ĜÔU =
e2

c2 UTÔTĜF̂′TĜF̂′ĜÔU, (4.214)

thus the transformed electrodynamic tensor F̂′ must satisfy the identity

ÔTĜF̂′TĜF̂′ĜÔ = ĜF̂TĜF̂Ĝ. (4.215)

With the substitution F̂′ = ÔF̂ÔT the LHS is

ÔTĜF̂′TĜF̂′ĜÔ = ÔTĜ(ÔF̂ÔT)TĜ(ÔF̂ÔT)ĜÔ

= (ÔTĜÔ)F̂T(ÔTĜÔ)F̂(ÔTĜÔ).
(4.216)

We have argued that P̂ = ÔT is also a Lorentz transformation, thus

ÔTĜÔ = P̂ĜÔT

= Ĝ.
(4.217)

This is enough to make both sides of eq. (4.215) match, verifying that this
transformation does provide the invariant properties desired.

Direct computation of the Lorentz transformation of the electrodynamic
tensor We can construct the transformed field tensor more directly, by
simply transforming the coordinates of the four gradient and the four
potential directly. That is

Fi j = ∂iA j − ∂ jAi → Oi
aO j

b
(
∂aAb − ∂bAa

)
= Oi

aFabO j
b.

(4.218)

By inspection we can see that this can be represented in matrix form as

F̂ → ÔF̂ÔT. (4.219)

Reading Covering chapter 3 material from the text [11], and lecture
notes RelEMpp84-102.pdf.
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4.18 where we are.

Fi j = ∂iA j − ∂ jAi. (4.220)

We learned that one half of Maxwell’s equations comes from the Bianchi
identity

εi jkl∂ jFkl = 0. (4.221)

the other half (for vacuum) is

∂ jF ji = 0. (4.222)

To get here we have to consider the action for the field.

4.19 generalizing the action to multiple particles.

We have learned that the action for a single particle is

S = S matter + S interaction

= −mc
∫

ds −
e
c

∫
dsiAi.

(4.223)

This generalizes to more particles

S “particles in field” = −
∑

A

mAc
∫

xA(τ)
ds−

∑
A

eA

c

∫
dxi

AAi(xA(τ)). (4.224)

A labels the particles, and xA(τ), {xA(τ), A = 1 · · ·N} is the worldline of
particle A.

4.20 problems

Exercise 4.1 Energy term of the Lorentz force equation.

In class this week, the Lorentz force was derived from an action (the sim-
plest Lorentz invariant, gauge invariant, action that could be constructed)

S = −mc
∫

ds −
e
c

∫
dsAiui. (4.225)
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We end up with the familiar equation, with the exception that the momen-
tum includes the relativistically required gamma factor

d(γmv)
dt

= e
(
E +

v
c
×B

)
. (4.226)

I asked what the energy term of this equation would be and was answered
that we would get to it, and This can be obtained by a four vector mini-
mization of the action which produces the Lorentz force equation of the
following form

dui

dτ
∼ eFi ju j. (4.227)

Let us see if we can work this out without the four-vector approach, using
the action expressed with an explicit space time split, then also work it out
in the four vector form and compare as a consistency check.

a. Lorentz force equations. Derive the Lorentz force equation from
the action eq. (4.225).

b. The power (energy) term. When we start with an action explicitly
constructed with Lorentz invariance as a requirement, it might
seem somewhat odd to end up with a result that has only the spatial
vector portion of what should logically be a four vector result. We
have an equation for the particle momentum, but not one for the
energy. We have also calculated the Hamiltonian, the generalization
of energy, for the free particle, but have not yet done so for the
Lorentz force, or for an action containing potentials. Generalized
this by calculating the Hamiltonian for the Lorentz force.

c. Proper time action. Express the action using a proper time param-
eterization, and evaluate the Euler-Lagrange equations. Leave the
results in four vector notation.

d. Power term. From the four vector expression derived, extract the
power term found earlier using a time parameterized action.

e. The Lorentz force terms. Now do the same, extracting the Lorentz
force terms, and compare to the results found using the time pa-
rameterized action.

Answer for Exercise 4.1
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Part a. Parameterizing the action by time we have

S = −mc2
∫

dt

√
1 −

v2

c2 − e
∫

dt

√
1 −

v2

c2 γ

(
1,

1
c

v
)
· (φ,A)

= −mc2
∫

dt

√
1 −

v2

c2 − e
∫

dt
(
φ −

1
c

A · v
)
.

(4.228)

Our Lagrangian is therefore

L(x, v, t) = −mc2

√
1 −

v2

c2 − eφ(x, t) +
e
c

A(x, t) · v. (4.229)

We can calculate our conjugate momentum easily enough

∂L

∂v
= γmv +

e
c

A, (4.230)

and for the gradient portion of the Euler-Lagrange equations we have

∂L

∂x
= −e∇φ + e∇

(v
c
·A

)
. (4.231)

Utilizing the convective derivative (i.e. chain rule in fancy clothes)

d
dt

= v ·∇ +
∂

∂t
. (4.232)

This gives us

−e∇φ + e∇
(v

c
·A

)
=

d(γmv)
dt

+
e
c

(v ·∇)A +
e
c
∂A
∂t
, (4.233)

and a final bit of rearranging gives us

d(γmv)
dt

= e
(
−∇φ −

1
c
∂A
∂t

)
+

e
c
(∇ (v ·A) − (v ·∇)A) . (4.234)

The first set of derivatives we identify with the electric field E. For the
second, utilizing the vector triple product identity from [19], gives

a × (b × c) = b(a · c) − (a · b)c, (4.235)

which we recognize as related to the magnetic field v ×B = v × (∇ ×A).
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Part b. We can only actually calculate a Hamiltonian for the case where
φ(x, t) = φ(x) and A(x, t) = A(x), because when the potentials have any
sort of time dependence we do not have a Lagrangian that is invariant
under time translation. Returning to the derivation of the Hamiltonian
conservation equation, we see that we must modify the argument slightly
when there is a time dependence and get instead

d
dt

(
∂L

∂v
· v −L

)
+
∂L

∂t
= 0. (4.236)

Only when there is no time dependence in the Lagrangian, do we have our
conserved quantity, what we label as energy, or Hamiltonian.

From eq. (4.230), we have

0 =
d
dt

(γmv +
e
c

A
)
· v + mc2

√
1 −

v2

c2 + eφ −
e
c

A · v
 − e

∂φ

∂t
+

e
c
∂A
∂t
· v.

(4.237)

Our A · v terms cancel, and we can combine the γ and γ−1 terms, then
apply the convective derivative again

d
dt

(
γmc2

)
= −e

(
v ·∇ +

∂

∂t

)
φ + e

∂φ

∂t
−

e
c
∂A
∂t
· v

= −ev ·∇φ −
e
c
∂A
∂t
· v

= +ev ·
(
−∇φ −

1
c
∂A
∂t

)
.

(4.238)

This is just

d
dt

(
γmc2

)
= ev ·E, (4.239)

and we find the rate of change of energy term of our four momentum
equation

d
dt

(E
c
,p

)
= e

(v
c
·E,E +

v
c
×B

)
. (4.240)

Specified explicitly, this is

d
dt

(γm (c, v)) = e
(v

c
·E,E +

v
c
×B

)
. (4.241)
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While this was the result I was looking for, once written it now stands out
as incomplete relativistically. We have an equation that specifies the time
derivative of a four vector. What about the spatial derivatives? We really
ought to have a rank two tensor result, and not a four vector result relating
the fields and the energy and momentum of the particle. The Lorentz force
equation, even when expanded to four vector form, does not seem complete
relativistically.

With ui = dxi/ds, we can rewrite eq. (4.241) as

∂0(γmui) = e
(v

c
·E,E +

v
c
×B

)
. (4.242)

If we were to vary the action with respect to a spatial coordinate instead of
time, we should end up with a similar equation of the form ∂α(γmui) =?.
Having been pointed at the explicitly invariant result, I wonder if those
equations are independent. Let us defer exploring this, until at least after
calculating the result using a four vector form of the action.

Part c. We can rewrite our action, parameterizing with proper time. This
is

S = −mc2
∫

dτ

√
dxi

dτ
dxi

dτ
−

e
c

∫
dτAi

dxi

dτ
. (4.243)

Writing ẋi = dxi/dτ, our Lagrangian is then

L(xi, ẋi, τ) = −mc2
√

ẋi ẋi −
e
c

Ai ẋi. (4.244)

The Euler-Lagrange equations take the form

∂L

∂xi =
d
dτ
∂L

∂ẋi . (4.245)

Our gradient and conjugate momentum are

∂L

∂xi = −
e
c
∂A j

∂xi ẋ j

∂L

∂ẋi = −mẋi −
e
c

Ai.

(4.246)

With our convective derivative taking the form

d
dτ

= ẋi ∂

∂xi , (4.247)



4.20 problems 137

we have

m
d2xi

dτ2 =
e
c
∂A j

∂xi ẋ j −
e
c

ẋ j ∂Ai

∂x j

=
e
c

ẋ j
(
∂A j

∂xi −
∂Ai

∂x j

)
=

e
c

ẋ j (∂iA j − ∂ jAi)

=
e
c

ẋ jFi j.

(4.248)

Our Prof wrote this with indices raised and lowered respectively

m
d2xi

dτ2 =
e
c

Fi j ẋ j. (4.249)

Following the text [11] he also writes ui = dxi/ds = (1/c)dxi/dτ, and in
that form we have

d(mcui)
ds

=
e
c

Fi ju j. (4.250)

Part d. From eq. (4.250), lets extract the i = 0 term, relating the rate of
change of energy to the field and particle velocity. With

d
dτ

=
dt
dτ

d
dt

= γ
d
dt
, (4.251)

we have

d(mγ dxi

dt )
dt

=
e
c

Fi j dx j

dt
. (4.252)

For i = 0 we have

F0 j dx j

dt
= −F0α dxα

dt
. (4.253)

That component of the field is

Fα0 = ∂αA0 − ∂0Aα

= −
∂φ

∂xα
−

1
c
∂Aα

∂t

=

(
−∇φ −

1
c
∂A
∂t

)α
.

(4.254)

This verifies the result obtained with considerably more difficulty, using
the Hamiltonian like conservation relation obtained for a time translation
of a time dependent Lagrangian

d(mγc2)
dt

= eE · v. (4.255)
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Part e. Let us also verify the signs for the i > 0 terms. For those we
have

d(mγ dxα
dt )

dt
=

e
c

Fα j dx j

dt

=
e
c

Fα0 dx0

dt
+

e
c

Fαβ dxβ
dt

= eEα −
∑
αβ

e
c

(
∂αAβ − ∂βAα

)
vβ.

(4.256)

Since we have only spatial indices left, lets be sloppy and imply summation
over all repeated indices, even if unmatched upper and lower. This leaves
us with

−
(
∂αAβ − ∂βAα

)
vβ =

(
∂αAβ − ∂βAα

)
vβ

= εαβγBγ.
(4.257)

With the vβ contraction we have

εαβγBγvβ = (v ×B)α, (4.258)

leaving our first result obtained by the time parametrization of the La-
grangian

d(mγv)
dt

= e
(
E +

v
c
×B

)
. (4.259)

This now has a nice symmetrical form. It is slightly disappointing not to
have a rank two tensor on the LHS like we have with the symmetric stress
tensor with Poynting Vector and energy and other similar terms that relates
field energy and momentum with E · J and the charge density equivalents
of the Lorentz force equation. Is there such a symmetric relationship for
particles too?
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5.1 action for the field.

However, E and B are created by charged particles and can “move” or
“propagate” on their own. EM field is its own dynamical system. The
variables are Ai(x, t). These are the “qa(t)”.

The values of {Ai(x, t),∀x} is the dynamical degrees of freedom. This is
a system with a continuum of dynamical degrees of freedom.

We need to write an action for this continuous field system Ai(x, t), and
need some principles to guide the construction of this action.

When we have an action with many degrees of freedom, we sum over
all the particles. The action for the electromagnetic field

S EM field =

∫
dt

∫
d3xL(Ai(x, t)). (5.1)

The quantity

L(Ai(x, t)). (5.2)

is called the Lagrangian density, since the quantity∫
d3xL(Ai(x, t)). (5.3)

is actually the Lagrangian.
While this may seem non-relativistic, with both t and x in the integration

range, because we have both, it is actually relativistic. We are integrating
over all of spacetime, or the region where the EM fields are non-zero.

We write∫
d4x = c

∫
dt

∫
d3x, (5.4)

which is a Lorentz scalar.
We write our action as

S EM field =

∫
d4xL(Ai(x, t)). (5.5)

and demand that the Lagrangian density L must also be an invariant
(Lorentz) scalar in S O(1, 3).



140 action for the field.

Analogy : 3D rotations∫
d3xφ(x). (5.6)

Here φ is a 3-scalar, invariant under rotations.

Principles for the action

1. Relativity.

2. Gauge invariance. Whatever L we write, it must be gauge invariant,
implying that it be a function of Fi j only. Recall that we can adjust
Ai by a four-gradient of any scalar, but the quantities E and B were
gauge invariant, and so Fi j must also be.

If we do not impose gauge invariance, then the resulting dynamical
system will contain more than just E and B. i.e. It will not be
electromagnetism.

3. Superposition principle. The sum of two solutions is a solution. This
implies linearity of the equations for Ai.

4. Locality. Could write∫
d4xL1(A)

∫
d4yL2(A). (5.7)

This would allow for fields that have aspects that effect the result
from disjoint positions or times. This would probably result in non-
causal results as well as the possibility of non-local results.

Principle 1 means we must have

L(A(x, t)). (5.8)

and principle 2

L(Fi j(x, t)). (5.9)

and principle 1, means we must have a four scalar.
Without principle 3, we could have products of these, but we rule this

out due to violation of non-linearity.
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Example 5.1: Lagrangian for the Harmonic oscillator.

L =
1
2

mq̇2 −
1
2

mω2q2. (5.10)

This gives

q̈ ∼ q. (5.11)

However, if we have

L =
1
2

mq̇2 −
1
2

mω2q2 − λq3. (5.12)

we get

q̈ ∼ q + q3. (5.13)

In HW3, you will show that∫
dtdxE ·B. (5.14)

only depends on Ai at∞ (the boundary). Because this depends only on Ai

spatial or time infinities, it can not affect the variational principle.
This is very much like in classical mechanics where we can add any total

derivative to the Lagrangian. This does not change the Euler-Lagrange
equation evaluation in any way. The E ·B invariant has the same effect.

The invariants possible are E2 −B2, (E ·B)2, ..., but we are now done,
and know what is required. Our action must depend on F squared.

Written in full with the constants in the right places we have

S “particles in field”

=
∑

A

(
−mAc

∫
xA(τ)

ds −
eA

c

∫
dxi

AAi(xA(τ))
)
−

1
16πc

∫
d4xFi jFi j.

(5.15)

To get the equation of motion for Ai(x, t) we need to vary S int + S EM field.
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5.2 current density distribution.

Before we do the variation, we want to show that

S int = −
∑

A

eA

c

∫
xA(τ)

dxi
AAi(xA(τ)

= −
1
c2

∫
d4xAi(x) ji(x).

(5.16)

where

ji(x) =
∑

A

ceA

∫
x(τ)

dsui
A×

δ(x0 − x0
A(τ))δ(x1 − x1

A(τ))δ(x2 − x2
A(τ))δ(x3 − x3

A(τ)).
(5.17)

We substitute in the integral

∑
A

∫
d4xAi(x) ji(x)

= ceA

∑
A

∫
d4xAi(x)∫

x(τ)
dsui

Aδ(x0 − x0
A(τ))δ(x1 − x1

A(τ))δ(x2 − x2
A(τ))δ(x3 − x3

A(τ))

= ceA

∑
A

∫
d4x∫

x(τ)
dxi

AAi(x)δ(x0 − x0
A(τ))δ(x1 − x1

A(τ))δ(x2 − x2
A(τ))δ(x3 − x3

A(τ))

= ceA

∑
A∫

xA(τ)
dxi

AAi(xA(τ)).

(5.18)

From this we see that we have

S int = −
1
c2

∫
d4xAi(x) ji(x). (5.19)

Physical meaning of ji
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Minkowski diagram at angle arctan(v/c), with x0 axis up and x1 axis on
horizontal.

x0(λ) = cλ

x1(λ) = vλ

x2(λ) = 0

x3(λ) = 0.

(5.20)

Note that λ here is just a parameter. τ was used in the lecture, but that
makes it appear that we missing a factor of γ above (if one did the end
result would be the same since the delta evaluation would bring down a
factor of 1/γ to cancel it out).

ji(x) = ec
∫

dxi(λ)δ4(x − x(λ)). (5.21)

j0(x) = ec2
∫ ∞

−∞

dλδ(x0 − cλ)δ(x1 − vλ)δ(x2)δ(x3)

j1(x) = ecv
∫ ∞

−∞

dλδ(x0 − cλ)δ(x1 − vλ)δ(x2)δ(x3)

j2(x) = 0

j3(x) = 0.

(5.22)

To evaluate the j0 integral, we have only the contribution from λ = x0/c.
Recall that∫

dxδ(bx − a) f (x) =
1
|b|

f
(a
b

)
. (5.23)

This −cλ scaling of the delta function, kills a factor of c above, and leaves
us with

j0(x) = ecδ(x1 − vx0/c)δ(x2)δ(x3)

j1(x) = evδ(x1 − vx0/c)δ(x2)δ(x3)

j2(x) = 0

j3(x) = 0.

(5.24)

The current is non-zero only on the worldline of the particle. We identify

ρ(ct, x1, x2, x3) = eδ(x1 − vx0/c)δ(x2)δ(x3). (5.25)
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so that our current can be interpreted as the charge and current density

j0 = cρ(x)

jα(x) = (v)αρ(x).
(5.26)

Except for the delta functions these are just the quantities that we are
familiar with from the RHS of Maxwell’s equations.

Reading Covering chapter 4 material from the text [11], and lecture
notes RelEMpp103-113.pdf.

5.3 review. our action.

S = S particles + S interaction + S EM field

=
∑

A

∫
xi

A(τ)
ds(−mAc) −

∑
A

eA

c

∫
dxi

AAi(xA) −
1

16πc

∫
d4xFi jFi j.

(5.27)

Our dynamics variables are xi
A(τ) A = 1, · · · ,N

Ai(x) A = 1, · · · ,N
(5.28)

We saw that the interaction term could also be written in terms of a delta
function current, with

S interaction = −
1
c2

∫
d4x ji(x)Ai(x), (5.29)

and

ji(x) =
∑

A

ceA

∫
x(τ)

dxi
Aδ

4(x − xA(τ)). (5.30)

Variation with respect to xi
A(τ) gave us

mc
dui

A

ds
=

e
c

u j
AFi j. (5.31)

Note that it is easy to get the sign mixed up here. With our (+,−,−,−)
metric tensor, if the second index is the summation index, we have a
positive sign.

Only the S particles and S interaction depend on xi
A(τ).
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5.4 the field action variation.

Today: We will find the EOM for Ai(x). The dynamical degrees of
freedom are Ai(x, t)

S [Ai(x, t)] = −
1

16πc

∫
d4xFi jFi j −

1
c2

∫
d4xAi ji. (5.32)

Here ji are treated as “sources”.
We demand that

δS = S [Ai(x, t) + δAi(x, t)] − S [Ai(x, t)] = 0 + O(δA)2. (5.33)

We need to impose two conditions.

• At spatial∞, i.e. at |x| → ∞,∀t, we will impose the condition

Ai(x, t)
∣∣∣
|x|→∞ → 0. (5.34)

This is sensible, because fields are created by charges, and charges
are assumed to be localized in a bounded region. The field outside
charges will → 0 at |x| → ∞. Later we will treat the integration
range as finite, and bounded, then later allow the boundary to go to
infinity.

• at t = −T and t = T we will imagine that the values of Ai(x,±T ) are
fixed.

This is analogous to x(ti) = x1 and x(t f ) = x2 in particle mechanics.

Since Ai(x,±T ) is given, and equivalent to the initial and final field
configurations, our extremes at the boundary is zero

δAi(x,±T ) = 0. (5.35)

PICTURE: a cylinder in spacetime, with an attempt to depict the bound-
ary.

5.5 computing the variation.

δS [Ai(x, t)] = −
1

16πc

∫
d4xδ(Fi jFi j) −

1
c2

∫
d4xδ(Ai) ji. (5.36)
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Looking first at the variation of just the F2 bit we have

δ(Fi jFi j) = δ(Fi j)Fi j + Fi jδ(Fi j)

= 2δ(Fi j)Fi j

= 2δ(∂iA j − ∂ jAi)Fi j

= 2δ(∂iA j)Fi j − 2δ(∂ jAi)Fi j

= 2δ(∂iA j)Fi j − 2δ(∂iA j)F ji

= 4δ(∂iA j)Fi j

= 4Fi j∂
iδ(A j).

(5.37)

Our variation is now reduced to

δS [Ai(x, t)] = −
1

4πc

∫
d4xFi j∂

iδ(A j) −
1
c2

∫
d4x jiδ(Ai)

= −
1

4πc

∫
d4xFi j ∂

∂xi δ(A j) −
1
c2

∫
d4x jiδ(Ai).

(5.38)

We can integrate this first term by parts∫
d4xFi j ∂

∂xi δ(A j) =

∫
d4x

∂

∂xi

(
Fi jδ(A j)

)
−

∫
d4x

(
∂

∂xi Fi j
)
δ(A j).

(5.39)

The first term is a four dimensional divergence, with the contraction of the
four gradient ∂i with a four vector Bi = Fi jδ(A j).

Prof. Poppitz chose dx0d3x split of d4x to illustrate that this can be
viewed as regular old spatial three vector divergences. It is probably
more rigorous to mandate that the four volume element is oriented d4x =

(1/4! )εi jkldxidx jdxkdxl, and then utilize the 4D version of the divergence
theorem (or its Stokes Theorem equivalent). The completely antisymmetric
tensor should do most of the work required to express the oriented bound-
ary volume. Because we have specified that Ai is zero on the boundary, so
is Fi j, so these boundary terms are killed off. We are left with

δS [Ai(x, t)] = −
1

4πc

∫
d4xδ(A j)∂iFi j −

1
c2

∫
d4x jiδ(Ai)

=

∫
d4xδA j(x)

(
−

1
4πc

∂iFi j(x) −
1
c2 ji

)
= 0.

(5.40)

This gives us

∂iFi j =
4π
c

j j. (5.41)
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5.6 unpacking these.

Recall that the Bianchi identity

εi jkl∂ jFkl = 0, (5.42)

gave us

∇ ·B = 0

∇ ×E = −
1
c
∂B
∂t
.

(5.43)

How about the EOM that we have found by varying the action? One of
those equations is

∂αFα0 =
4π
c

j0 = 4πρ, (5.44)

since j0 = cρ.
Because

Fα0 = (E)α, (5.45)

we have

∇ ·E = 4πρ. (5.46)

The messier one to deal with is

∂iFiα =
4π
c

jα. (5.47)

Splitting out the spatial and time indices for the four gradient we have

∂iFiα = ∂βFβα + ∂0F0α

= ∂βFβα −
1
c
∂(E)α

∂t
.

(5.48)

The spatial index tensor element is

Fβα = ∂βAα − ∂αAβ

= −
∂Aα

∂xβ
+
∂Aβ

∂xα

= εαβγBγ,

(5.49)
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so the sum becomes

∂iFiα = ∂β(εαβγBγ) −
1
c
∂(E)α

∂t

= εβγα∂βBγ −
1
c
∂(E)α

∂t

= (∇ ×B)α −
1
c
∂(E)α

∂t
.

(5.50)

This gives us

4π
c

jα = (∇ ×B)α −
1
c
∂(E)α

∂t
, (5.51)

or in vector form

∇ ×B −
1
c
∂E
∂t

=
4π
c

j. (5.52)

Summarizing what we know so far, we have

∂iFi j =
4π
c

j j

εi jkl∂ jFkl = 0,
(5.53)

or in vector form

∇ ·E = 4πρ

∇ ×B −
1
c
∂E
∂t

=
4π
c

j

∇ ·B = 0

∇ ×E +
1
c
∂B
∂t

= 0.

(5.54)

5.7 speed of light.

Claim : “c” is the speed of EM waves in vacuum. Study equations in
vacuum (no sources, so ji = 0) for Ai = (φ,A).

∇ ·E = 0

∇ ×B =
1
c
∂E
∂t
.

(5.55)
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where

E = −∇φ −
1
c
∂A
∂t

B = ∇ ×A.
(5.56)

In terms of potentials

0 = ∇ × (∇ ×A)

= ∇ ×B

=
1
c
∂E
∂t

=
1
c
∂

∂t

(
−∇φ −

1
c
∂A
∂t

)
= −

1
c
∂

∂t
∇φ −

1
c2

∂2A
∂t2 .

(5.57)

Since we also have

∇ × (∇ ×A) = ∇(∇ ·A) −∇2A, (5.58)

some rearrangement gives

∇(∇ ·A) = ∇2A −
1
c
∂

∂t
∇φ −

1
c2

∂2A
∂t2 . (5.59)

The remaining equation ∇ ·E = 0, in terms of potentials is

∇ ·E = −∇2φ −
1
c
∂∇ ·A
∂t

. (5.60)

We can make a gauge transformation that completely eliminates eq. (5.60),
and reduces eq. (5.59) to a wave equation.

(φ,A)→ (φ′,A′). (5.61)

with

φ = φ′ −
1
c
∂χ

∂t
A = A′ +∇χ.

(5.62)

Can choose χ(x, t) to make φ′ = 0 (∀φ∃χ, φ′ = 0)

1
c
∂

∂t
χ(x, t) = φ(x, t). (5.63)

χ(x, t) = c
∫ t

−∞

dt′φ(x, t′). (5.64)

Can also find a transformation that also allows ∇ ·A = 0
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Q: What would that second transformation be explicitly?

A: To be revisited next lecture, when this is covered in full detail. This
is the Coulomb gauge

φ = 0

∇ ·A = 0.
(5.65)

From eq. (5.59), we then have

1
c2

∂2A′

∂t2 −∇
2A′ = 0. (5.66)

which is the wave equation for the propagation of the vector potential
A′(x, t) through space at velocity c, confirming that c is the speed of
electromagnetic propagation (the speed of light).

Reading Covering chapter 4 material from the text [11], and lecture
notes RelEMpp114-127.pdf.

5.8 trying to understand “c”.

∇ ·E = 0

∇ ×B =
1
c
∂E
∂t
.

(5.67)

Maxwell’s equations in a vacuum were

∇(∇ ·A) = ∇2A −
1
c
∂

∂t
∇φ −

1
c2

∂2A
∂t2

∇ ·E = −∇2φ −
1
c
∂∇ ·A
∂t

.

(5.68)

There is a redundancy here since we can change φ and A without changing
the EOM

(φ,A)→ (φ′,A′). (5.69)

with

φ = φ′ +
1
c
∂χ

∂t
A = A′ −∇χ.

(5.70)
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χ(x, t) = c
∫

dtφ(x, t). (5.71)

which gives

φ′ = 0. (5.72)

(φ,A) ∼ (φ = 0,A′). (5.73)

Maxwell’s equations are now

∇(∇ ·A′) = ∇2A′ −
1
c2

∂2A′

∂t2

∂∇ ·A′

∂t
= 0.

(5.74)

Can we make ∇ ·A′′ = 0, while φ′′ = 0.

φ

= 0

= φ′

= 0

+
1
c
∂χ′

∂t
. (5.75)

We need
∂χ′

∂t
= 0. (5.76)

How about A′

A′ = A′′ −∇χ′. (5.77)

We want the divergence of A′ to be zero, which means

∇ ·A′ = ∇ ·A′′

= 0

−∇2χ′, (5.78)

so we want

∇
2χ′ = ∇ ·A′. (5.79)

This has the solution

χ′(x) = −
1

4π

∫
d3x′
∇′ ·A′(x′)
|x − x′|

. (5.80)
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Green’s function for the Laplacian Recall that in electrostatics we have

∇ ·E = 4πρ. (5.81)

and

E = −∇φ. (5.82)

which meant that we had

∇
2φ = −4πρ. (5.83)

This has the identical form to the equation in χ′ that we wanted to solve
(with φ ∼ χ, and 4πρ ∼ ∇ ·A′).

Without resorting to electrostatics another way to look at this problem
is that it is just a Laplace equation, and we could utilize a Green’s function
solution if desired. This would generate the same result for χ′ above, and
also works for the electrostatics case.

Recall that the Green’s function for the Laplacian was

G(x, x′) = −
1

4π|x − x′|
. (5.84)

with the property

∇
2G(x, x′) = δ(x − x′). (5.85)

Our LDE to solve by Green’s method is

∇
2φ = 4πρ, (5.86)

We let this equation (after switching to primed coordinates) operate on the
Green’s function∫

d3x′∇′2φ(x′)G(x, x′) = −

∫
d3x′4πρ(x′)G(x, x′). (5.87)

Assuming that the left action of the Green’s function on the test function
φ(x′) is the same as the right action (i.e. φ(x′) and G(x, x′) commute), we
have for the LHS∫

d3x′∇′2φ(x′)G(x, x′) =

∫
d3x′∇′2G(x, x′)φ(x′)

=

∫
d3x′δ(x − x′)φ(x′)

= φ(x).

(5.88)
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Substitution of G(x, x′) = −1/4π|x − x′| on the RHS then gives us the
general solution

φ(x) =

∫
d3x′

ρ(x′)
|x − x′|

. (5.89)

Back to Maxwell’s equations in vacuum What are the Maxwell’s vacuum
equations now?

With the second gauge substitution we have

∇(∇ ·A′′) = ∇2A′′ −
1
c2

∂2A′′

∂t2

∂∇ ·A′′

∂t
= 0.

(5.90)

but we can utilize

∇ × (∇ ×A) = ∇(∇ ·A) −∇2A, (5.91)

to reduce Maxwell’s equations (after dropping primes) to just

1
c2

∂2A′′

∂t2 − ∆A = 0. (5.92)

where

∆ = ∇2 = ∇ ·∇ =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂y2 . (5.93)

Note that for this to be correct we have to also explicitly include the gauge
condition used. This particular gauge is called the Coulomb gauge.

φ = 0

∇ ·A′′ = 0.
(5.94)

5.9 claim: em waves propagate with speed c . and are transverse .

Note: Is the Coulomb gauge Lorentz invariant?

No. We can boost which will introduce a non-zero φ.
The gauge that is Lorentz Invariant is the “Lorentz gauge”. This one

uses

∂iAi = 0. (5.95)
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Recall that Maxwell’s equations are

∂iFi j = j j = 0. (5.96)

where

∂i =
∂

∂xi

∂i =
∂

∂xi
.

(5.97)

Writing out the equations in terms of potentials we have

0 = ∂i(∂iA j − ∂ jAi)

= ∂i∂
iA j − ∂i∂

jAi

= ∂i∂
iA j − ∂ j∂iAi,

(5.98)

so, if we pick the gauge condition ∂iAi = 0, we are left with just

0 = ∂i∂
iA j. (5.99)

Can we choose A′i such that ∂iAi = 0? Our gauge condition is

Ai = A′i + ∂iχ. (5.100)

Hit it with a derivative for

∂iAi = ∂iA′
i
+ ∂i∂

iχ. (5.101)

If we want ∂iAi = 0, then we have

−∂iA′
i
= ∂i∂

iχ =

(
1
c2

∂2

∂t2 − ∆
)
χ. (5.102)

This is the physicist proof. Yes, it can be solved. To really solve this, we
would want to use Green’s functions. I seem to recall the Green’s function
is a retarded time version of the Laplacian Green’s function, and we can
figure that exact form out by switching to a Fourier frequency domain
representation.

Anyways. Returning to Maxwell’s equations we have

0 = ∂i∂
iA j

0 = ∂iAi,
(5.103)
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where the first is Maxwell’s equation, and the second is our gauge condi-
tion.

Observe that the gauge condition is now a Lorentz scalar.

∂iAi → ∂ jO j
iOi

kAk. (5.104)

But the Lorentz transform matrices multiply out to identity, in the same
way that they do for the transformation of a plain old four vector dot
product xiyi.

5.10 what happens with a massive vector field?

S =

∫
d4x

(
1
4

Fi jFi j +
m2

2
AiAi

)
. (5.105)

An aside on units “Note that this action is expressed in dimensions
where h̄ = c = 1, making the action is unit-less (energy and time are
inverse units of each other). The d4x has units of m−4 (since [x] = h̄/mc),
so F has units of m2, and then A has units of mass. Therefore d4xAA has
units of m−2 and therefore you need something that has units of m2 to
make the action unit-less. When you do not take c = 1, then you have got
to worry about those factors, but I think you will see it works out fine.”

For what it is worth, I can adjust the units of this action to those that we
have used in class with,

S =

∫
d4x

(
−

1
16πc

Fi jFi j −
m2c2

8 h̄2 AiAi

)
. (5.106)

Back to the problem The variation of the field invariant is

δ(Fi jFi j) = 2(δFi j)Fi j)

= 2(δ(∂iA j − ∂ jAi))Fi j)

= 2(∂iδ(A j) − ∂ jδ(Ai))Fi j)

= 4Fi j∂iδ(A j)

= 4∂i(Fi jδ(A j)) − 4(∂iFi j)δ(A j).

(5.107)

Variation of the A2 term gives us

δ(A jA j) = 2A jδ(A j), (5.108)
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so we have

0 = δS

=

∫
d4xδ(A j)

(
−∂iFi j + m2A j

)
+

∫
d4x∂i(Fi jδ(A j)).

(5.109)

The last integral vanishes on the boundary with the assumption that δ(A j) =

0 on that boundary.
Since this must be true for all variations, this leaves us with

∂iFi j = m2A j. (5.110)

The RHS can be expanded into wave equation and divergence parts

∂iFi j = ∂i(∂iA j − ∂ jAi)

= (∂i∂
i)A j − ∂ j(∂iAi).

(5.111)

With � for the wave equation operator

� = ∂i∂
i =

1
c2

∂2

∂t2 − ∆, (5.112)

we can manipulate the EOM to pull out an Ai factor

0 =
(
� −m2

)
A j − ∂ j(∂iAi)

=
(
� −m2

)
gi jAi − ∂

j(∂iAi)

=
((
� −m2

)
gi j − ∂ j∂i

)
Ai.

(5.113)

If we hit this with a derivative we get

0 = ∂ j
((
� −m2

)
gi j − ∂ j∂i

)
Ai

=
((
� −m2

)
∂i − ∂ j∂

j∂i
)

Ai

=
((
� −m2

)
∂i −�∂i

)
Ai

=
(
� −m2 −�

)
∂iAi

= −m2∂iAi.

(5.114)

Since m is presumed to be non-zero here, this means that the Lorentz gauge
is already chosen for us by the equations of motion.

Reading Covering chapter 6 material from the text [11], and lecture
notes RelEMpp114-127.pdf.
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5.11 review of wave equation results obtained.

Maxwell’s equations in vacuum lead to Coulomb gauge and the Lorentz
gauge.

Coulomb gauge

A0 = 0

∇ ·A = 0(
1
c2

∂2

∂t2 − ∆
)

A = 0.

(5.115)

Lorentz gauge

∂iAi = 0(
1
c2

∂2

∂t2 − ∆
)

Ai = 0.
(5.116)

Note that ∂iAi = 0 is invariant under gauge transformations

Ai → Ai + ∂iχ. (5.117)

where

∂i∂
iχ = 0, (5.118)

So if one uses the Lorentz gauge, this has to be fixed.
However, in both cases we have(

1
c2

∂2

∂t2 − ∆
)

f = 0. (5.119)

where

1
c2

∂2

∂t2 − ∆. (5.120)

is the wave operator.
Consider

∆ =
∂2

∂x2 . (5.121)



158 action for the field.

where we are looking for a solution that is independent of y, z. Recall that
the general solution for this equation has the form

f (t, x) = F1

(
t −

x
c

)
+ F2

(
t +

x
c

)
. (5.122)

PICTURE: superposition of two waves with F1 moving along the x-axis
in the positive direction, and F2 in the negative x direction.

It is notable that the text derives eq. (5.122) in a particularly slick way.
It is still black magic, since one has to know the solution to find it, but very
very cool.

5.12 review of fourier methods.

It is often convenient to impose periodic boundary conditions

A(x + eiL) = A(x), i = 1, 2, 3. (5.123)

In one dimension

f (x + L) = f (x). (5.124)

f (x) =

∞∑
n=−∞

ei 2πn
L x f̃n. (5.125)

When f (x) is real we also have

f ∗(x) =

∞∑
n=−∞

e−i 2πn
L x( f̃n)∗. (5.126)

which implies

f̃ ∗n = f̃−n. (5.127)

We introduce a wave number

kn =
2πn
L
, (5.128)

allowing a slightly simpler expression of the Fourier decomposition

f (x) =

∞∑
n=−∞

eikn x f̃kn . (5.129)

The inverse transform is obtained by integration over some length L interval

f̃kn =
1
L

∫ L/2

−L/2
dxe−ikn x f (x). (5.130)
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Verify: We should be able to recover the Fourier coefficient by utilizing
the above

1
L

∫ L/2

−L/2
dxe−ikn x

∞∑
m=−∞

eikm x f̃km

=

∞∑
m=−∞

f̃kmδmn = f̃kn ,

(5.131)

where we use the easily verifiable fact that

1
L

∫ L/2

−L/2
dxei(km−kn)x =

0 if m , n

1 if m = n
. (5.132)

It is conventional to absorb f̃kn = f̃ (kn) for

f (x) =
1
L

∑
n

f̃ (kn)eikn x

f̃ (kn) =

∫ L/2

−L/2
dx f (x)e−ikn x.

(5.133)

To take L→ ∞ notice

kn =
2π
L

n. (5.134)

when n changes by ∆n = 1, kn changes by ∆kn = 2π
L ∆n

Using this

f (x) =
1

2π

∑
n

(
2π
L

∆n
)

f̃ (kn)eikn x. (5.135)

With L→ ∞, and ∆kn → 0

f (x) =

∫ ∞

−∞

dk
2π

f̃ (k)eikx

f̃ (k) =

∫ ∞

−∞

dx f (x)e−ikx.

(5.136)

Verify: A loose verification of the inversion relationship (the most im-
portant bit) is possible by substitution∫

dk
2π

eikx f̃ (k) =

"
dk
2π

eikxdx′ f (x′)e−ikx′

=

∫
dx′ f (x′)

1
2π

∫
dkeik(x−x′).

(5.137)
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Now we employ the old physics ploy where we identify

1
2π

∫
dkeik(x−x′) = δ(x − x′). (5.138)

With that we see that we recover the function f (x) above as desired.

In three dimensions

A(x, t) =

∫
d3k

(2π)3 Ã(k, t)eik·x

Ã(x, t) =

∫
d3xA(x, t)e−ik·x.

(5.139)

Application to the wave equation

0 =

(
1
c2

∂2

∂t2 − ∆
)

A(x, t)

=

(
1
c2

∂2

∂t2 − ∆
) ∫

d3k
(2π)3 Ã(k, t)eik·x

=

∫
d3k

(2π)3

(
1
c2 ∂ttÃ(k, t) + k2A(k, t)

)
eik·x.

(5.140)

Now operate with
∫

d3xe−ip·x

0 =

∫
d3xe−ip·x

∫
d3k

(2π)3

(
1
c2 ∂ttÃ(k, t) + k2A(k, t)

)
eik·x

=

∫
d3kδ3(p − k)

(
1
c2 ∂ttÃ(k, t) + k2A(k, t)

)
.

(5.141)

Since this is true for all p we have

∂ttÃ(p, t) = −c2p2Ã(p, t). (5.142)

For every value of momentum we have a harmonic oscillator!

ẍ = −ω2x. (5.143)

Fourier modes of EM potential in vacuum obey

∂ttÃ(k, t) = −c2k2Ã(k, t). (5.144)

Because we are operating in the Coulomb gauge we must also have zero
divergence. Let us see how that translates to our Fourier representation
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implies

0 = ∇ ·A(x, t)

=

∫
d3k

(2π)3∇ ·
(
eik·x · Ã(k, t)

)
.

(5.145)

The chain rule for the divergence in this case takes the form

∇ · (φB) = (∇φ) ·B + φ∇ ·B. (5.146)

Since our vector function Ã is not a function of spatial coordinates we
have

0 =

∫
d3k

(2π)3 eik·x(ik · Ã(k, t)). (5.147)

This has two immediate consequences. The first is that our momentum
space potential is perpendicular to the wave number vector at all points in
momentum space, and the second gives us a conjugate relation (substitute
k→ −k′ after taking conjugates for that one)

k · Ã(k, t) = 0

Ã(−k, t) = Ã∗(k, t).
(5.148)

A(x, t) =

∫
d3k

(2π)3 eik·x
(
1
2

Ã(k, t) +
1
2

Ã∗(−k, t)
)
. (5.149)

Since out system is essentially a harmonic oscillator at each point in
momentum space

∂ttÃ(k, t) = −ω2
kÃ(k, t)

ω2
k = c2k2.

(5.150)

our general solution is of the form

Ã(k, t) = eiωkta+(k) + e−iωkta−(k)

Ã∗(k, t) = e−iωkta∗+(k) + eiωkta∗−(k).
(5.151)

A(x, t) =

∫
d3k

(2π)3 eik·x 1
2

(
eiωkt(a+(k) + a∗−(−k)) + e−iωkt(a−(k) + a∗+(−k))

)
.

(5.152)
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Define

β(k) ≡
1
2

(a−(k) + a∗+(−k)). (5.153)

so that

β(−k) =
1
2

(a∗+(k) + a−(−k)). (5.154)

Our solution now takes the form

A(x, t) =

∫
d3k

(2π)3

(
ei(k·x+ωkt)β∗(−k) + ei(k·x−ωkt)β(k)

)
. (5.155)

Claim: This is now manifestly real. To see this, consider the first term
with k = −k′, noting that

∫ ∞
−∞

dk =
∫ ∞
∞
−dk′ =

∫ ∞
−∞

dk′ with dk = −dk′∫
d3k′

(2π)3 ei(−k′·x+ωkt)β∗(k′). (5.156)

Dropping primes this is the conjugate of the second term.

Claim: We have k · β(k) = 0.
Since we have k · Ã(k, t) = 0, eq. (5.151) implies that we have k ·

a±(k) = 0. With each of these vector integration constants being per-
pendicular to k at that point in momentum space, so must be the linear
combination of these constants β(k).

Reading Covering chapter 6 material from the text [11], and lecture
notes RelEMpp114-127.pdf.

5.13 review. solution to the wave equation.

Recall that in the Coulomb gauge

A0 = 0

∇ ·A = 0.
(5.157)

our equation to solve is(
1
c2

∂2

∂t2 − ∆
)

A = 0. (5.158)
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We found that the general solution was

A(x, t) =

∫
d3k

(2π)3

(
ei(k·x+ωkt)β∗(−k) + ei(k·x−ωkt)β(k)

)
. (5.159)

where

k · β(k) = 0. (5.160)

It is clear that this is a solution since(
1
c2

∂2

∂t2 − ∆
)

ei(k·x±ωkt) = 0. (5.161)

5.14 moving to physically relevant results.

Since the most general solution is a sum over k, it is enough to consider
only a single k, or equivalently, take

β(k) = β(2π)3δ3(k − p)

β∗(−k) = β∗(2π)3δ3(−k − p).
(5.162)

but we have the freedom to pick a real and constant β. Now our solution is

A(x, t) = β
(
e−i(p·x+ωkt) + ei(p·x−ωkt)

)
= β cos(ωt − p · x). (5.163)

where

β · p = 0. (5.164)

Note that the more general case, utilizing complex β, leads to eliptically
polarized fields. This is handled very elegantly (and compactly) in §48 of
the text.

Let us choose

p = (p, 0, 0). (5.165)

Since

p · β = pxβx, (5.166)

we must have

βx = 0, (5.167)

so

β = (0, βy, βz). (5.168)
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Claim: The Coulomb gauge 0 = ∇ ·A = (β · p) sin(ωt − p · x) implies
that there are two linearly independent choices of β and p. FIXME: missing
exactly how this is?

PICTURE:
β1, β2, p all mutually perpendicular.

E = −
∂A
∂ct

= −
β

c
∂

∂t
cos(ωt − p · x)

=
1
c
βω sin(ωt − p · x).

(5.169)

Recall: ω(p) = c|p|, so

E = β|p| sin(ωt − p · x). (5.170)

B = ∇ ×A
= ∇ × (β cos(ωt − p · x)

= (∇ cos(ωt − p · x)) × β

= sin(ωt − p · x)p × β.

(5.171)

B = (p × β) sin(ωt − p · x). (5.172)

Observe also that E and B are not independent. We have

p̂ ×E = (p̂ × β)|p| sin(ωt − p · x) = B. (5.173)

Example: p ‖ e1, B ‖ e2 or e3 (since we have two linearly independent
choices)

Example: take β ‖ e2

E = βp sin(cpt − px)

B = (p × β) sin(cpt − px).
(5.174)

At t = 0

E = −βp sin(px)

Bz = −|β|e3cp sin(px).
(5.175)
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PICTURE: two oscillating mutually perpendicular sinusoids.
So physically, we see that p is the direction of propagation. We have

always

p ⊥ E. (5.176)

and we have two possible polarizations.
Convention is usually to take the direction of oscillation of E the polar-

ization of the wave.
This is the starting point for the field of optics, because the polarization

of the incident wave, is strongly tied to how much of the wave will reflect
off of a surface with a given index of refraction n.

5.15 em waves carrying energy and momentum.

Maxwell field in vacuum is the sum of plane monochromatic waves, two
per wave vector.

PICTURE:

E ‖ e3

B ‖ e1

k ‖ e2.

(5.177)

PICTURE:

B ‖ −e3

E ‖ e1

k ‖ e2,

(5.178)

two linearly independent polarizations.
Our wave frequency is

ωk = c|k|. (5.179)

The wavelength, the value such that x→ x + 2π
k

FIXME:DIY: see:

sin(kct − kx). (5.180)

λk =
2π
k
. (5.181)

period

T =
2π
kc

=
λk

c
. (5.182)
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5.16 energy and momentum of em waves.

Classical mechanics motivation To motivate our approach, let us recall
one route from our equations of motion in classical mechanics, to the
energy conservation relation. Our EOM in one dimension is

m
d
dt

ẋ = −U′(x). (5.183)

We can multiply both sides by what we take the time derivative of

mẋ
dẋ
dt

= −ẋU′(x), (5.184)

and then manipulate it a bit so that we have time derivatives on both sides

d
dt

mẋ2

2
= −

dU(x)
dt

. (5.185)

Taking differences, we have

d
dt

(
mẋ2

2
+U(x)

)
= 0, (5.186)

which allows us to find a conservation relationship that we label energy
conservation (E = K +U).

Doing the same thing for Maxwell’s equations Poppitz claims we have
very little tricks in physics, and we really just do the same thing for our
EM case. Our equations are a bit messier to start with, and for the vacuum,
our non-divergence equations are

∇ ×B −
1
c
∂E
∂t

=
4π
c

j

∇ ×E +
1
c
∂B
∂t

= 0.
(5.187)

We can dot these with E and B respectively, repeating the trick of “multi-
plying” by what we take the time derivative of

E · (∇ ×B) −
1
c

E ·
∂E
∂t

=
4π
c

E · j

B · (∇ ×E) +
1
c

B ·
∂B
∂t

= 0,
(5.188)

and then take differences

1
c

(
B ·

∂B
∂t

+ E ·
∂E
∂t

)
+ B · (∇×E)−E · (∇×B) = −

4π
c

E · j. (5.189)
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Claim:

−B · (∇ ×E) + E · (∇ ×B) = ∇ · (B ×E). (5.190)

This is almost trivial with an expansion of the RHS in tensor notation

∇ · (B ×E) = ∂αeαβσBβEσ

= eαβσ(∂αBβ)Eσ + eαβσBβ(∂αEσ)

= E · (∇ ×B) −B · (∇ ×E). �.

(5.191)

Regrouping we have

1
2c

∂

∂t

(
B2 + E2

)
+∇ · (E ×B) = −

4π
c

E · j. (5.192)

A final rescaling makes the units natural

∂

∂t
E2 + B2

8π
+∇ ·

( c
4π

E ×B
)

= −E · j. (5.193)

We define the cross product term as the Poynting vector

S =
c

4π
E ×B. (5.194)

Suppose we integrate over a spatial volume. This gives us

∂

∂t

∫
V

d3x
E2 + B2

8π
+

∫
V

d3x∇ · S = −

∫
V

d3xE · j. (5.195)

Our Poynting integral can be converted to a surface integral utilizing Stokes
theorem∫

V
d3x∇ · S =

∫
∂V

d2σn · S =

∫
∂V

d2σ · S. (5.196)

We make the interpretations∫
V

d3x
E2 + B2

8π
= energy∫

V
d3x∇ · S = momentum change through surface per unit time

−

∫
V

d3xE · j = work done.

(5.197)
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Justifying the sign, and clarifying work done by what, above. Recall that
the energy term of the Lorentz force equation was

dEkinetic

dt
= eE · v, (5.198)

and

j = eρv, (5.199)

so ∫
V

d3xE · j. (5.200)

represents the rate of change of kinetic energy of the charged particles as
they move through through a field. If this is positive, then the charge distri-
bution has gained energy. The negation of this quantity would represent
energy transfer to the field from the charge distribution, the work done on
the field by the charge distribution.

Aside: As a four vector relationship In tutorial today (after this lecture,
but before typing up these lecture notes in full), we usedU for the energy
density term above

U =
E2 + B2

8π
. (5.201)

This allows us to group the quantities in our conservation relationship
above nicely

∂U

∂t
+∇ · S = −E · j. (5.202)

It appears natural to write eq. (5.202) in the form of a four divergence.
Suppose we define

Pi = (U/c,S/c2). (5.203)

then we have

∂iPi = −E · j/c2. (5.204)

Since the LHS has the appearance of a four scalar, this seems to imply that
E · j is a Lorentz invariant. It is curious that we have only the four scalar
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that comes from the energy term of the Lorentz force on the RHS of the
conservation relationship. Peeking ahead at the text, this appears to be why
a rank two energy tensor T i j is introduced. For a relativistically natural
quantity, we ought to have a conservation relationship also associated with
each of the momentum change components of the four vector Lorentz
force equation too.

Reading Covering chapter 6 material §31, and starting chapter 8 material
from the text [11], and lecture notes RelEMpp128-135.pdf.

5.17 review. energy density and poynting vector.

Last time we showed that Maxwell’s equations imply

∂

∂t
E2 + B2

8π
= −jcĖ −∇ · S. (5.205)

In the lecture, Professor Poppitz said he was free here to use a full time
derivative. When asked why, it was because he was considering E and B
here to be functions of time only, since they were measured at a fixed point
in space. This is really the same thing as using a time partial, so in these
notes I will just be explicit and stick to using partials.

S =
c

4π
E ×B. (5.206)

∂

∂t

∫
V

E2 + B2

8π
= −

∫
V

j ·E −
∫
∂V

d2σ · S. (5.207)

Any change in the energy must either due to currents, or energy escaping
through the surface.

E =
E2 + B2

8π
= Energy density of the EM field

S =
c

4π
E ×B = Energy flux of the EM fields.

(5.208)

The energy flux of the EM field: this is the energy flowing through d2A in
unit time (S · d2A).
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5.18 how about electromagnetic waves?

In a plane wave moving in direction k. PICTURE: E ‖ ẑ, B ‖ x̂, k ‖ ŷ.
So, S ‖ k since E × B ∼ k. |S| for a plane wave is the amount of energy
through unit area perpendicular to k in unit time.

Recall that we calculated

B = (k × β) sin(ωt − k · x)

E = β|k| sin(ωt − k · x).
(5.209)

Since we had k · β = 0, we have |E| = |B|, and our Poynting vector follows
nicely

S =
k
|k|

c
4π

E2

=
k
|k|

c
E2 + B2

8π

=
k
|k|

eE.

(5.210)

[S] =
energy

time × area
=

momentum × speed
time × area

. (5.211)

[
S
c2

]
=

momentum
time × area × speed

=
momentum

area × distance

=
momentum

volume
.

(5.212)

So we wee that S/c2 is indeed rightly called “the momentum density” of
the EM field.

We will later find that E and S are components of a rank-2 four tensor

T i j =


E S 1

c2
S 2

c2
S 3

c2

S 1

c2

S 1

c2

[
σαβ

]
S 1

c2


. (5.213)

where σαβ is the stress tensor. We will get to all this in more detail later.
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For EM wave we have

S = k̂cE. (5.214)

(this is the energy flux)

S
c2 = k̂

E

c
. (5.215)

(the momentum density of the wave).

c
∣∣∣∣∣ S
c2

∣∣∣∣∣ = E. (5.216)

(recall E = cp for massless particles.
EM waves carry energy and momentum so when absorbed or reflected

these are transferred to bodies.
Kepler speculated that this was the fact because he had observed that

the tails of the comets were being pushed by the sunlight, since the tails
faced away from the sun.

Maxwell also suggested that light would extort a force (presumably he
wrote down the “Maxwell stress tensor” T i j that is named after him).

This was actually measured later in 1901, by Peter Lebedev (Russia).
PICTURE: pole with flags in vacuum jar. Black (absorber) on one side,

and Silver (reflector) on the other. Between the two of these, momentum
conservation will introduce rotation (in the direction of the silver).

This is actually a tricky experiment and requires the vacuum, since the
black surface warms up, and heats up the nearby gas molecules, which
causes a rotation in the opposite direction due to just these thermal effects.

Another example (a factor) that prevents star collapse under gravitation
is the radiation pressure of the light.

5.19 problems

Exercise 5.1 Energy, momentum, etc., of EM waves.

a. Energy and momentum density Calculate the energy density, en-
ergy flux, and momentum density of a plane monochromatic lin-
early polarized electromagnetic wave.

b. Calculate the values of these quantities averaged over a period.
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c. Imagine that a plane monochromatic linearly polarized wave in-
cident on a surface (let the angle between the wave vector and
the normal to the surface be θ) is completely reflected. Find the
pressure that the EM wave exerts on the surface.

d. To plug in some numbers, note that the intensity of sunlight hitting
the Earth is about 1300W/m2 ( the intensity is the average power
per unit area transported by the wave). If sunlight strikes a perfect
absorber, what is the pressure exerted? What if it strikes a perfect
reflector? What fraction of the atmospheric pressure does this
amount to?

Answer for Exercise 5.1

Part a. Because it does not add too much complexity, I am going to
calculate these using the more general elliptically polarized wave solutions.
Our vector potential (in the Coulomb gauge φ = 0, ∇ ·A = 0) has the form

A = Reβei(ωt−k·x). (5.217)

The elliptical polarization case only differs from the linear by allowing β
to be complex, rather than purely real or purely imaginary. Observe that
the Coulomb gauge condition ∇ ·A implies

β · k = 0, (5.218)

a fact that will kill of terms in a number of places in the following manipu-
lations.

Also observe that for this to be a solution to the wave equation operator

1
c2

∂2

∂t2 − ∆, (5.219)

the frequency and wave vector must be related by the condition
ω

c
= |k| = k. (5.220)

For the time and spatial phase let us write

θ = ωt − k · x. (5.221)

In the Coulomb gauge, our electric and magnetic fields are

E = −
1
c
∂A
∂t

= Re
−iω

c
βeiθ

B = ∇ ×A = Re iβ × keiθ.

(5.222)
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Similar to §48 of the text [11], let us split β into a phase and perpendicular
vector components so that

β = be−iα. (5.223)

where b has a real square

b2 = |β|2. (5.224)

This allows a split into two perpendicular real vectors

b = b1 + ib2, (5.225)

where b1 · b2 = 0 since b2 = b2
1 − b2

2 + 2b1 · b2 is real.
Our electric and magnetic fields are now reduced to

E = Re
(
−iω

c
bei(θ−α)

)
B = Re

(
ib × kei(θ−α)

)
,

(5.226)

or explicitly in terms of b1 and b2

E =
ω

c
(b1 sin(θ − α) + b2 cos(θ − α))

B = (k × b1) sin(θ − α) + (k × b2) cos(θ − α).
(5.227)

The special case of interest for this problem, since it only strictly asked
for linear polarization, is where α = 0 and one of b1 or b2 is zero (i.e. β is
strictly real or strictly imaginary). The case with β strictly real, as done in
class, is

E =
ω

c
b1 sin(θ − α)

B = (k × b1) sin(θ − α).
(5.228)

Now lets calculate the energy density and Poynting vectors. We will need
a few intermediate results.

(Re deiφ)2 =
1
4

(deiφ + d∗e−iφ)2

=
1
4

(d2e2iφ + (d∗)2e−2iφ + 2|d|2)

=
1
2

(
|d|2 + Re(deiφ)2

)
,

(5.229)
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and

(Re deiφ) × (Re eeiφ) =
1
4

(deiφ + d∗e−iφ) × (eeiφ + e∗e−iφ)

=
1
2

Re
(
d × e∗ + (d × e)e2iφ

)
.

(5.230)

Let us use arrowed vectors for the phasor parts

~E =
−iω

c
bei(θ−α)

~B = ib × kei(θ−α),

(5.231)

where we can recover our vector quantities by taking real parts E = Re ~E,
B = Re ~B. Our energy density in terms of these phasors is then

E =
1

8π
(E2 + B2) =

1
16π

(∣∣∣∣~E∣∣∣∣2 +
∣∣∣∣~B∣∣∣∣2 + Re(~E2 + ~B2)

)
. (5.232)

This is

E =
1

16π

(
ω2

c2 |b|
2 + |b × k|2 −Re

(
ω2

c2 b2 + (b × k)2
)

e2i(θ−α)
)
. (5.233)

Note that ω2/c2 = k2, and |b × k| = |b|2k2 (since b · k = 0). Also (b ×
k)2 = b2k2, so we have

E =
k2

8π

(
|b|2 −Re b2e2i(θ−α)

)
. (5.234)

Now, for the Poynting vector. We have

S =
c

4π
E ×B =

c
8π

Re
(
~E × ~B∗ + ~E × ~B

)
. (5.235)

This is

S =
c

8π
Re

(
−kb × (b∗ × k) + kb × (b × k)e2i(θ−α)

)
. (5.236)

Reducing the terms we get b × (b∗ × k) = −k|b|2, and b × (b × k) = −kb2,
leaving

S =
ck̂k2

8π

(
|b|2 −Re b2e2i(θ−α)

)
= ck̂E. (5.237)

Now, the text in §47 defines the energy flux as the Poynting vector, and
the momentum density as S/c2, so we just divide eq. (5.237) by c2 for the
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momentum density and we are done. For the linearly polarized case (all
that was actually asked for, but less cool to calculate), where b is real, we
have

Energy density = E =
k2b2

8π
(1 − cos(2(ωt − k · x)))

Energy flux = S = ck̂E

Momentum density =
1
c2 S =

k̂
c
E.

(5.238)

Part b. We want to average over one period, the time T such that ωT =

2π, so the average is

〈 f 〉 =
ω

2π

∫ 2π/ω

0
f dt. (5.239)

It is clear that this will just kill off the sinusoidal terms, leaving

Average Energy density = 〈E〉 =
k2|b|2

8π
Average Energy flux = 〈S〉 = ck̂E

Average Momentum density =
1
c2 〈S〉 =

k̂
c
E.

(5.240)

Part c. The magnitude of the momentum of light is related to its energy
by

p =
E

c
. (5.241)

and can thus loosely identify the magnitude of the force as

dp
dt

=
1
c
∂

∂t

∫
E2 + B2

8π
d3x

=

∫
d2σ ·

S
c
.

(5.242)

With pressure as the force per area, we could identify

S
c
. (5.243)

as the instantaneous (directed) pressure on a surface. What is that for
linearly polarized light? We have from above for the linear polarized case
(where |b|2 = b2)

S =
ck̂k2b2

8π
(1 − cos(2(ωt − k · x))). (5.244)
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If we look at the magnitude of the average pressure from the radiation, we
have ∣∣∣∣∣ 〈S〉c

∣∣∣∣∣ =
k2b2

8π
. (5.245)

Part d. With atmospheric pressure at 101.3kPa, and the pressure from
the light at 1300W/3x108m/s, we have roughly 4x10−5Pa of pressure
from the sunlight being only ∼ 10−10 of the total atmospheric pressure.
Wow. Very tiny!

Would it make any difference if the surface is a perfect absorber or a
reflector? Consider a ball hitting a wall. If it manages to embed itself in the
wall, the wall will have to move a bit to conserve momentum. However, if
the ball bounces off twice the momentum has been transferred to the wall.
The numbers above would be for perfect absorbtion, so double them for a
perfect reflector.

Exercise 5.2 Spherical EM waves.

Suppose you are given:

~E(r, θ, φ, t)

= A
sin θ

r

(
cos(kr −ωt) −

1
kr

sin(kr −ωt)
)
φ̂.

(5.246)

where ω = k/c and φ̂ is the unit vector in the φ-direction. This is a simple
example of a spherical wave.

a. Show that ~E obeys all four Maxwell equations in vacuum and find
the associated magnetic field.

b. Calculate the Poynting vector. Average ~S over a full cycle to get
the intensity vector ~I ≡

〈
~S
〉
. Where does it point to? How does it

depend on r?

c. Integrate the intensity vector flux through a spherical surface cen-
tered at the origin to find the total power radiated.

Answer for Exercise 5.2

Part a.
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Maxwell equation verification and magnetic field Our vacuum Maxwell
equations to verify are

∇ · ~E = 0

∇× ~B−
1
c
∂~E
∂t

= 0

∇ · ~B = 0

∇× ~E +
1
c
∂~B
∂t

= 0.

(5.247)

We will also need the spherical polar forms of the divergence and curl
operators, as found in §1.4 of [4]

∇ ·~v =
1
r2 ∂r(r2vr) +

1
r sin θ

∂θ(sin θvθ) +
1

r sin θ
∂φvφ

∇×~v =
1

r sin θ
(∂θ(sin θvφ) − ∂φvθ) r̂

+
1
r

(
1

sin θ
∂φvr − ∂r(rvφ)

)
θ̂

+
1
r
(∂r(rvθ) − ∂θvr) φ̂.

(5.248)

We can start by verifying the divergence equation for the electric field.
Observe that our electric field has only an Eφ component, so our divergence
is

∇ · ~E =
1

r sin θ
∂φ

(
A

sin θ
r

(
cos(kr −ωt) −

1
kr

sin(kr −ωt)
))

= 0. (5.249)

We have a zero divergence since the component Eφ has no φ dependence
(whereas ~E itself does since the unit vector φ̂ = φ̂(φ)).

All of the rest of Maxwell’s equations require ~B so we will have to first
calculate that before progressing further.

A aside on approaches attempted to find ~B I tried two approaches with-
out success to calculate ~B. First I hoped that I could just integrate −~E
to obtain ~A and then take the curl. Doing so gave me a result that had
∇× ~B , 0. I hunted for an algebraic error that would account for this, but
could not find one.
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The second approach that I tried, also without success, was to simply
take the cross product r̂ × ~E. This worked in the monochromatic plane
wave case where we had

~B = (~k × ~β) sin(ωt −~k · ~x)

~E = ~β
∣∣∣∣~k∣∣∣∣ sin(ωt −~k · ~x).

(5.250)

since one can easily show that ~B = ~k × ~E. Again, I ended up with a result
for ~B that did not have a zero divergence.

Finding ~B with a more systematic approach Following [6] §16.2, let us
try a phasor approach, assuming that all the solutions, whatever they are,
have all the time dependence in a e−iωt term.

Let us write our fields as

~E = Re(Ee−iωt)

~B = Re(Be−iωt).
(5.251)

Substitution back into Maxwell’s equations thus requires equality in the
real parts of

∇ ·E = 0

∇ ·B = 0

∇×B = −i
ω

c
E

∇×E = i
ω

c
B.

(5.252)

With k = ω/c we can now directly compute the magnetic field phasor

B = −
i
k
∇×E. (5.253)

The electric field of this problem can be put into phasor form by noting

~E = A
sin θ

r
Re

(
ei(kr−ωt) −

i
kr

ei(kr−ωt)
)
φ̂, (5.254)

which allows for reading off the phasor part directly

E = A
sin θ

r

(
1 −

i
kr

)
eikrφ̂. (5.255)
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Now we can compute the magnetic field phasor B. Since we have only a φ
component in our field, the curl will have just r̂ and θ̂ components. This is
reasonable since we expect it to be perpendicular to E.

∇× (vφφ̂) =
1

r sin θ
∂θ(sin θvφ)r̂ −

1
r
∂r(rvφ)θ̂. (5.256)

Chugging through all the algebra we have

ikB = ∇×E

=
2A cos θ

r2

(
1 −

i
kr

)
eikrr̂ −

A sin θ
r

∂

∂r

((
1 −

i
kr

)
eikr

)
θ̂

=
2A cos θ

r2

(
1 −

i
kr

)
eikrr̂ −

A sin θ
r

(
ik +

1
r

+
i

kr2

)
eikrθ̂,

(5.257)

so our magnetic phasor is

B =
2A cos θ

kr2

(
−i −

1
kr

)
eikrr̂−

A sin θ
r

(
1 −

i
kr

+
1

k2r2

)
eikrθ̂. (5.258)

Multiplying by e−iωt and taking real parts gives us the messy magnetic
field expression

~B =
A
r

2 cos θ
kr

(
sin(kr −ωt) −

1
kr

cos(kr −ωt)
)

r̂

−
A
r

sin θ
kr

(
sin(kr −ωt) +

k2r2 + 1
kr

cos(kr −ωt)
)
θ̂.

(5.259)

Since this was constructed directly from ∇ × ~E + 1
c∂
~B/∂t = 0, this im-

plicitly verifies one more of Maxwell’s equations, leaving only ∇ · ~B, and
∇× ~B− 1

c∂
~E/∂t = 0. Neither of these looks particularly fun to verify, how-

ever, we can take a small shortcut and use the phasors to verify without
the explicit time dependence.

From eq. (5.258) we have for the divergence

∇ ·B =
2A cos θ

kr2

∂

∂r

((
−i −

1
kr

)
eikr

)
−

A2 cos θ
r2

(
1 −

i
kr

+
1

k2r2

)
eikr

=
2A cos θ

r2 eikr
(
1
k

(
1

kr2 + ik
(
−i −

1
kr

))
−

(
1 −

i
kr

+
1

k2r2

))
= 0. �.

(5.260)
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Let us also verify the last of Maxwell’s equations in phasor form. The time
dependence is knocked out, and we want to see that taking the curl of the
magnetic phasor returns us (scaled) the electric phasor. That is

∇×B = −i
ω

c
E. (5.261)

With only r and θ components in the magnetic phasor we have

∇× (vrr̂ + vθθ̂) = −
1

r sin θ
∂φvθr̂ +

1
r

1
sin θ

∂φvrθ̂+
1
r
(∂r(rvθ) − ∂θvr) φ̂.

(5.262)

Immediately, we see that with no explicit φ dependence in the coordinates,
we have no r̂ nor θ̂ terms in the curl, which is good. Our curl is now just

∇×B =
1
r

(
A sin θ∂r

(
1 −

i
kr

+
1

k2r2

)
eikr +

2A sin θ
kr2

(
−i −

1
kr

)
eikr

)
φ̂

= A sin θ
1
r

(
∂r

(
1 −

i
kr

+
1

k2r2

)
eikr +

2
kr2

(
−i −

1
kr

)
eikr

)
φ̂

= A sin θeikr 1
r(

(ik)
(
1 −

i
kr

+
1

k2r2

)
+

(
i

kr2 −
2

k2r3

)
+

2
kr2

(
−i −

1
kr

))
φ̂

= A sin θeikr 1
r

(
ik +

1
r
−

4
k2r3

)
φ̂.

(5.263)

What we expect is ∇×B = −ikE which is

−ikE = A sin θeikr 1
r

(
−ik −

1
r

)
φ̂. (5.264)

FIXME: Somewhere I must have made a sign error, because these are not
matching! Have an extra 1/r3 term and the wrong sign on the 1/r term.

Part b. Our Poynting vector is

~S =
c

4π
~E × ~B, (5.265)

which we could calculate from eq. (5.246), and eq. (5.259). However, that
looks like it is going to be a mess to multiply out. Let us use instead
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the trick from §48 of the course text [11], and work with the complex
quantities directly, noting that we have

(Re Eeiα) × (Re Beiα) =
1
4

(Eeiα + E∗e−iα) × (Beiα + B∗e−iα)

=
1
2

Re
(
E ×B∗ + (E ×B)e2iα

)
.

(5.266)

Now we can do the Poynting calculation using the simpler relations
eq. (5.255), eq. (5.258).

Let us also write

E = AeikrEφφ̂

B = Aeikr(Brr̂ + Bθθ̂),
(5.267)

where

Eφ =
sin θ

r

(
1 −

i
kr

)
Br = −

2 cos θ
kr2

(
i +

1
kr

)
Bθ = −

sin θ
r

(
1 −

i
kr

+
1

k2r2

)
.

(5.268)

So our Poynting vector is

~S =
A2c
2π

Re
(
Eφφ̂ × (B∗r r̂ + B∗θθ̂) + Eφφ̂ × (Brr̂ + Bθθ̂)e2i(kr−ωt)

)
.

(5.269)

Note that our unit vector basis {r̂, θ̂, φ̂} was rotated from {ẑ, x̂, ŷ}, so we
have

φ̂ × r̂ = θ̂

θ̂ × φ̂ = r̂
r̂ × θ̂ = φ̂,

(5.270)

and plug this into our Poynting expression

~S =
A2c
2π

Re
(
EφB∗r θ̂ − EφB∗θ r̂ + (EφBrθ̂ − EφBθr̂)e2i(kr−ωt)

)
. (5.271)

Now we have to multiply out our terms. We have

EφB∗r = −
sin θ

r
2 cos θ

kr2

(
1 −

i
kr

) (
−i +

1
kr

)
= −

sin(2θ)
kr3

(
−i −

i
k2r2

)
,

(5.272)
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Since this has no real part, there is no average contribution to ~S in the θ̂
direction. What do we have for the time dependent part

EφBr = −
sin θ

r
2 cos θ

kr2

(
1 −

i
kr

) (
i +

1
kr

)
= −

sin(2θ)
kr3

(
i +

2
kr
−

i
k2r2

)
.

(5.273)

This is non zero, so we have a time dependent θ̂ contribution that averages
out. Moving on

−EφB∗θ =
sin2 θ

r2

(
1 −

i
kr

) (
1 +

i
kr

+
1

k2r2

)
=

sin2 θ

r2

(
1 +

2
k2r2 −

i
k3r3

)
.

(5.274)

This is non-zero, so the steady state Poynting vector is in the outwards
radial direction. The last piece is

−EφBθ =
sin2 θ

r2

(
1 −

i
kr

) (
1 −

i
kr

+
1

k2r2

)
=

sin2 θ

r2

(
1 −

2i
kr
−

i
k3r3

)
.

(5.275)

Assembling all the results we have

~S =
A2c
2π

sin2 θ

r2

(
1 +

2
k2r2

)
r̂

+
A2c
2π

Re
((
−

sin(2θ)
kr3

(
i +

2
kr
−

i
k2r2

)
θ̂ +

sin2 θ

r2

(
1 −

2i
kr
−

i
k3r3

)
r̂
)

e2i(kr−ωt)
)
.

(5.276)

We can read off the intensity directly

~I =
〈
~S
〉

=
A2c sin2 θ

2πr2

(
1 +

2
k2r2

)
r̂. (5.277)
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Part c. Through a surface of radius r, integration of the intensity vector
eq. (5.277) is∫

r2 sin θdθdφ~I =

∫
r2 sin θdθdφ

A2c sin2 θ

2πr2

(
1 +

2
k2r2

)
r̂

= A2c
(
1 +

2
k2r2

)
r̂
∫ π

0
sin3 θdθ

= A2c
(
1 +

2
k2r2

)
r̂

1
12

(cos(3θ) − 9 cos θ)
∣∣∣∣∣π
0
.

(5.278)

Our average power through the surface is therefore∫
d2σ~I =

4A2c
3

(
1 +

2
k2r2

)
r̂. (5.279)

Notes on grading of my solution This was the graded portion.
FIXME1: I lost a mark in the spot I expected, where I failed to verify one

of the Maxwell equations. I will still need to figure out what got messed
up there.

What occured to me later, also mentioned in the grading of the solution
was that Maxwell’s equations in the space-time domain could have been
used to solve for ∂B/∂t instead of all the momentum space logic (which
simplified some things, but probably complicated others).

FIXME2: I lost a mark on eq. (5.277) with a big X beside it. I will have
to read the graded solution to see why.

FIXME3: Lost a mark for the final average power result eq. (5.279).
Again, I will have to go back and figure out why.
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6.1 solving maxwell’s equation.

Our equations are

εi jkl∂ jFkl = 0

∂iFik =
4π
c

jk,
(6.1)

where we assume that jk(x, t) is a given. Our task is to find Fik, the (E,B)
fields.

Proceed by finding Ai. First, as usual when Fi j = ∂iA j − ∂ jAi. The
Bianchi identity is satisfied so we focus on the current equation.

In terms of potentials

∂i(∂iAk − ∂kAi) =
4π
c

jk. (6.2)

or

∂i∂
iAk − ∂k(∂iAi) =

4π
c

jk. (6.3)

We want to work in the Lorentz gauge ∂iAi = 0. This is justified by the
simplicity of the remaining problem

∂i∂
iAk =

4π
c

jk. (6.4)

Write

∂i∂
i =

1
c2

∂2

∂t2 − ∆ = �, (6.5)

where

∆ =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 . (6.6)

This � is the d’Alembert operator (“d’Alembertian”). Our equation is

�Ak =
4π
c

jk, (6.7)
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(in the Lorentz gauge)
If we learn how to solve (**), then we have learned all.
Method: Green’s function’s
In electrostatics where j0 = 0, A0 , 0 only, we have

∆A0 = −4πρ. (6.8)

Solution

∆xG(x − x′) = δ3(x − x′). (6.9)

PICTURE: (a small box)

ρ(x′)d3x′, (6.10)

acting through distance |x − x′|, acting at point x. With

(6.11)G(x, x′) = −1/4π
∣∣∣x − x′

∣∣∣,
we have∫

d3x′∆xG(x − x′)ρ(x′) =

∫
d3x′δ3(x − x′)ρ(x′)

= ρ(x).
(6.12)

Since G is deemed a linear operator, we have ∆xG = G∆x, we find

ρ(x) =

∫
d3x′∆xG(x − x′)4πρ(x′)

=

∫
d3x′

1
|x − x′|

ρ(x′).
(6.13)

We end up finding that

φ(x) =

∫
ρ(x′)
|x − x′|

d3x′, (6.14)

thus solving the problem. We wish next to do this for the Maxwell equation
eq. (6.7).

The Green’s function method is effective, but I can not help but consider
it somewhat of a cheat, since one has to through higher powers know what
the Green’s function is. In the electrostatics case, at least we can work from
the potential function and take its Laplacian to find that this is equivalent
(thus implictly solving for the Green’s function at the same time). It will be
interesting to see how we do this for the forced d’Alembertian equation.
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Reading Covering chapter 8 material from the text [11], and lecture
notes RelEMpp136-146.pdf.

6.2 solving the forced wave equation.

See the notes for a complex variables and Fourier transform method of
deriving the Green’s function. In class, we will just pull it out of a magic
hat. We wish to solve

�Ak = ∂i∂
iAk =

4π
c

jk. (6.15)

(with a ∂iAi = 0 gauge choice).
Our Green’s method utilizes

�(x,t)G(x − x′, t − t′) = δ3(x − x′)δ(t − t′). (6.16)

If we know such a function, our solution is simple to obtain

Ak(x, t) =

∫
d3x′dt′

4π
c

jk(x′, t′)G(x − x′, t − t′). (6.17)

Proof:

�(x,t)Ak(x, t) =

∫
d3x′dt′

4π
c

jk(x′, t′)�(x,t)G(x − x′, t − t′)

=

∫
d3x′dt′

4π
c

jk(x′, t′)δ3(x − x′)δ(t − t′)

=
4π
c

jk(x, t).

(6.18)

Claim:

G(x, t) =
δ(t − |x|/c)

4π|x|
. (6.19)

This is the retarded Green’s function of the operator �, where

�G(x, t) = δ3(x)δ(t). (6.20)

6.3 elaborating on the wave equation green’s function.

The Green’s function eq. (K.27) is a distribution that is non-zero only on
the future lightcone. Observe that for t < 0 we have

δ

(
t −
|x|
c

)
= δ

(
−|t| −

|x|
c

)
= 0.

(6.21)
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We say that G is supported only on the future light cone. At x = 0, only the
contributions for t > 0 matter. Note that in the “old days”, Green’s func-
tions used to be called influence functions, a name that works particularly
well in this case. We have other Green’s functions for the d’Alembertian.
The one above is called the retarded Green’s functions and we also have
an advanced Green’s function. Writing + for advanced and − for retarded
these are

G± =
δ
(
t ± |x|c

)
4π|x|

. (6.22)

There are also causal and non-causal variations that will not be of interest
for this course.

This arms us now to solve any problem in the Lorentz gauge

Ak(x, t) =
1
c

∫
d3x′dt′

δ
(
t − t′ − |x−x′ |

c

)
4π|x − x′|

jk(x′, t′), (6.23)

plus an arbitrary collection of EM waves. The additional EM waves are
the possible contributions from the homogeneous equation.

Since δ(t − t′ − |x − x′|/c) is non-zero only when t′ = t − |x − x′|/c), the
non-homogeneous parts of eq. (6.23) reduce to

Ak(x, t) =
1
c

∫
d3x′

jk(x′, t − |x − x′|/c)
4π|x − x′|

. (6.24)

Our potentials at time t and spatial position x are completely specified in
terms of the sums of the currents acting at the retarded time t − |x − x′|/c.
The field can only depend on the charge and current distribution in the past.
Specifically, it can only depend on the charge and current distribution on
the past light cone of the spacetime point at which we measure the field.

Example 6.1: Green’s function for charged particle on worldline.

(ct, xc(t)). (6.25)

(c for classical)
For this particle

ρ(x, t) = eδ3(x − xc(t))

j(x, t) = eẋc(t)δ3(x − xc(t)).
(6.26)
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A0(x, t)
A(x, t)

 =
1
c

∫
d3x′dt′

δ(t − t′ − |x − x′|/c
|x − x′|

 ce

eẋc(t)

 δ3(x − xc(t))

=

∫ ∞

−∞

δ(t − t′ − |x − xc(t′)|/c
|xc(t′) − x|

 e

e ẋc(t)
c

 .
(6.27)

PICTURE: light cones, and curved worldline. Pick an arbitrary point
(x0, t0), and draw the past light cone, looking at where this intersects
with the trajectory

For the arbitrary point (x0, t0) we see that this point and the retarded
time (xc(tr), tr) obey the relation

c(t0 − tr) = |x0 − xc(tr)|. (6.28)

This retarded time is unique. There is only one such intersection.
Our job is to calculate∫ ∞

−∞

δ( f (x))g(x) =
g(x∗)
| f ′(x∗)|

. (6.29)

where f (x∗) = 0.

f (t′) = t − t′ −
∣∣∣x − xc(t′)

∣∣∣/c. (6.30)

∂ f
∂t′

= −1 −
1
c
∂

∂t′
√

(x − xc(t′)) · (x − xc(t′))

= −1 +
1
c

(x − xc(t′)) · vc(t′)
|x − xc(t′)|

.

(6.31)

This is with

vc =
∂xc

∂t′
. (6.32)
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Putting things back together, the potentials due to a moving charge
are A0(x, t)

A(x, t)

 = e
1

|xc(tr) − x|

 1
vc
c

 1∣∣∣∣−1 + 1
c

(x−xc(tr))·vc(tr)
|x−xc(tr)|

∣∣∣∣
= e

 1
vc
c

 1
||x − xc(tr)| − (x − xc(tr)) · vc(tr)/c|

.

(6.33)

Provided |x − xc| > (x−xc(tr)) ·vc(tr)/c, we have the Lienard-Wiechert
potentials.A0(x, t)

A(x, t)

 = e

 1
vc
c

 1
|x − xc| − (x − xc(tr)) · vc(tr)/c

. (6.34)

FIXME: What provides the previous inequality required to get to this
final point?

Reading Covering chapter 8 material from the text [11], and lecture
notes RelEMpp136-146.pdf.

6.4 fields from the lienard-wiechert potentials.

(We finished off with the scalar and vector potentials in class, but I have
put those notes with the previous lecture).

To find E and B need
∂tr
∂t , and ∇tr(x, t)
where

t − tr = |x − xc(tr)|. (6.35)

implicit definition of tr(x, t)
In HW5 you will show

∂tr
∂t

=
|x − xc(tr)|

|x − xc(tr)| −
vc
c · (x − xc(tr))

. (6.36)

∇tr =
1
c

x − xc(tr)
|x − xc(tr)| −

vc
c · (x − xc(tr))

, (6.37)
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and then use this to show that the electric and magnetic fields due to a
moving charge are

E(x, t) =
eR

(R · u)3

(
(c2 − v2

c)u + R × (u × ac)
)

=
R
R
×E

u = c
R
R
− vc,

(6.38)

where everything is evaluated at the retarded time tr = t − |x − xc(tr)|/c.
This looks quite a bit different than what we find in §63 (63.8) in the text,
but a little bit of expansion shows they are the same.

6.5 check . particle at rest.

With

xc = x0

Xk
c = (ct, x0)

|x − xc(tr)| = c(t − tr).

(6.39)

As illustrated in fig. 6.1 the retarded position is

xc(tr) = x0, (6.40)

for

u =
x − x0

|x − x0|
c, (6.41)

and

E = e ����|x − x0|

(c|x − x0|)3 c3 x − x0

����|x − x0|
, (6.42)

which is Coulomb’s law

E = e
x − x0

|x − x0|
3 . (6.43)
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Figure 6.1: Retarded time for particle at rest

6.6 check . particle moving with constant velocity.

This was also computed in full in homework 5. The end result was

E = e
x − vt

|x − vt|3
1 − β2(

1 − (x×β)2

|x−vt|2

)3/2 . (6.44)

Writing

x × β
|x − vt|

=
1
c

(x − vt) × v
|x − vt|

=
|v|
c

(x − vt) × v
|x − vt||v|

.

(6.45)

We can introduce an angular dependence between the charge’s translated
position and its velocity

sin2 θ =

∣∣∣∣∣v × (x − vt)
|v||x − vt|

∣∣∣∣∣2, (6.46)
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and write the field as

E = e
x − vt

|x − vt|3

(∗)

1 − β2(
1 − v2

c2 sin2 θ
)3/2 . (6.47)

Observe that (∗) is Coulomb’s law measured from the instantaneous posi-
tion of the charge.

The electric field E has a time dependence, strongest when perpendicular
to the instantaneous position when θ = π/2, since the denominator is
smallest (E largest) when v/c is not small. This is strongly θ dependent.

Compare

|E(θ = π/2)| − |E(θ = π/2 + ∆θ)|
|E(θ = π/2)|

≈

1
(1−v2/c2)3/2 −

1
(1−v2/c2(1−(∆θ)2))3/2

1
(1−v2/c2)3/2

= 1 −
(

1 − v2/c2

1 − v2/c2 + v2/c2(∆θ)2

)3/2

= 1 −

 1

1 + v2/c2 (∆θ)2

1−v2/c2


3/2

.

(6.48)

Here we used

sin(θ + π/2) =
ei(θ+π/2) − e−i(θ+π/2)

2i
= cos θ. (6.49)

and

cos2 ∆θ ≈
(
1 −

(∆θ)2

2

)2

≈ 1 − (∆θ)2. (6.50)

FIXME: he writes:

∆θ ≤

√
1 −

v2

c2 . (6.51)

I do not see where that comes from.
PICTURE: Various E’s up, and v perpendicular to that, strongest when

charge is moving fast.
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6.7 extracting physics from the lienard-wiechert equations .

Imagine that we have a localized particle motion with

|xc(tr)| < l. (6.52)

The velocity vector

u = c
x − xc(tr)
|x − xc|

. (6.53)

does not grow as distance from the source, so from eq. (6.38), we have for
|x| � l

B,E ∼
1

|x|2
(· · ·) +

1
x

(acceleration term). (6.54)

The acceleration term will dominate at large distances from the source.
Our Poynting magnitude is

|S| ∼ |E ×B| ∼
1
x2 (acceleration)2. (6.55)

We can ask about∮
d2σ · S ∼ R2 1

R2 (acceleration)2 ∼ (acceleration)2. (6.56)

In the limit, for the radiation of EM waves

lim
R→∞

∮
d2σ · S , 0. (6.57)

The energy flux through a sphere of radius R is called the radiated power.

Reading Covering chapter 8 material from the text [11], and lecture
notes RelEMpp147-165.pdf.

6.8 multipole expansion of the fields.

Ai(x, t) =
1
c

∫
d3x′ ji

(
x′, t −

|x − x′|
c

)
1

|x − x′|
. (6.58)
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This integral is over the region of space where the sources ji are non-
vanishing, but this region is limited. The value |x′| ≤ l, so we can expand
the denominator in multipole expansion

1
|x − x′|

=
1√

(x − x′)2

=
1√

x2 + x′2 − 2x · x′

=
1
|x|

1√
1 +

x′2

x2 − 2
r̂
|x|
· x′

≈
1
|x|

1√
1 − 2

r̂
|x|
· x′

≈
1
|x|

(
1 +

r̂
|x|
· x′

)
.

(6.59)

Neglecting all but the first order term in the expansion we have

1
|x − x′|

≈
1
|x|

+
x
|x|3
· x′. (6.60)

Similarly, for the retarded time we have

t −
|x − x′|

c
≈ t −

|x|
c

(
1 −

x · x′

|x|2

)
= t −

|x|
c

+
x · x′

c|x|
.

(6.61)

We can now do a first order Taylor expansion of the current ji about the
retarded time

ji
(
x′, t −

|x|
c

+
x · x′

c|x|
+ · · ·

)
≈ ji

(
x′, t −

|x|
c

)
+
∂ ji

∂t

(
x, t −

|x|
c

)
x · x′

c|x|
. (6.62)

To elucidate the physics, imagine that time dependence of the source is
periodic with angular frequency ω0. For example:

ji = A(x)e−iωt. (6.63)

Here we have

∂ ji

∂t
= −iω0 ji, (6.64)
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so, for the magnitude of the second term we have∣∣∣∣∣∣∂ ji

∂t
x · x′

c|x|

∣∣∣∣∣∣ = ω0

∣∣∣∣∣ ji x · x′

c|x|

∣∣∣∣∣. (6.65)

Requiring second term much less than the first term means∣∣∣∣∣ω0
x · x′

c|x|

∣∣∣∣∣ � 1. (6.66)

But recall∣∣∣∣∣x · x′c|x|

∣∣∣∣∣ ≤ l, (6.67)

so for our Taylor expansion to be valid we have the following constraints
on the angular velocity and the position vectors for our charge and mea-
surement position∣∣∣∣∣ω0

x · x′

c|x|

∣∣∣∣∣ ≤ ω0l
c
� 1. (6.68)

This is a physical requirement size of the wavelength of the emitter (if the
wavelength does not meet this requirement, this expansion does not work).
The connection to the wavelength can be observed by noting that we have

ω0

c
= k

2πk =
1
λ

=⇒
ω0

c
∼

1
λ
.

(6.69)

6.9 putting the pieces together. potentials at a distance.

Moral: We will utilize two expansions (we need two small parameters)

1. |x| � l

2. λ � l

Plugging into our current

Ai(x, t) ≈
1
c

∫
d3x′

(
ji
(
x′, t −

|x|
c

)
+
∂ ji

∂t

(
x, t −

|x|
c

)
x · x′

c|x|

) (
1
|x|

+
x
|x|3
· x′

)
.
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(6.70)

A0(x, t) ≈
1
|x|

∫
d3x′ρ

(
x′, t −

|x|
c

)
+

x
|x|3
·

∫
d3x′x′ρ

(
x′, t −

|x|
c

)
+

x
c|x|2

·

∫
d3x′x′

∂ρ

∂t

(
x′, t −

|x|
c

)
.

(6.71)

The first term is the total charge evaluated at the retarded time. In the
second term (and in the third, where its derivative is taken) we have∫

d3x′x′ρ
(
x′, t −

|x|
c

)
= d(tr), (6.72)

which is the dipole moment evaluated at the retarded time tr = t − |x|/c. In
the last term we can pull out the time derivative (because we are integrating
over x′)

1

|x|2
x ·

∫
d3x′x′

∂

∂t
ρ

(
x′, t −

|x|
c

)
=

1

|x|2
x ·

∂

∂t

∫
d3x′x′ρ

(
x′, t −

|x|
c

)
=

1

|x|2
x ·

∂

∂t
d
(
t −
|x|
c

)
.

(6.73)

For the spatial components of the current lets just keep the first term

Aα(x, t) ≈
1

c|x|

∫
d3x′ jα

(
x′, t −

|x|
c

)
=

1
c|x|

∫
d3x′(∇x′ xα) · j

(
x′, t −

|x|
c

)
=

1
c|x|

∫
d3x′

(
∇ ·

(
x′αj

(
x′, t −

|x|
c

))
− x′α∇x′ · j

(
x′, t −

|x|
c

))
=

1
c|x|

∮
S 2
∞

d2σ · x′αj
(
x′, t −

|x|
c

)
+

1
c|x|

∫
d3x′x′α

∂

∂t
ρ

(
x′, t −

|x|
c

)
.

(6.74)

There is two tricks used here. One was writing the unit vector eα = ∇xα.
The other was use of the continuity equation ∂ρ/∂t +∇ · j = 0. This first



198 lienard-wiechert potentials.

trick was mentioned as one of the few tricks of physics that will often be
repeated since there are not many good ones.

With the first term vanishing on the boundary (since ji is localized),
and pulling the time derivatives out of the integral, we can summarize the
dipole potentials as

A0(x, t) =
Q

(
t − |x|c

)
|x|

+
x · d

(
t − |x|c

)
|x|3

+
x · ḋ

(
t − |x|c

)
c|x|2

A(x, t) =
1

c|x|
ḋ
(
t −
|x|
c

)
.

(6.75)

Example 6.2: Electric dipole radiation.

PICTURE: two closely separated oppositely charges, wiggling along
the line connecting them (on the z-axis). −q at rest, while +q oscillates.

z+(t) = z0 + a sinωt. (6.76)

Since we have put the −q charge at the origin, it has no contribution
to the dipole moment, and we have

d(t) = e3q(z0 + a sinωt). (6.77)

Thus

A0(x, t) =
1

|x|3
x · d

(
t −
|x|
c

)
+

1
c|x|2

x · ḋ
(
t −
|x|
c

)

A(x, t) =
ḋ
(
t − |x|c

)
c|x|

.

(6.78)

so with tr = t − |x|/c, and z = x · e3 in the dipole dot product, we have

A0(x, t) =
zq

|x|3
(z0 + a sin(ωtr)) +

zq

c|x|2
aω cos(ωtr)

A(x, t) =
1

c|x|
e3qaω cos(ωtr).

(6.79)
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These hold provided |x| � (z0, a) and ωl/c � 1. Recall that ωλ =

c/2π, which has dimensions of velocity.
FIXME: think through and justify ωl = v.
Observe that ωl ∼ v so this is a requirement that our charged

positive particle is moving with |v|/c � 1.
Now we will take derivatives. The first term of the scalar potential

will be ignored since the 1/|x|2 is non-radiative.

E = −∇A0 −
1
c
∂A
∂t

= −
zaωq

|x|2c
(−ω sin(ωtr))

(
−

1
c
∇|x|

)
−

1
c2|x|

e3qaω2(− sin(ωtr)).

(6.80)

We have used ∇tr = −∇|x|/c, and ∇|x| = r̂, and ∂ttr = 1.

E =
qaω2

c2|x|
sin(ωtr)

(
e3 −

z
|x|

r̂
)
. (6.81)

So,

|S| ∼ ω4. (6.82)

The power is proportional to ω4. Higher frequency radiation has more
power : this is why the sky is blue! It all comes from the fact that the
electric field is proportional to the squared acceleration (∼ ω2).

Reading Covering chapter 8 material from the text [11], and lecture
notes RelEMpp147-165.pdf.

6.10 where we left off.

For a localized charge distribution, we would arrived at expressions for
the scalar and vector potentials far from the point where the charges and
currents were localized. This was then used to consider the specific case of
a dipole system where one of the charges had a sinusoidal oscillation. The
charge positions for the negative and positive charges respectively were

z− = 0

z+ = e3(z0 + a sin(ωt)),
(6.83)
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so that our dipole moment d =
∫
ρ(x′)x′ is

d = e3q(z0 + a sin(ωt)). (6.84)

The scalar potential, to first order in a number of Taylor expansions at our
point far from the source, evaluated at the retarded time tr = t − |x|/c, was
found to be

A0(x, t) =
zq

|x|3
(z0 + a sin(ωtr)) +

zq

c|x|2
aω cos(ωtr), (6.85)

and our vector potential, also with the same approximations, was

A(x, t) =
1

c|x|
e3qaω cos(ωtr). (6.86)

We found that the electric field (neglecting any non-radiation terms that
died off as inverse square in the distance) was

E =
aω2q
c2|x|

sin(ω(t − |x|/c))
(
e3 − r̂

z
|x|

)
. (6.87)

6.11 direct computation of the magnetic radiation field.

Taking the curl of the vector potential eq. (6.87) for the magnetic field,
we will neglect the contribution from the 1/|x| since that will be inverse
square, and die off too quickly far from the source

B = ∇ ×A

= ∇ ×
1

c|x|
e3qaω cos(ω(t − |x|/c))

≈ −
qaω
c|x|

e3 ×∇ cos(ω(t − |x|/c))

= −
qaω
c|x|

(
−
ω

c

)
(e3 ×∇|x|) sin(ω(t − |x|/c)),

(6.88)

which is

B =
qaω2

c2|x|
(e3 × r̂) sin(ω(t − |x|/c)). (6.89)

Comparing to eq. (6.87), we see that this equals r̂ ×E as expected.
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6.12 an aside: a tidier form for the electric dipole field.

We can rewrite the electric field eq. (6.87) in terms of the retarded time
dipole

E =
1

c2|x|
(−d̈(tr) + r̂(d̈(tr) · r̂)), (6.90)

where

d̈(t) = −qaω2 sin(ωt)e3. (6.91)

Then using the vector identity

(A × r̂) × r̂ = −A + (r̂ ·A)r̂, (6.92)

we have for the fields

E =
1

c2|x|
(d̈(tr) × r̂) × r̂

B = r̂ ×E.
(6.93)

6.13 calculating the energy flux.

Our Poynting vector, the energy flux, is

S =
c

4π
E×B =

c
4π

(
qaω2

c2|x|

)2

sin2(ω(t − |x|/c))
(
e3 − r̂

z
|x|

)
× (r̂× e3).

(6.94)

Expanding just the cross terms we have(
e3 − r̂

z
|x|

)
× (r̂ × e3) = −(r̂ × e3) × e3 −

z
|x|

(e3 × r̂) × r̂

= −(−r̂ + e3(e3 · r̂)) −
z
|x|

(−e3 + r̂(r̂ · e3))

= r̂ −����e3(e3 · r̂) +
z
|x|

(��e3 − r̂(r̂ · e3))

= r̂(1 − (r̂ · e3)2).

(6.95)

Note that we have utilized r̂ · e3 = z/|x| to do the cancellations above, and
for the final grouping. Since r̂ · e3 = cos θ, the direction cosine of the unit
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radial vector with the z-axis, we have for the direction of the Poynting
vector

r̂(1 − (r̂ · e3)2) = r̂(1 − cos2 θ)

= r̂ sin2 θ.
(6.96)

Our Poynting vector is found to be directed radially outwards, and is

S =
c

4π

(
qaω2

c2|x|

)2

sin2(ω(t − |x|/c)) sin2 θr̂. (6.97)

The intensity is constant along the curves

|sin θ| ∼ r. (6.98)

PICTURE: dipole lobes diagram with d up along the z axis, and r̂ pointing
in an arbitrary direction.

FIXME: understand how this lobes picture comes from our result above.
PICTURE: field diagram along spherical north-south great circles, and

the electric field E along what looks like it is the θ̂ direction, and B along
what appear to be the φ̂ direction, and S pointing radially out.

Utilizing the spherical unit vectors to express the field directions In class
we see the picture showing these spherical unit vector directions. We can
see this algebraically as well. Recall that we have for our unit vectors

r̂ = e1 sin θ cos φ + e2 sin θ sin φ + e3 cos θ

φ̂ = sin θ(e2 cos φ − e1 sin φ)

θ̂ = cos θ(e1 cos φ + e2 sin φ) − e3 sin θ,

(6.99)

with the volume element orientation governed by cyclic permutations of

r̂ × θ̂ = φ̂. (6.100)

We can now express the direction of the magnetic field in terms of the
spherical unit vectors

e3 × r̂ = e3 × (e1 sin θ cos φ + e2 sin θ sin φ + e3 cos θ)

= e3 × (e1 sin θ cos φ + e2 sin θ sin φ)

= e2 sin θ cos φ − e1 sin θ sin φ

= sin θ(e2 cos φ − e1 sin φ)

= sin θφ̂.

(6.101)
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The direction of the electric field was in the direction of (d̈ × r̂) × r̂ where
d was directed along the z-axis. This is then

(e3 × r̂) × r̂ = − sin θφ̂ × r̂
= − sin θθ̂.

(6.102)

E =
qaω2

c2|x|
sin(ωtr) sin θθ̂

B = −
qaω2

c2|x|
sin(ωtr) sin θφ̂

S =

(
qaω2

c2|x|

)2

sin2(ωtr) sin2 θr̂.

(6.103)

6.14 calculating the power.

Integrating S over a spherical surface, we can calculate the power
FIXME: remind myself why Power is an appropriate label for this

integral.
This is

P(r, t) =

∮
d2σ · S

=

∫
��r2 sin θdθdφ

c
4π

(
qaω2

c2
��|x|

)2

sin2(ω(t − |x|/c)) sin2 θ

=
q2a2ω4

2c3 sin2(ω(t − r/c))
∫

sin3 θdθ

= 4/3

.

(6.104)

P(r, t) =
2
3

q2a2ω4

c3 sin2(ω(t − r/c)) =
q2a2ω4

3c3 (1 − cos(2ω(t − r/c)).

(6.105)

Averaging over a period kills off the cosine term

〈P(r, t)〉 =
ω

2π

∫ 2π/ω

0
dtP(t) =

q2a2ω4

3c3 =
2

3c3

〈
d̈(tr)

〉
. (6.106)

and we once again see that higher frequencies radiate more power (i.e.
why the sky is blue).
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6.15 types of radiation.

We have seen now radiation from localized current distributions, and
called that electric dipole radiation. There are many other sources of
electrodynamic radiation, of which here are a couple.

• Magnetic dipole radiation.

This will be covered more in more depth in the tutorial. Picture of
a positive circulating current I = Io sinωt given, and a magnetic
dipole moment µ = πb2Ie3.

This sort of current loop is a source of magnetic dipole radiation.

• Cyclotron radiation.

This is the label for acceleration induced radiation (at high velocities)
by particles moving in a uniform magnetic field.

PICTURE: circular orbit with speed v = ωr. The particle trajectories
are

x = r cosωt

y = r sinωt.
(6.107)

This problem can be treated as two electric dipoles out of phase by
90 degrees.

PICTURE: 4 lobe dipole picture, with two perpendicular dipole
moment arrows. Resulting superposition sort of smeared together.

6.16 problems

Exercise 6.1 Sinusoidal current density, infinite flat conducting sheet.

An infinitely thin flat conducting surface lying in the x − z plane carries a
surface current density:

κ = e3θ(t)κ0 sinωt. (6.108)

Here e3 is a unit vector in the z direction, κ0 is the peak value of the current
density, and θ(t) is the theta function: θ(t < 0) − 0, θ(t > 0) = 1.

a. Write down the equations determining the electromagnetic poten-
tials. Specify which gauge you choose to work in.
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b. Find the electromagnetic potentials outside the plane.

c. Find the electric and magnetic fields outside the plane.

d. Give a physical interpretation of the results of the previous section.
Do they agree with your qualitative expectations?

e. Find the direction and magnitude of the energy flux outside the
plane.

f. Consider a point at some distance from the plane. Sketch the in-
tensity of the electromagnetic field near this point as a function of
time. Explain physically.

g. Consider now a point near the plane. Are the electric and magnetic
fields you found continuous across the conducting plane? Explain.

Answer for Exercise 6.1

Part a. Determining the electromagnetic potentials. Augmenting the
surface current density with a delta function we can form the current
density for the system

J = δ(y)κ = e3θ(t)δ(y)κ0 sinωt. (6.109)

With only a current distribution specified use of the Coulomb gauge allows
for setting the scalar potential on the surface equal to zero, so that we have

�A =
4πJ

c

E = −
1
c
∂A
∂t

B = ∇ ×B.

(6.110)

Utilizing our Green’s function

G(x, t) =
δ(t − |x|/c)

4π|x|
= δ3(x)δ(t), (6.111)
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we can invert our vector potential equation, solving for A

A(x, t) =

∫
d3x′dt′�x′,t′G(x − x′, t − t′)A(x′, t′)

=

∫
d3x′dt′G(x − x′, t − t′)

4πJ(x′, t′)
c

=

∫
d3x′dt′

δ(t − t′ − |x − x′|/c)
4π|x − x′|

4πJ(x′, t′)
c

=

∫
d3x′

J(x′, t − |x − x′|/c
c|x − x′|

=
1
c

∫
dx′dy′dz′e3θ(t −

∣∣∣x − x′
∣∣∣/c)δ(y)κ0

sin(ω(t −
∣∣∣x − x′

∣∣∣/c))
1

|x − x′|

=
e3κ0

c

∫
dx′dz′θ(t −

∣∣∣x − (x′, 0, z′)
∣∣∣/c)

sin(ω(t −
∣∣∣x − (x′, 0, z′)

∣∣∣/c))
1

|x − (x′, 0, z′)|

=
e3κ0

c

∫
dx′dz′θ

(
t −

1
c

√
(x − x′)2 + y2 + (z − z′)2

)
sin

(
ω

(
t − 1

c

√
(x − x′)2 + y2 + (z − z′)2

))
√

(x − x′)2 + y2 + (z − z′)2
.

(6.112)

Now a switch to polar coordinates makes sense. Let us use

x′ − x = r cosα

z′ − z = r sinα.
(6.113)

This gives us

A(x, t) =
e3κ0

c

∫ ∞

r=0

∫ 2π

α=0
rdrdαθ

(
t −

1
c

√
r2 + y2

) sin
(
ω

(
t − 1

c

√
r2 + y2

))
√

r2 + y2

=
2πe3κ0

c

∫ ∞

r=0
rdrθ

(
t −

1
c

√
r2 + y2

) sin
(
ω

(
t − 1

c

√
r2 + y2

))
√

r2 + y2
.

(6.114)
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Since the theta function imposes a

t −
1
c

√
r2 + y2 > 0. (6.115)

constraint, equivalent to

c2t2 > r2 + y2, (6.116)

we can reduce the upper range of the integral

A(x, t) =
2πe3κ0

c

∫ √c2t2−y2

r=0
rdr

sin
(
ω

(
t − 1

c

√
r2 + y2

))
√

r2 + y2
θ

(
t −

1
c

√
r2 + y2

)

=
2πe3κ0

c

∫ √c2t2−y2

r=0

ωr
c
ωdr

c

sin
(
ω

(
t − 1

c

√
r2 + y2

))
ω
c

√
r2 + y2

c
ω
θ

t − 1
ω

√
ω2r2

c2 + k2y2


=

2πe3κ0

ω

∫ √ω2t2−k2y2

u=0
udu

sin
(
ωt −

√
u2 + k2y2

)
√

u2 + k2y2
θ

(
t −

1
ω

√
u2 + k2y2

)
.

(6.117)

Here k = ω/c, and u = kr. One more change of variables

v2 = u2 + k2y2

vdv = udu,
(6.118)

gives us

udu
sin

(
ωt −

√
u2 + k2y2

)
√

u2 + k2y2
= vdv

sin (ωt − |v|)
|v|

= dv
d
dv

cos(ωt − |v|).

(6.119)
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Omitting the integration limits temporarily we want to evaluate∫
dvθ(t − |v|/ω)

d
dv

cos(ωt − |v|)

=

∫
dv

d
dv

(cos(ωt − |v|)θ(t − |v|/ω)) −
∫

dv cos(ωt − |v|)
d
dv
θ(t − |v|/ω)

= cos(ωt − |v|)θ(t − |v|/ω) −
∫

dv cos(ωt − |v|)δ(t − |v|/ω)
(
−

sgn v
ω

)
.

(6.120)

This last integral only takes a value at v = |v| =
√

u2 + k2y2 = ωt, and
recalling that δ(ax) = δ(x)/|a| we have

−

∫
dv cos(ωt − |v|)δ(t − |v|/ω)

(
−

sgn v
ω

)
= cos(0) = 1. (6.121)

However because we are integrating over a definite range, this entire term
therefore vanishes. We are left with

A(x, t) =
2πe3κ0

ω
cos(ωt −

√
u2 + k2y2)θ

t −
√

u2 + k2y2

ω


∣∣∣∣∣∣∣∣∣
√
ω2t2−k2y2

u=0

=
2πe3κ0

ω
(cos(ωt −ω|t|)θ(t − |t|) − cos(ωt − k|y|)θ(t − |y|/c)).

(6.122)

For t ≥ 0, θ(t − |t|) = θ(0) = 1/2, but is zero for t < 0, so we have

A(x, t) =
2πκ0

ω
e3

(
1
2
− cos(ω(t − |y|/c))θ(t − |y|/c)

)
. (6.123)

However, since we take either spatial or time derivatives of the vector
potential to get the fields, the constant term will not effect the result, so it
is equivalent to write just

A(x, t) = −
2πκ0

ω
e3 cos(ω(t − |y|/c))θ(t − |y|/c). (6.124)

Part c. Find the electric and magnetic fields outside the plane Our
electric field can be calculated by inspection. For t > |y|/c we have

E = −
1
c
∂A
∂t

= −
2πκ0ω

c2 e3 sin(ω(t − |y|/c)). (6.125)
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For the magnetic field we have, also for t > |y|/c we have

B = ∇ ×A

= −
2πκ0

c
e3 ×∇(1 − cos(ω(t − |y|/c))))

=
2πκ0

c
(− sin(ω(t − |y|/c))e3 ×∇ω(t − |y|/c)

=
2πκ0ω

c2 sin(ω(t − |y|/c))e3 ×∇|y|

=
2πκ0ω

c2 sin(ω(t − |y|/c))e3 × e2,

(6.126)

which gives us

E = −
2πκ0ω

c2 e3 sin(ω(t − |y|/c))θ(t − |y|/c)

B = −
2πκ0ω

c2 e1 sin(ω(t − |y|/c))θ(t − |y|/c).
(6.127)

Part d. Give a physical interpretation of the results of the previous section
It was expected that the lack of boundary on the conducting sheet would
make the potential away from the plane only depend on the y components
of the spatial distance, and this is precisely what we find performing the
grunt work of the integration.

Given that we had a sinusoidal forcing function for our wave equation,
it seems logical that we also find our non-homogeneous solution to the
wave equation has sinusoidal dependence. We find that the sinusoidal
current results in sinusoidal potentials and fields very much like one has
in the electric circuits problem that we solve with phasors in engineering
applications.

We find that the electric and magnetic fields are oriented parallel to the
plane containing the surface current density, with the electric field in the
direction of the current, and the magnetic field perpendicular to that, but
having energy propagate outwards from the plane.

We see that the step function for the current results in a transient re-
sponse, which is intuitively pleasing. The application of the current does
not result in an instantanious field in all space, but instead there is time
required for the field to propagate to the point of measurement. The time
required for the field to propagate is the time for light to reach that point
t = |y|/c.
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Part e. Find the direction and magnitude of the energy flux outside the
plane Our energy flux, the Poynting vector, is

S =
c

4π

(
2πκ0ω

c2

)2

sin2(ω(t − |y|/c)e3 × e1. (6.128)

This is

S =
πκ2

0ω
2

c3 sin2(ω(t− |y|/c)e2 =
πκ2

0ω
2

2c3 (1− cos(2ω(t− |y|/c)))e2. (6.129)

This energy flux is directed outwards along the y axis, with magnitude
oscillating around an average value of

|〈S 〉| =
πκ2

0ω
2

2c3 . (6.130)

Part f. Sketch the intensity of the electromagnetic field far from the plane
I am assuming here that this question does not refer to the flux intensity
〈S〉, since that is constant, and boring to sketch.

The time varying portion of either the electric or magnetic field is
proportional to

sin(ωt −ω|y|/c). (6.131)

We have a sinusoid as a function of time, of period T = 2π/ω where the
phase is adjusted at each position by the factor ω|y|/c. Every increase of
∆y = 2πc/ω shifts the waveform back.

A sketch is attached.

Part g. Continuity across the plane? It is sufficient to consider either the
electric or magnetic field for the continuity question since the continuity is
dictated by the sinusoidal term for both fields.

The point in time only changes the phase, so let us consider the electric
field at t = 0, and an infinitesimal distance y = ±εc/ω. At either point we
have

E(0,±εc/ω, 0, 0) =
2πκ0ω

c2 e3ε. (6.132)

In the limit as ε → 0 the field strength matches on either side of the plane
(and happens to equal zero for this t = 0 case).

We have a discontinuity in the spatial derivative of either field near the
plate, but not for the fields themselves. A plot illustrates this nicely
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Figure 6.2: sin(t − |y|)

FIXME: this plot was from before I had reintroduced the θ function I
had dropped. It is not right, and does not display the transient response
that I expected but did not see in the calculation I had submitted originally.

Grading notes This was the graded question (I lost 1.5 marks). I got my
units wrong when I integrated to find A, resulting in an additional ω/c in
every result from that point on. I should have done a dimensional analysis
check. I also dropped the θ function thinking that incorporating that into
the integral bounds was enough. Without this we do not have the t > |y|/c
propagation rate for the fields, and they counterinutively (and erroneously)
appear at all points in space. I have fixed up the units and reworked the
bits utilizing the θ functions now, and believe it to be correct. I had had
trouble with the interpretation part of the question initially since my result
did not make sense to me.

Exercise 6.2 Charged particle in a circle.

From the 2008 PHY453 exam, given a particle of charge q moving in a
circle of radius a at constant angular frequency ω.

a. Find the Lienard-Wiechert potentials for points on the z-axis.
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b. Find the electric and magnetic fields at the center.

Answer for Exercise 6.2

When I tried this I did it for points not just on the z-axis. It turns out
that we also got this question on the exam (but stated slightly differently).
Since I will not get to see my exam solution again, let us work through this
at a leisurely rate, and see if things look right. The problem as stated in
this old practice exam is easier since it does not say to calculate the fields
from the four potentials, so there was nothing preventing one from just
grinding away and plugging stuff into the Lienard-Wiechert equations for
the fields (as I did when I tried it for practice).

Part a. The potentials. Let us set up our coordinate system in cylindrical
coordinates. For the charged particle and the point that we measure the
field, with i = e1e2

x(t) = ae1eiωt

r = ze3 + ρe1eiφ.
(6.133)

Here I am using the geometric product of vectors (if that is unfamiliar then
just substitute

{e1, e2, e3} → {σ1, σ2, σ3}. (6.134)

We can do that since the Pauli matrices also have the same semantics
(with a small difference since the geometric square of a unit vector is
defined as the unit scalar, whereas the Pauli matrix square is the identity
matrix). The semantics we require of this vector product are just e2

α = 1
and eαeβ = −eβeα for any α , β.

I will also be loose with notation and use Re(X) = 〈X〉 to select the scalar
part of a multivector (or with the Pauli matrices, the portion proportional
to the identity matrix).

Our task is to compute the Lienard-Wiechert potentials. Those are

A0 =
q

R∗

A = A0 v
c
,

(6.135)
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where

R = r − x(tr)

R = |R| = c(t − tr)

R∗ = R −
v
c
·R

v =
dx
dtr

.

(6.136)

We will need (eventually)

v = aωe2eiωtr = aω(− sinωtr, cosωtr, 0)

v̇ = −aω2e1eiωtr = −aω2(cosωtr, sinωtr, 0).
(6.137)

and also need our retarded distance vector

R = ze3 + e1(ρeiφ − aeiωtr ), (6.138)

From this we have

R2 = z2 +
∣∣∣e1(ρeiφ − aeiωtr )

∣∣∣2
= z2 + ρ2 + a2 − 2ρa(e1ρeiφ) · (e1eiωtr )

= z2 + ρ2 + a2 − 2ρa Re(ei(φ−ωtr))

= z2 + ρ2 + a2 − 2ρa cos(φ −ωtr),

(6.139)

so

R =

√
z2 + ρ2 + a2 − 2ρa cos(φ −ωtr). (6.140)

Next we need

R · v/c = (ze3 + e1(ρeiφ − aeiωtr )) ·
(
a
ω

c
e2eiωtr

)
= a

ω

c
Re(i(ρe−iφ − ae−iωtr )eiωtr )

= a
ω

c
ρRe(ie−iφ+iωtr )

= a
ω

c
ρ sin(φ −ωtr).

(6.141)

So we have

R∗ =

√
z2 + ρ2 + a2 − 2ρa cos(φ −ωtr)− a

ω

c
ρ sin(φ−ωtr). (6.142)
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Writing k = ω/c, and having a peek back at eq. (6.135), our potentials are
now solved for

A0 =
q√

z2 + ρ2 + a2 − 2ρa cos(φ − kctr)

A = A0ak(− sin kctr, cos kctr, 0).

(6.143)

The caveat is that tr is only specified implicitly, according to

ctr = ct −
√

z2 + ρ2 + a2 − 2ρa cos(φ − kctr). (6.144)

There does not appear to be much hope of solving for tr explicitly in
closed form.

Part b.

General fields for this system With

R∗ = R −
v
c

R, (6.145)

the fields are

E = q(1 − v2/c2)
R∗

R∗3
+

q
R∗3

R × (R∗ × v̇/c2)

B =
R
R
×E.

(6.146)

In there we have

1 − v2/c2 = 1 − a2ω
2

c2 = 1 − a2k2. (6.147)

and

R∗ = ze3 + e1(ρeiφ − aeikctr ) − ake2eikctr R

= ze3 + e1(ρeiφ − a(1 − kRi)eikctr ).
(6.148)

Writing this out in coordinates is not particularly illuminating, but can be
done for completeness without too much trouble

R∗ = (ρ cos φ − a cos tr + akR sin tr, ρ sin φ − a sin tr − akR cos tr, z).
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(6.149)

In one sense the problem could be considered solved, since we have all
the pieces of the puzzle. The outstanding question is whether or not the
resulting mess can be simplified at all. Let us see if the cross product
reduces at all. Using

R × (R∗ × v̇/c2) = R∗(R · v̇/c2) −
v̇
c2 (R ·R∗). (6.150)

Perhaps one or more of these dot products can be simplified? One of them
does reduce nicely

R∗ ·R = (R − Rv/c) ·R
= R2 − (R · v/c)R

= R2 − Rakρ sin(φ − kctr)

= R(R − akρ sin(φ − kctr)).

(6.151)

R · v̇/c2 = (ze3 + e1(ρeiφ − aeiωtr )) · (−ak2e1eiωtr )

= −ak2
〈
e1(ρeiφ − aeiωtr )e1eiωtr )

〉
= −ak2

〈
(ρeiφ − aeiωtr )e−iωtr )

〉
= −ak2

〈
ρeiφ−iωtr − a

〉
= −ak2(ρ cos(φ − kctr) − a).

(6.152)

Putting this cross product back together we have

R × (R∗ × v̇/c2) = ak2(a − ρ cos(φ − kctr))R∗ + ak2e1eikctr R(R − akρ sin(φ − kctr))

= ak2(a − ρ cos(φ − kctr))(ze3 + e1(ρeiφ − a(1 − kRi)eikctr ))

+ ak2Re1eikctr (R − akρ sin(φ − kctr)).
(6.153)

Writing

φr = φ − kctr, (6.154)

this can be grouped into similar terms

R × (R∗ × v̇/c2) = ak2(a − ρ cos φr)ze3

+ ak2e1(a − ρ cos φr)ρeiφ

+ ak2e1 (−a(a − ρ cos φr)(1 − kRi) + R(R − akρ sin φr)) eikctr .
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(6.155)

The electric field pieces can now be collected. Not expanding out the R∗

from eq. (6.142), this is

E =
q

(R∗)3 ze3(1 − aρk2 cos φr) +
q

(R∗)3 ρe1(1 − aρk2 cos φr)eiφ

+
q

(R∗)3 ae1×(
−(1 + ak2(a − ρ cos φr))(1 − kRi)(1 − a2k2) + k2R(R − akρ sin φr)

)
eikctr .

(6.156)

Along the z-axis where ρ = 0 what do we have?

R =
√

z2 + a2. (6.157a)

A0 =
q
R
. (6.157b)

A = A0ake2eikctr . (6.157c)

ctr = ct −
√

z2 + a2. (6.157d)

E =
q

R3 ze3

+
q

R3 ae1
(
−(1 − a4k4)(1 − kRi) + k2R2

)
eikctr .

(6.157e)

B =
ze3 − ae1eikctr

R
×E. (6.157f)

The magnetic term here looks like it can be reduced a bit.
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An approximation near the center Unlike the old exam I did, where it
did not specify that the potentials had to be used to calculate the fields,
and the problem was reduced to one of algebraic manipulation, our exam
explicitly asked for the potentials to be used to calculate the fields.

There was also the restriction to compute them near the center. Setting
ρ = 0 so that we are looking only near the z-axis, we have

A0 =
q√

z2 + a2

A =
qake2eikctr√

z2 + a2
=

qak(− sin kctr, cos kctr, 0)√
z2 + a2

tr = t − R/c = t −
√

z2 + a2/c.

(6.158)

Now we are set to calculate the electric and magnetic fields directly from
these. Observe that we have a spatial dependence in due to the tr quantities
and that will have an effect when we operate with the gradient.

In the exam I had asked Simon (our TA) if this question was asking
for the fields at the origin (ie: in the plane of the charge’s motion in the
center) or along the z-axis. He said in the plane. That would simplify
things, but perhaps too much since A0 becomes constant (in my exam
attempt I somehow fudged this to get what I wanted for the v = 0 case, but
that must have been wrong, and was the result of rushed work).

Let us now proceed with the field calculation from these potentials

E = −∇A0 −
1
c
∂A
∂t

B = ∇ ×A.
(6.159)

For the electric field we need

∇A0 = qe3∂z(z2 + a2)−1/2

= −qe3
z

(
√

z2 + a2)3
,

(6.160)

and

1
c
∂A
∂t

=
qak2e2e1e2eikctr√

z2 + a2
. (6.161)

Putting these together, our electric field near the z-axis is

E = qe3
z

(
√

z2 + a2)3
+

qak2e1eikctr√
z2 + a2

. (6.162)
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(another mistake I made on the exam, since I somehow fooled myself
into forcing what I knew had to be in the gradient term, despite having
essentially a constant scalar potential (having taken z = 0)).

What do we get for the magnetic field. In that case we have

∇ ×A(z) = eα × ∂αA

= e3 × ∂z
qake2eikctr√

z2 + a2

= e3 × (e2eikctr )qak
∂

∂z
1√

z2 + a2
+ qak

1√
z2 + a2

e3 × (e2∂zeikctr )

= −e3 × (e2eikctr )qak
z

(
√

z2 + a2)3

+ qak
1√

z2 + a2
e3 ×

(
e2e1e2kceikctr∂z(t −

√
za + a2/c)

)
= −e3 × (e2eikctr )qak

z

(
√

z2 + a2)3
− qak2 z

z2 + a2 e3 ×
(
e1keikctr

)
= −

qakze3

z2 + a2 ×

 e2eikctr√
z2 + a2

+ ke1eikctr

 .
(6.163)

For the direction vectors in the cross products above we have

e3 × (e2eiµ) = e3 × (e2 cos µ − e1 sin µ)

= −e1 cos µ − e2 sin µ

= −e1eiµ.

(6.164)

and

e3 × (e1eiµ) = e3 × (e1 cos µ + e2 sin µ)

= e2 cos µ − e1 sin µ

= e2eiµ.

(6.165)

Putting everything, and summarizing results for the fields, we have

E = qe3
z

(
√

z2 + a2)3
+

qak2e1eiωtr√
z2 + a2

B =
qakz

z2 + a2

 e1√
z2 + a2

− ke2

 eiωtr .

(6.166)



6.16 problems 219

The electric field expression above compares well to eq. (6.157e). We
have the Coulomb term and the radiation term. It is harder to compare the
magnetic field to the exact result eq. (6.157f) since I did not expand that
out.

FIXME: A question to consider. If all this worked should we not also
get

B ?
=

ze3 − e1aeiωtr√
z2 + a2

×E. (6.167)

However, if I do this check I get

B =
qaz

z2 + a2

(
1

z2 + a2 + k2
)

e2eiωtr . (6.168)

Without geometric algebra I tried the problem of calculating the Lienard-
Wiechert potentials for circular motion once again in [7] but with the added
generalization that allowed the particle to have radial or z-axis motion.
Really that was no longer a circular motion problem, but really just a
calculation where I was playing with the use of cylindrical coordinates to
describe the motion.

It occurred to me that this can be done without any use of Geometric
Algebra (or Pauli matrices), which is probably how I should have attempted
it on the exam. Let us use a hybrid coordinate vector and complex number
representation to describe the particle position

xc =

aeiθ

h

 , (6.169)

with the field measurement position of

r =

ρeiφ

z

 . (6.170)

The particle velocity is

vc =

(ȧ + iaθ̇)eiθ

ḣ

 =

eiθ ieiθ 0

0 0 1




ȧ

aθ̇

ḣ

 . (6.171)
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We also want the vectorial difference between the field measurement
position and the particle position

R = r − xc =

eiφ −eiθ 0

0 0 1



ρ

a

z − h

 . (6.172)

The dot product between R and vc is then

vc ·R =
[
ȧ aθ̇ ḣ

]
Re




e−iθ 0

−ie−iθ 0

0 1


eiφ −eiθ 0

0 0 1




ρ

a

z − h


=

[
ȧ aθ̇ ḣ

]
Re




ei(φ−θ) −1 0

−iei(φ−θ) i 0

0 0 1




ρ

a

z − h


=

[
ȧ aθ̇ ḣ

] 
cos(φ − θ) −1 0

sin(φ − θ) 0 0

0 0 1



ρ

a

z − h

 .

(6.173)

Expansion of the final matrix products is then

vc ·R = ḣ(z − h) − aȧ + ρȧ cos(φ − θ) + ρa2θ̇ sin(φ − θ). (6.174)

The other quantity that we want is R2, which is

R2 =
[
ρ a (z − h)

]
Re




e−iφ 0

−e−iθ 0

0 1


eiφ −eiθ 0

0 0 1




ρ

a

z − h


=

[
ρ a (z − h)

] 
1 − cos(φ − θ) 0

− cos(φ − θ) 1 0

0 0 1



ρ

a

z − h

 .
(6.175)

The retarded time at which the field is measured is therefore defined
implicitly by

R =

√
(ρ2 + (a(tr))2 + (z − h(tr))2 − 2a(tr)ρ cos(φ − θ(tr)) = c(t − tr).

(6.176)
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Together eq. (6.171), eq. (6.174), and eq. (6.176) define the four potentials

A0 =
q

R −R · vc/c

A =
vc

c
A0,

(6.177)

where all quantities are evaluated at the retarded time tr given by eq. (6.176).
In the homework (and in the text [11] §63) we found for E and B

E = e(1 − β2
c)

R̂ − βc

R2(1 − R̂ · βc)3
+ e

1
R(1 − R̂ · βc)3

R̂ × ((R̂ − βc) × ac/c2)

B = R̂ ×E.
(6.178)

Expanding out the cross products yields

E = e(1 − β2
c)

R̂ − βc

R2(1 − R̂ · βc)3

+ e
1

R(1 − R̂ · βc)3
(R̂ − βc)

(
R̂ ·

ac

c2

)
− e

1
R(1 − R̂ · βc)2

ac

c2

B = e(1 − β2
c)

βc × R̂
R2(1 − R̂ · βc)3

+ e
1

R(1 − R̂ · βc)3
(βc × R̂)

(
R̂ ·

ac

c2

)
+ e

1
R(1 − R̂ · βc)2

ac

c2 × R̂.

(6.179)

While longer, it is nice to call out the symmetry between E and B explicitly.
As a side note, how do these combine in the Geometric Algebra formalism
where we have F = E + IB? That gives us

F = e
1

(1 − R̂ · βc)3

((1 − β2
c

R2 +
R̂ · ac

cR

) (
R̂ − βc + R̂∧ (R̂ − βc)

)
+

1
R

(ac

c2 +
ac

c2 ∧ R̂
))
.

(6.180)

I had guess a multivector of the form a + a∧ b̂, can be tidied up a bit more,
but this will not be persued here. Instead let us write out the fields corre-
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sponding to the potentials of eq. (6.177) explicitly. We need to calculate
ac, vc ×R, ac ×R, and ac ·R. For the acceleration we get

ac =


(
ä − aθ̇2 + i(aθ̈ + 2ȧθ̇)

)
eiθ

ḧ

 . (6.181)

Dotted with R we have

ac ·R =


(
ä − aθ̇2 + i(aθ̈ + 2ȧθ̇)

)
eiθ

ḧ

 ·
ρeiφ − aeiθ

h


= hḧ + Re

((
ä − aθ̇2 + i(aθ̈ + 2ȧθ̇)

) (
ρei(θ−φ) − a

))
,

(6.182)

which gives us

ac ·R = hḧ + (ä− aθ̇2)(ρ cos(φ− θ)− a) + (aθ̈+ 2ȧθ̇)ρ sin(φ− θ). (6.183)

Now, how do we handle the cross products in this complex number, scalar
hybrid format? With some playing around such a cross product can be put
into the following tidy formz1

h1

 ×
z2

h2

 =

i(h1z2 − h2z1)

Im(z∗1z2)

 . (6.184)

This is a sensible result. Crossing with e3 will rotate in the x − y plane,
which accounts for the factors of i in the complex portion of the cross
product. The imaginary part has only contributions from the portions of
the vectors z1 and z2 that are perpendicular to each other, so while the real
part of z∗1z2 measures the colinearity, the imaginary part is a measure of
the amount perpendicular.

Using this for our velocity cross product we have

vc ×R =

(ȧ + iaθ̇)eiθ

ḣ

 ×
ρeiφ − aeiθ

h


=

i
(
ḣ(ρeiφ − aeiθ) − h(ȧ + iaθ̇)eiθ

)
Im

(
(ȧ − iaθ̇)(ρei(φ−θ) − a)

)  .
(6.185)

which is

vc ×R =

 i(ḣρeiφ − (hȧ + ihaθ̇ + aḣ)eiθ)

ȧρ sin(φ − θ) − aθ̇ρ cos(φ − θ) + a2θ̇

 . (6.186)
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The last thing required to write out the fields is

ac ×R =


(
ä − aθ̇2 + i(aθ̈ + 2ȧθ̇)

)
eiθ

ḧ

 ×
ρeiφ − aeiθ

z − h


=

iḧ(ρeiφ − aeiθ) − i(z − h)
(
ä − aθ̇2 + i(aθ̈ + 2ȧθ̇)

)
eiθ

Im
((

ä − aθ̇2 − i(aθ̈ + 2ȧθ̇)
)

(ρei(φ−θ) − a)
)  .

(6.187)

So the acceleration cross product is

ac ×R =

 iḧρeiφ − i
(
ḧa + (z − h)

(
ä − aθ̇2 + i(aθ̈ + 2ȧθ̇)

))
eiθ(

ä − aθ̇2
)
ρ sin(φ − θ) − (aθ̈ + 2ȧθ̇)(ρ cos(φ − θ) − a)

 . (6.188)

Putting all the results together creates something that is too long to easily
write, but can at least be summarized

E =
e

(R −R · βc)3

((
1 − β2

c + R ·
ac

c2

)
(R − βcR) − R(R −R · βc)

ac

c2

)
B =

e
(R −R · βc)3

((
1 − β2

c + R ·
ac

c2

)
(βc ×R) − (R −R · βc)

ac

c2 ×R
)

1 − β2
c = 1 − (ȧ2 + a2θ̇2 + ḣ2)/c2

R =

√
(ρ2 + (a(tr))2 + (z − h(tr))2 − 2a(tr)ρ cos(φ − θ(tr)) = c(t − tr)

R − βcR =

ρeiφ − (a + (ȧ + iaθ̇)R/c)eiθ

z − h − ḣR/c


βc ·R =

1
c

(
ḣ(z − h) − aȧ + ρȧ cos(φ − θ) + ρa2θ̇ sin(φ − θ)

)
βc ×R =

1
c

 i(ḣρeiφ − (hȧ + ihaθ̇ + aḣ)eiθ)

ȧρ sin(φ − θ) − aθ̇ρ cos(φ − θ) + a2θ̇


ac

c2 =
1
c2


(
ä − aθ̇2 + i(aθ̈ + 2ȧθ̇)

)
eiθ

ḧ


ac

c2 ·R =
1
c2

(
hḧ + (ä − aθ̇2)(ρ cos(φ − θ) − a) + (aθ̈ + 2ȧθ̇)ρ sin(φ − θ)

)
ac

c2 ×R =
1
c2

 iḧρeiφ − i
(
ḧa + (z − h)

(
ä − aθ̇2 + i(aθ̈ + 2ȧθ̇)

))
eiθ(

ä − aθ̇2
)
ρ sin(φ − θ) − (aθ̈ + 2ȧθ̇)(ρ cos(φ − θ) − a)

 .
(6.189)

This is a whole lot more than the exam question asked for, since it is
actually the most general solution to the electric and magnetic fields
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associated with an arbitrary charged particle (when that motion is described
in cylindrical coordinates). The exam question had θ = kct and ȧ = 0, h =

0, which kills a number of the terms

1 − β2
c +

ac

c2 ·R = 1 − ak2ρ cos(φ − kctr)

R =

√
(ρ2 + a2 + z2 − 2aρ cos(φ − kctr) = c(t − tr)

R − βcR =

ρeiφ − a(1 + ikR)eikctr

z


βc ·R = ρa2k sin(φ − kctr)

βc ×R =

 0

ak(a − ρ cos(φ − kctr))


ac

c2 =

−ak2eikctr

0


ac

c2 ×R =

 izak2eikctr

−ak2ρ sin(φ − kctr)

 .

(6.190)

This is still messy, but is a satisfactory solution to the problem.
The exam question also asked only about the ρ = 0, so φ also becomes

irrelevant. In that case we have along the z-axis the fields are given by

E(z) =
e

R3

−a(1 + ikR − k2R2)eik(ct−R)

z


B(z) =

e
R3

−Rizak2eik(ct−R)

a2k


R =

√
a2 + z2

(6.191)

Similar to when things were calculated from the potentials directly, I get a
different result from R̂ ×E

R̂ ×E(z) =
e

R3

akz(1 + ikR)eik(ct−R)

−a2k

 . (6.192)

compared to the value of B that was directly calculated above. With the
sign swapped in the z-axis term of B(z) here I had guess I have got an
algebraic error hiding somewhere?
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E N E R G Y M O M E N T U M T E N S O R .

7.1 energy momentum conservation.

We have defined

E = E2+B2

8π Energy density
S
c2 = 1

4πc E ×B Momentum density
. (7.1)

(where S was defined as the energy flow).
Dimensional analysis arguments and analogy with classical mechanics

were used to motivate these definitions, as opposed to starting with the
field action to find these as a consequence of a symmetry. We also saw
that we had a conservation relationship that had the appearance of a four
divergence of a four vector. With

Pi = (U/c,S/c2), (7.2)

that was

∂iPi = −E · j/c2. (7.3)

The left had side has the appearance of a Lorentz scalar, since it contracts
two four vectors, but the right hand side is the continuum equivalent to the
energy term of the Lorentz force law and cannot be a Lorentz scalar. The
conclusion has to be that Pi is not a four vector, and it is natural to assume
that these are components of a rank 2 four tensor instead (since we have
got just one component of a rank 1 four tensor on the RHS). We want to
know find out how the EM energy and momentum densities transform.

Classical mechanics reminder Recall that in particle mechanics when
we had a Lagrangian that had no explicit time dependence

L(q, q̇, �t), (7.4)
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that energy resulted from time translation invariance. We found this by
taking the full derivative of the Lagrangian, and employing the EOM for
the system to find a conserved quantity

d
dt
L(q, q̇) =

∂L

∂q
∂q
∂t

+
∂L

∂q̇
∂q̇
∂t

=
d
dt

(
∂L

∂q̇

)
q̇ +

∂L

∂q̇
q̈

=
d
dt

(
∂L

∂q̇
q̇
)
.

(7.5)

Taking differences we have

d
dt

(
∂L

∂q̇
q̇ −L

)
= 0, (7.6)

and we labeled this conserved quantity the energy

E =
∂L

∂q̇
q̇ −L. (7.7)

Our approach from the EM field action Our EM field action was

S = −
1

16πc

∫
d4xFi jFi j. (7.8)

The squared field tensor Fi jFi j only depends on the fields Ai(x, t) or its
derivatives ∂ jAi(x, t), and not on the coordinates x, t themselves. This is
very similar to the particle action with no explicit time dependence

S =

∫
dt

(
mq̇2

2
+ V(q)

)
. (7.9)

For the particle case we obtained our conservation relationship by taking
time derivatives of the Lagrangian. These are very similar with the action
having no explicit dependence on space or time, only on the field, so
what will we get if we take the coordinate partials of the EM Lagrangian
density?

We will chew on this tomorrow and calculate

∂

∂xk (Fi jFi j). (7.10)

in full gory details. We will find that instead of finding a single conserved
quantity CA(x, t), we instead find a quantity that only changes through
escape from the boundary of a surface.
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Reading Covering §32, §33 of chapter 4 in the text [11], and lecture
notes RelEMpp166-180.pdf.

7.2 total derivative of the lagrangian density.

Rather cleverly, our Professor avoided the spacetime translation arguments
of the text. Inspired by an approach possible in classical mechanics to find
that we have a conserved quantity derivable from a force law, he proceeds
directly to taking the derivative of the Lagrangian density (see previous
lecture notes for details building up to this).

I will proceed in exactly the same fashion.

∂k

(
−

1
16πc

Fi jFi j
)

= −
1

8πc
(∂kFi j)Fi j

= −
1

8πc
(∂kFi j)Fi j

= −
1

8πc
(∂k(∂iA j − ∂ jAi))Fi j

= −
1

4πc
(∂k∂iA j)Fi j

= −
1

4πc
(∂i∂kA j)Fi j

= −
1

4πc
(∂m∂kA j)Fm j

= −
1

4πc

(
∂m((∂kA j)Fm j) − (∂mFm j)∂kA j

)
= −

1
4πc

(
∂m((∂kA j)Fm j) − (∂mFma)∂kAa

)
= −

1
4πc

(
∂m((∂kA j)Fm j) −

(
4π
c

ja
)
∂kAa

)
= −

1
4πc

∂m((∂kA j)Fm j) +

(
1
c2 ja

)
∂kAa.

(7.11)

Multiplying through by c and renaming our derivative index using a delta
function we have

∂k

(
−

1
16π

Fi jFi j
)

= ∂mδ
m

k

(
−

1
16π

Fi jFi j
)

= −
1

4π
∂m((∂kA j)Fm j) +

(
1
c

ja
)
∂kAa.

(7.12)
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We can now group the ∂m terms for

∂m

(
−

1
4π

(∂kA j)Fm j + δm
k

1
16π

Fi jFi j
)

= −

(
1
c

ja
)
∂kAa. (7.13)

Knowing the end goal, a quantity that is expressed in terms of Fi j let us
raise the k indices, and any of the Ai’s that are along side of those

∂m

(
−

1
4π

(∂kAn)Fm jgn j + gmk 1
16π

Fi jFi j
)

= −

(
1
c

ja

)
∂kAa. (7.14)

Next, we want to get rid of the explicit vector potential dependence

∂m

(
−

1
4π

(∂kAn)Fm jgn j

)
= ∂m

(
−

1
4π

(Fkn + ∂nAk)Fm jgn j

)
= ∂m

(
−

1
4π

FknFm jgn j −
1

4π
(∂m(∂nAk))Fm jgn j −

1
4π

(∂nAk)(∂mFm j)gn j

)
= ∂m

(
−

1
4π

FknFm jgn j

)
−

1
4π

(∂m(∂nAk))Fm jgn j − (∂nAk)
1
c

jn

= ∂m

(
−

1
4π

FknFm jgn j

)
−

1
4π

(∂m∂ jAk)Fm j − (∂aAk)
1
c

ja.

(7.15)

Since the operator Fm j∂m∂ j is a product of symmetric and antisymmetric
tensors (or operators), the middle term is zero, and we are left with

∂m

(
−

1
4π

FknFm jgn j + gmk 1
16π

Fi jFi j
)

= −
1
c

Fka ja. (7.16)

This provides the desired conservation relationship

∂mT mk = −
1
c

Fka ja

T mk =
1

4π

(
−Fm jFkngn j +

gmk

4
Fi jFi j

)
.

(7.17)
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7.3 unpacking the tensor.

Energy term of the stress energy tensor

T 00 = −
1

4π
F0 jF0

j +
1

16π
Fi jFi j

= −
1

4π
F0αF0

α +
1

16π

(
F0 jF0 j + Fα jFα j

)
=

1
4π

F0αF0α +
1

16π

(
F0αF0α + Fα0Fα0 + FαβFαβ

)
=

1
4π

E2 +
1

16π

(
−2E2 + FαβFαβ

)
.

(7.18)

The spatially indexed field tensor components are

Fαβ = ∂αAβ − ∂βAα

= −∂αAβ + ∂βAα

= −εσαβ(B)σ,

(7.19)

so

FαβFαβ = εσαβ(B)σεµαβ(B)µ

= (2! )δσµ(B)σ(B)µ

= 2B2.

(7.20)

A final bit of assembly gives us T 00

T 00 =
1

8π
(E2 + B2) = E. (7.21)

Momentum terms of the stress energy tensor For the spatial T k0 compo-
nents we have

Tα0 = −
1

4π
Fα jF0

j +
1

16π
gα0Fi jFi j

= −
1

4π
Fα jF0

j

= −
1

4π

(
Fα0F0

0 + FαβF0
β

)
=

1
4π

FαβF0β

=
1

4π
(−εσαβ(B)σ)(−(E)β)

=
1

4π
εαβσ(E)β(B)σ.

(7.22)
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So we have

Tα0 =
1

4π
(E ×B)α =

Sα

c
. (7.23)

Symmetry It is simple to show that T km is symmetric

T mk = −
1

4π
Fm jFk

j +
1

16π
gmkFi jFi j

= −
1

4π
Fm

jFk j +
1

16π
gkmFi jFi j

= T km.

(7.24)

Pressure and shear terms Let us now expand T βα, starting with the
diagonal terms Tαα. Because this repeated index is not summed over,
things get slightly irregular, so it is easier to drop the abstraction and just
pick a specific α, say, α = 1. Then we have

T 11 =
1

4π

(
−F1kF1

k −
1
2

(B2 −E2)
)

=
1

4π

(
−F10F10 + F1αF1α −

1
2

(B2 −E2)
)

=
1

4π

(
−E2

x + F12F12 + F13F13 −
1
2

(B2 −E2)
)
.

(7.25)

For the magnetic components above we have for example

F12F12 = (∂1A2 − ∂2A2)(∂1A2 − ∂2A2)

= (∂1A2 − ∂2A2)(∂1A2 − ∂2A2)

= B2
z .

(7.26)

So we have

T 11 =
1

4π

(
−E2

x + B2
y + B2

z −
1
2

(B2 −E2)
)
. (7.27)

Or

T 11 =
1

8π

(
−E2

x + E2
y + E2

z − B2
x + B2

y + B2
z

)
. (7.28)
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Clearly, the other diagonal terms follow the same pattern, and we can do a
cyclic permutation of coordinates to find

T 11 =
1

8π

(
−E2

x + E2
y + E2

z − B2
x + B2

y + B2
z

)
T 22 =

1
8π

(
−E2

y + E2
z + E2

x − B2
y + B2

z + B2
x

)
T 33 =

1
8π

(
−E2

z + E2
x + E2

y − B2
z + B2

x + B2
y

)
.

(7.29)

For the off diagonal terms, let us pick T 12 and expand that. We have

T 12 =
1

4π

(
−F1kF2

k −
1
2

g12(B2 −E2)
)

=
1

4π

(
−F10F20 + F1αF2α

)

=
1

4π
(−ExEy + F11

= 0

F21 + F12 F22

= 0

+ F13F23)

=
1

4π
(−ExEy + (−By)Bx) .

(7.30)

Again, with cyclic permutation of the coordinates we have

T 12 = −
1

4π
(ExEy + BxBy)

T 23 = −
1

4π
(EyEz + ByBz)

T 31 = −
1

4π
(EzEx + BzBx) .

(7.31)

In class these were all written in the compact notation

Tαβ = −
1

4π

(
EαEβ + BαBβ −

1
2
δαβ(E2 + B2)

)
. (7.32)

Reading Covering lecture notes RelEMpp166-180.pdf.

7.4 recap.

Last time we found that spacetime translation invariance led to the four
conservation relations

∂kT km = 0. (7.33)
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where

T km =
1

4π

(
Fk jFmlg jl +

1
4

gkmFi jFi j
)
. (7.34)

last time we found for m = 0
1
c
∂

∂t
T 00 +

∂

∂xα
Tα0 = 0. (7.35)

Here

T 00 = 1
8π (E2 + B2) = energy density

cTα0 = Sα = energy flux
. (7.36)

7.5 spatial components of tkm.

Now for m = 1, 2, 3 we write

∂kT kα = 0. (7.37)

so we write
∂

∂t
Sα

c2 + ∂βT βα = 0. (7.38)

Recall that we argued that

S
c2 = momentum density. (7.39)

(it also comes from Noether’s theorem).

∂

∂t

(
T 0α

c

)
+

∂

∂xβ
T βα = 0. (7.40)

or
∂

∂t

(
Sα

c2

)
+

∂

∂xβ
T βα = 0. (7.41)

Integrating over V we have

∂

∂t

∫
V

d3x
(
Sα

c2

)
= −

∫
V

d3x
∂

∂xβ
T βα

= −

∫
V

d3x∇ · (eβT βα)

= −

∫
∂V

d2σ(n · eβ)T βα

≡ −

∫
∂V

d2σβT βα.

(7.42)
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We write this as
∂

∂t
(momentum of EM fields in V)α = −

∫
∂V

d2σβT βα. (7.43)

and describe our spatial tensor components as

T βα = flux of α-th momentum through a unit area ⊥ β, (7.44)

where

Tαβ =
1

4π

(
−Fα jFβmgm j +

1
4

gαβFi jFi j

)
=

1
4π

(
−Fα0Fβ0 + FασFβσ −

1
4
δαβ2(B2 −E2)

)
=

1
4π

−EαEβ +
∑
σ

(εµασBµ)(ενβσBν) −
1
2
δαβ(B2 −E2)



=
1

4π
(−EαEβ +

∑
µ,ν

δ
µα
[νβ]B

µBν

(δαβδµν − δανδβµ)BµBν = δαβB2 − BαBβ

+
1
2
δαβ(E2 −B2))

= −
1

4π

(
EαEβ + BαBβ + δαβ

(
−

E2

2
+

B2

2
−B2

))
= −

1
4π

(
EαEβ + BαBβ −

δαβ

2

(
E2 + B2

))
.

(7.45)

We define

σαβ = −Tαβ =
1

4π

(
EαEβ + BαBβ −

δαβ

2

(
E2 + B2

))
. (7.46)

This is the Maxwell stress tensor, which has diagonal entries

(7.47)Tαα =
1

4π



1
2 (E2 + B2)

−
(
E2

x + B2
x −

1
2 (E2 + B2)

)
−

(
E2

y + B2
y −

1
2 (E2 + B2)

)
−

(
E2

z + B2
z −

1
2 (E2 + B2)

)


,

and on the off diagonals:

(7.48)
1

4π


. (E × B)x (E × B)y (E × B)z

. . − (ExEy + BxBy) − (ExEz + BxBz)

. . . − (EyEz + ByBz)

. . . .


.
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In words this matrix is
en. density 1

c (en. flux in x̂) 1
c (en. flux in ŷ) · · ·

c × (mom. density)x (mom.)xflux in x̂ (mom.)xflux in ŷ · · ·

c × (mom. density)y (mom.)yflux in x̂ (mom.)yflux in ŷ · · ·

c × (mom. density)z (mom.)zflux in x̂ (mom.)zflux in ŷ · · ·


.

(7.49)

Maxwell apparently derived this without any use of four vectors or sym-
metry arguments.

7.6 on the geometry.

PICTURE: rectangular area with normal α̂, and area d2σα ⊥ α̂.
Tαβ is the amount of Pβ that goes through unit area ⊥ α̂ in unit time.

d2σαTαβ (no sum) is the amount of Pβ through d2σα in unit time.
For a general surface element
PICTURE: normal n decomposed into perpendicular components α̂, β̂,

with respective area elements d2σα and d2σβ.
PICTURE: triangulated area element decomposed into three perpendic-

ular areas with their respective normals.
We have∫

d3x
∂

∂xα
Tαβ =

∫
d3x∇ · (eβTαβ) =

∫
d2σ(n · eβ)Tαβ. (7.50)

Write

d2σ = d2σn =
∑
α

d2σnαeα, (7.51)

where n = (n1, n2, n3). The amount of β momentum that goes through d2σ

in unit time is∑
α

d2σαTαβ. (7.52)

If this is greater than zero, this is a flow in the n direction, whereas if less
than zero the momentum flows in the −n direction.

If d2σ is at the surface of the body, the rate of flow of (momentum)β

through d2σ is the (force)β that acts on this element.
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PICTURE: arbitrary surface depicted with an inwards normal n.
For this surface with the inwards normal we can write

d f β =
∑
α

d2σαTαβ. (7.53)

The (force)β acting on the d2σ surface element. With an outwards normal
we can write this in terms of the Maxwell stress tensor, which has an
inverted sign

d f β =
∑
α

d2σασαβ. (7.54)

To find the force on the body we want

Fβ =

∮
surface of body with inwards normal orientation

d2σαTαβ. (7.55)

We can calculate the EM force on any body. We need to know Tαβ on the
surface, so we need the EM field on this boundary.

Example 7.1: Wall absorbing all radiation hitting it.

With propagation direction p along the x̂ direction, and mutually
perpendicular E and B.

cT xx = amount of Px going in x̂ unit area ⊥ x̂ in unit time. (7.56)

d f x = T xxd2σx

d f y = T yyd2σy.
(7.57)

with cp = ω, our fields are

Ey = pβ sin(cpt − px)

Bz = pβ sin(cpt − px).
(7.58)

T xx = −
1

4π

(
���(Ex)2 +�

��(Bx)2 −
1
2

(E2 + B2)
)

=
1

8π

(
(Ey)2 + (Bz)2

)
=

p2β2

8π
sin2(cpt − px).

(7.59)
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T yx = −
1

4π

(
��ExEy +���BxBy

)
= 0. (7.60)

The off diagonal Tαβ components vanish since we have no non-zero
pair of EαEβ or BαBβ. Our other two diagonal terms are also zero

T yy = −
1

4π

(
(Ey)2 +���(By)2 −

1
2

(E2 + B2)
)

= −
1

4π
p2β2 sin2(cpt − px)

(
1 −

1
2
−

1
2

)
= 0.

(7.61)

T yy = −
1

4π

(
+�

��(Ez)2(Bz)2 −
1
2

(E2 + B2)
)

= −
1

4π
p2β2 sin2(cpt − px)

(
1 −

1
2
−

1
2

)
= 0.

(7.62)

For non-perpendicular reflection we have the same deal.
PICTURE: reflection off of a wall, with reflection coefficient R.

7.7 problems

Exercise 7.1 Angular momentum of EM fields.

(This was a worked problem covered in tutorial 5).
Long solenoid of radius R, n turns per unit length, current I. Coaxial with

with solenoid are two long cylindrical shells of length l and (radius, charge)
of (a,Q), and (b,−Q) respectively, where a < b.

When current is gradually reduced what happens?
To determined this, compute the

a. initial Magnetic field,

b. initial Electric field,

c. Poynting vector before the current changes,

d. momentum density of the EM fields,
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e. induced electric field after the current is changed, and

f. the torque and angular momentum induced by the fields.

Answer for Exercise 7.1

Part a. Initial Magnetic field For the initial static conditions where we
have only a (constant) magnetic field, the Maxwell-Ampere equation takes
the form

∇ ×B =
4π
c

j. (7.63)

On the name of this equation . In notes from one of the lectures I had this
called Maxwell-Faraday equation, despite the fact that this is not the one
that Maxwell made his displacement current addition. Did the Professor
call it that, or was this my addition? In [15] Faraday’s law is also called the
Maxwell-Faraday equation. [2] calls this the Ampere-Maxwell equation,
which makes more sense. Put into integral form by integrating over an
open surface we have∫

A
(∇ ×B) · da =

4π
c

∫
A

j · da. (7.64)

The current density passing through the surface is defined as the enclosed
current, circulating around the bounding loop

Ienc =

∫
A

j · da. (7.65)

This is a sensible definition. Consider a little bit of that current

dIenc =
dQ
dV

v · da. (7.66)

If we consider the charge density volume dV = dadl, where da = v̂ · da,
we have

dIenc =
dQ
dl

dl
dt

=
dQ
dt
. (7.67)

At least dimensionally, this is a sensible quantity to define.
Motivation aside, by Stokes Theorem, we can therefore write the circu-

lation of the magnetic field in terms of this enclosed current∫
∂A

B · dl =
4π
c

Ienc. (7.68)
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Now consider separately the regions inside and outside the cylinder. Inside
we have∫

∂A
B · dl =

4πI
c

= 0, (7.69)

Outside of the cylinder we have the equivalent of n loops, each with current
I, so we have∫

B · dl =
4πnIL

c
= BL. (7.70)

Our magnetic field is constant while I is constant, and in vector form this
is

B =
4πnI

c
ẑ. (7.71)

Part b. Initial Electric field How about the electric fields?
For r < a, and r > b we have E = 0 since there is no charge enclosed by

any Gaussian surface that we choose.
Between a and b we have, for a Gaussian surface of height l (assuming

that l � a)

E(2πr)l = 4π(+Q), (7.72)

so we have

E =
2Q
rl

r̂. (7.73)

Part c. Poynting vector before the current changes Our Poynting vector,
the energy flux per unit time, is

S =
c

4π
(E ×B). (7.74)

This is non-zero only in the region both between the solenoid and the
enclosing cylinder (radius b) since that is the only place where both E and
B are non-zero. That is

S =
c

4π
(E ×B)

=
c

4π
2Q
rl

4πnI
c

r̂ × ẑ

= −
2QnI

rl
φ̂.

(7.75)

(since r̂ × φ̂ = ẑ, so ẑ × r̂ = φ̂ after cyclic permutation)
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A motivational aside: Momentum density Suppose |E| = |B|, then our
Poynting vector is

S =
c

4π
E ×B =

ck̂
4π

E2, (7.76)

but

E = energy density =
E2 + B2

8π
=

E2

4π
, (7.77)

so

S = ck̂E = vE. (7.78)

Now recall the between (relativistic) mechanical momentum p = γmv and
energy E = γmc2

p =
v
c2E. (7.79)

This justifies calling the quantity

PEM =
S
c2 , (7.80)

the momentum density.

Part d. Momentum density of the EM fields So we label our scaled
Poynting vector the momentum density for the field

PEM = −
2QnI
c2rl
φ̂, (7.81)

and can now compute an angular momentum density in the field between
the solenoid and the outer cylinder prior to changing the currents

LEM = r × PEM

= rr̂ × PEM.
(7.82)

This gives us

LEM = −
2QnI

c2l
ẑ = constant. (7.83)

Note that this is the angular momentum density in the region between the
solenoid and the inner cylinder, between z = 0 and z = l. Outside of this
region, the angular momentum density is zero.
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Part e. Induced electric field after the current is changed When we turn
off (or change) I, some of the magnetic field B will be converted into
electric field E according to Faraday’s law

∇ ×E = −
1
c
∂B
∂t
. (7.84)

In integral form, utilizing an open surface, this is∫
A
(∇ × l) · n̂dA =

∫
∂A

E · dl

= −
1
c

∫
A

∂B
∂t
· dA

= −
1
c
∂ΦB(t)
∂t

,

(7.85)

where we introduce the magnetic flux

ΦB(t) =

∫
A

B · dA. (7.86)

We can utilizing a circular surface cutting directly across the cylinder
perpendicular to ẑ of radius r. Recall that we have the magnetic field
eq. (7.71) only inside the solenoid. So for r < R this flux is

ΦB(t) =

∫
A

B · dA

= (πr2)
4πnI(t)

c
.

(7.87)

For r > R only the portion of the surface with radius r ≤ R contributes to
the flux

ΦB(t) =

∫
A

B · dA

=
(
πR2

) 4πnI(t)
c

.

(7.88)

We can now compute the circulation of the electric field∫
∂A

E · dl = −
1
c
∂ΦB(t)
∂t

, (7.89)

by taking the derivatives of the magnetic flux. For r > R this is∫
∂A

E · dl = (2πr)E

= −
(
πR2

) 4πnİ(t)
c2 .

(7.90)
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This gives us the magnitude of the induced electric field

E = −
(
πR2

) 4πnİ(t)
2πrc2

= −
2πR2nİ(t)

rc2 .

(7.91)

Similarly for r < R we have

E = −
2πrnİ(t)

c2 . (7.92)

Summarizing we have

E =

 − 2πrnİ(t)
c2 φ̂ For r < R

−
2πR2nİ(t)

rc2 φ̂ For r > R
(7.93)

Part f. Torque and angular momentum induced by the fields Our torque
N = r × F = dL/dt on the outer cylinder (radius b) that is induced by
changing the current is

Nb = (br̂) × (−QEr=b)

= bQ
2πR2nİ(t)

bc2 r̂ × φ̂

=
1
c2 2πR2nQİẑ.

(7.94)

This provides the induced angular momentum on the outer cylinder

Lb =

∫
dtNb =

2πnR2Q
c2

∫ 0

I

dI
dt

dt

= −
2πnR2Q

c2 I.

(7.95)

This is the angular momentum of b induced by changing the current or
changing the magnetic field.

On the inner cylinder we have

Na = (ar̂) × (QEr=a)

= aQ
(
−

2π
c

naİ
)

r̂ × φ̂

= −
2πna2Qİ

c2 ẑ.

(7.96)
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So our induced angular momentum on the inner cylinder is

La =
2πna2QI

c2 ẑ. (7.97)

The total angular momentum in the system has to be conserved, and we
must have

La + Lb = −
2nIQ

c2 π
(
R2 − a2

)
ẑ. (7.98)

At the end of the tutorial, this sum was equated with the field angular
momentum density LEM, but this has different dimensions. In fact, observe
that the volume in which this angular momentum density is non-zero is
the difference between the volume of the solenoid and the inner cylinder

V = πR2l − πa2l, (7.99)

so if we are to integrate the angular momentum density eq. (7.83) over this
region we have∫

LEMdV = −
2QnI

c2 π
(
R2 − a2

)
ẑ. (7.100)

which does match with the sum of the mechanical angular momentum
densities eq. (7.98) as expected.

Exercise 7.2 Wall vs. incident plane EM wave.

This is problem 1 from §47 of the text [11], which was covered in
tutorial with very non subtle hints about how important this is (i.e. for the
exam).

Determine the force exerted on a wall from which an incident plane EM
wave is reflected (w/ reflection coefficient R) and incident angle θ.

Solution from the book

fα = −σαβnβ −σ′αβnβ. (7.101)

Here σαβ is the Maxwell stress tensor for the incident wave, and σ′αβ is
the Maxwell stress tensor for the reflected wave, and nβ is normal to the
wall.

Show this.
Answer for Exercise 7.2
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On the signs of the force per unit area The signs in eq. (7.101) require a
bit of thought. We have for the rate of change of the α component of the
field momentum

d
dt

∫
d3x

(
S α

c2

)
= −

∫
d2σβT βα. (7.102)

where d2σβ = d2σn · eβ, and n is the outwards unit normal to the surface.
This is the rate of change of momentum for the field, the force on the field.
For the force on the wall per unit area, we wish to invert this, giving

d f αon the wall, per unit area = (n · eβ)T βα = −(n · eβ)σβα. (7.103)

Returning to the tutorial notes Simon writes

f⊥ = −σ⊥⊥ −σ
′
⊥⊥

f‖ = −σ‖⊥ −σ
′
‖⊥.

(7.104)

and then says stating this solution is very non-trivial, because σαβ is non-
linear in E and B. This non-triviality is a good point. Without calculating
it, I find the results above to be pulled out of a magic hat. The point of the
tutorial discussion was to work through this in detail.

Working out the tensor PICTURE: ...
The Reflection coefficient can be defined in this case as

R =
|E′|2

|E|2
, (7.105)

a ratio of the powers of the reflected wave power to the incident wave
power (which are proportional to E′2 and E2 respectively.

Suppose we pick the following orientation for the incident fields

Ex = E sin θ

Ey = −E cos θ

Bz = E,

(7.106)

With the reflected assumed to be in some still perpendicular orientation
(with this orientation picked for convenience)

E′x = E′ sin θ

E′y = E′ cos θ

B′z = E′.

(7.107)
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Here

E = E0 cos(p · x −ωt)

E′ =
√

RE0 cos(p′ · x −ωt).
(7.108)

Observe that while the propagation directions are difference for the incident
and the reflected waves, these differences in phase are incorporated into
the E and E′ variables that we will work with below. In the very end when
the forces are computed, averages will be taken, but until then we will see
that these phase differences do not effect the physics explicitly. As Simon
pointed out this makes good physical sense since we can form a picture
of these things as just momentum and energy fields hitting an object. We
could even incorporate an additional constant phase difference into the
reflected wave (which may also make physical sense), but it would not
change the pressure that the radiation applies to the surface.

σαβ = −Tαβ =
1

4π

(
EαEβ +BαBβ −

1
2
δαβ(~E2 + ~B2)

)
. (7.109)

Aside: On the geometry, and the angle of incidence According to wikipedia
[17] the angle of incidence is measured from the normal.

Let us use complex numbers to get the orientation of the electric and
propagation direction fields right. We have for the incident propagation
direction

−p̂ ∼ ei(π+θ). (7.110)

or

p̂ ∼ eiθ. (7.111)

If we pick the electric field rotated negatively from that direction, we have

Ê ∼ −ieiθ

= −i(cos θ + i sin θ)

= −i cos θ + sin θ.

(7.112)

Or

Ex ∼ sin θ

Ey ∼ − cos θ.
(7.113)
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For the reflected direction we have

p̂′ ∼ ei(π−θ) = −e−iθ. (7.114)

rotating negatively for the electric field direction, we have

Ê′ ∼ −i(−e−iθ)

= i(cosθ − i sin θ)

= icosθ + sin θ.

(7.115)

Or

E′x ∼ sin θ

E′y ∼ cos θ.
(7.116)

Back to the problem (again) Where ~E and ~B are the total EM fields.

Aside: Why the fields are added in this fashion was not clear to me, but
I guess this makes sense. Even if the propagation directions differ, the total
field at any point is still just a superposition.

~E = E + E′

~B = B + B′.
(7.117)

Get

σ33 =
1

4π
( BzBz

= ~B2

−
1
2

(~E2 + ~B2)) = 0

σ31 = 0 = σ32

σ11 =
1

4π

(
(E1)2 −

1
2

(~E2 + ~B2)
)
.

(7.118)

~B2 = (Bz + B′z)
2 = (E + E′)2

~E2 = (E + E′)2,
(7.119)
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so

σ11 =
1

4π

(
(E1)2 −

1
2

((E1)2 + (E2)2 + (E + E′)2
)

=
1

8π

(
(E1)2 − (E2)2 − (E + E′)2

)
=

1
8π

(
(E + E′)2 sin2 θ − (E′ − E)2 cos2 θ − (E + E′)2

)
=

1
8π

(
E2(sin2 θ − cos2 θ − 1)

)
+

1
8π

(
(E′)2(sin2 θ − cos2 θ − 1) + 2EE′(sin2 θ + cos2 θ − 1)

)
=

1
8π

(
−2E2 cos2 θ − 2(E′)2 cos2 θ

)
= −

1
4π

(E2 + (E′)2) cos2 θ

= σ‖ +σ′‖.

(7.120)

This last bit I did not get. What is σ‖ and σ′‖. Are these parallel to the wall
or parallel to the normal to the wall. It turns out that this appears to mean
parallel to the normal. We can see this by direct calculation

σincident
xx =

1
4π

(
E2

x −
1
2

(E2 + B2)
)

=
1

4π

(
E2 sin2 θ −

1
2

2E2
)

= −
1

4π
E2 cos2 θ.

(7.121)

σreflected
xx =

1
4π

(
E′x

2
−

1
2

(E′2 + B′2)
)

=
1

4π

(
E′2 sin2 θ −

1
2

2E′2
)

= −
1

4π
E′2 cos2 θ.

(7.122)

So by comparison we see that we have

σ11 = σincident
xx +σreflected

xx . (7.123)
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Moving on, for our other component on the x, y place σ12 we have

σ12 =
1

4π
E1E2

=
1

4π
(E + E′) sin θ(−E + E′) cos θ

=
1

4π
((E′)2 − E2) sin θ cos θ.

(7.124)

Again we can compare to the sums of the reflected and incident tensors for
this x, y component. Those are

σincident
12 =

1
4π

(E1E2)

= −
1

4π
E2 sin θ cos θ,

(7.125)

and

σreflected
12 =

1
4π

(E′1E′2)

=
1

4π
E′2 sin θ cos θ,

(7.126)

which demonstrates that we have

σ12 = σincident
12 +σreflected

12 . (7.127)

Summarizing, for the components in the x, y plane we have found that we
have

σtotal
αβ nβ = σtotal

α1 = σα1 +σ′α1. (7.128)

(where nβ = δβ1)
This result, assumed in the text, was non-trivial to derive. It is also not

generally true. We have

σ22 =
1

4π

(
(Ey)2 −

1
2

(~E2 + ~B2)
)

=
1

8π

(
(Ey)2 − (Ex)2 − ~B2)

)
=

1
8π

(
(E′ − E)2 cos2 θ − (E + E′)2 sin2 θ − (E + E′)2

)
=

1
8π

(
E2(−1 + cos2 θ − sin2 θ)

)
+

1
8π

(
+E′2(−1 + cos2 θ − sin2 θ) + 2EE′(− cos2 θ − sin2 θ − 1)

)
= −

1
4π

(
E2 sin2 θ + (E′)2 sin2 θ + 2EE′

)
.
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(7.129)

If we compare to the incident and reflected tensors we have

σincident
yy =

1
4π

(
(Ey)2 −

1
2

E2
)

=
1

4π
E2(cos2 θ − 1)

= −
1

4π
E2 sin2 θ,

(7.130)

and

σreflected
yy =

1
4π

(
(E′y)2 −

1
2

E′2
)

=
1

4π
E′2(cos2 θ − 1)

= −
1

4π
E′2 sin2 θ.

(7.131)

There is a cross term that we can not have summing the two, so we have,
in general

σtotal
22 , σ

incident
yy +σreflected

yy . (7.132)

Force per unit area?

fα = nxσxα. (7.133)

Averaged

〈σxx〉 = −
1

8π
E2

0(1 + R) cos2 θ〈
σxy

〉
= −

1
8π

E2
0(1 − R) sin θ cos θ.

(7.134)

〈S〉 = −
c

8π
E2

0n̂〈
S′

〉
= −

c
8π

E2
0n̂′.

(7.135)

〈|S|〉 = Work = W. (7.136)
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fx = nxσxx = W(1 + R) cos2 θ

fy = nyσxy = W(1 − R) sin θ cos θ

fz = 0.

(7.137)

Exercise 7.3 Force per unit area for a Infinite parallel plate capacitor.

Find the forces per unit area σαβ for a Infinite parallel plate capacitor.

Answer for Exercise 7.3

B = 0

E = −
σ

ε0
ez.

(7.138)

FIXME: derive this. Observe that we have no distance dependence in the
field because it is an infinite plate.

σ11 =

−1
2
δ11

(
−σ

ε0

)2 = −
σ2

2ε2
0

= σ22

σ33 =

(
(E3)2 −

1
2

E2
)

= −
1
2

E2 = −σ22.

(7.139)

Force per unit area is then

fα = nβσαβ
= n3σα3.

(7.140)

So

f1 = 0 = f2

f3 = σ33 = −
σ2

2ε2
0

.
(7.141)

f = −
σ2

2ε2
0

ez. (7.142)
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Exercise 7.4 Fields generated by an arbitrarily moving charge.

Show that for a particle moving on a worldline parametrized by (ct, xc(t)),
the retarded time tr with respect to an arbitrary space time point (ct, x),
defined in class as:

|x − xc(tr)| = c(t − tr). (7.143)

obeys

∇tr = −
x − xc(tr)

c|x − xc(tr)| − vc(tr) · (x − xc(tr))
. (7.144)

and

∂tr
∂t

=
c|x − xc(tr)|

c|x − xc(tr)| − vc(tr) · (x − xc(tr))
. (7.145)

a. Then, use these to derive the expressions for E and B given in the
book (and in the class notes).

b. Finally, re-derive the already familiar expressions for the EM fields
of a particle moving with uniform velocity.

Answer for Exercise 7.4

Gradient and time derivatives of the retarded time function Let us use
notation something like our text [11], where the solution to this problem is
outlined in §63, and write

R(tr) = x − xc(tr)

R = |R|.
(7.146)

where

∂R
∂tr

= −vc. (7.147)

From R2 = R ·R we also have

2R
∂R
∂tr

= 2R ·
∂R
∂tr

, (7.148)

so if we write

R̂ =
R
R
, (7.149)
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we have

R′(tr) = −R̂ · vc. (7.150)

Proceeding in the manner of the text, we have

∂R
∂t

=
∂R
∂tr

∂tr
∂t

= −R̂ · vc
∂tr
∂t
. (7.151)

From eq. (7.143) we also have

R = |x − xc(tr)| = c(t − tr), (7.152)

so

∂R
∂t

= c
(
1 −

∂tr
∂t

)
. (7.153)

This and eq. (7.151) gives us

∂tr
∂t

=
1

1 − R̂ · vc
c

. (7.154)

For the gradient we operate on the implicit equation eq. (7.152) again.
This gives us

∇R = ∇(ct − ctr) = −c∇tr. (7.155)

However, we can also use the spatial definition of R = |x − xc(t′)|. Note that
this distance R = R(tr) is a function of space and time, since tr = tr(x, t) is
implicitly a function of the spatial and time positions at which the retarded
time is to be measured.

∇R = ∇
√

(x − xc(tr))2

=
1

2R
∇(x − xc(tr))2

=
1
R

(xβ − xβc)eα∂α(xβ − xβc(tr))

=
1
R

(R)βeα(δαβ − ∂αxβc(tr)).

(7.156)

We have only this bit ∂αxβc(tr) to expand, but that is just going to require a
chain rule expansion. This is easier to see in a more generic form

∂ f (g)
∂xα

=
∂ f
∂g

∂g
∂xα

, (7.157)
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so we have

∂xβc(tr)
∂xα

=
∂xβc(tr)
∂tr

∂tr
∂xα

, (7.158)

which gets us close to where we want to be

∇R =
1
R

R − (R)β
∂xβc(tr)
∂tr

eα
∂tr
∂xα


=

1
R

R −R ·
∂xβc(tr)
∂tr

∇tr

 . (7.159)

Putting the pieces together we have only minor algebra left since we can
now equate the two expansions of ∇R

−c∇tr = R̂ − R̂ · vc(tr)∇tr. (7.160)

This is given in the text, but these in between steps are left for us and for
our homework assignments! From this point we can rearrange to find the
desired result

∇tr = −
1
c

R̂
1 − R̂ · vc

c

= −
R̂
c
∂tr
∂t
. (7.161)

Part a.

Computing the EM fields from the Lienard-Wiechert potentials Now
we are ready to derive the values of E and B that arise from the Lienard-
Wiechert potentials. We have for the electric field. We will evaluate

E = −
1
c
∂A
∂t
−∇φ

B = ∇ ×B.
(7.162)

For the electric field we will use the chain rule on the vector potential

∂A
∂t

=
∂tr
∂t
∂A
∂tr

. (7.163)
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Similarly for the gradient of the scalar potential we have

∇φ = eα
∂φ

∂xα

= eα
∂φ

∂tr

∂tr
∂xα

=
∂φ

∂tr
∇tr

= −
∂φ

∂tr

R̂
c
∂tr
∂t
.

(7.164)

Our electric field is thus

E = −
∂tr
∂t

(
1
c
∂A
∂tr
−

R̂
c
∂φ

∂tr

)
. (7.165)

For the magnetic field we have

∇ ×A = eα ×
∂A
∂xα

= eα ×
∂A
∂tr

∂tr
∂xα

.

(7.166)

The magnetic field will therefore be found by evaluating

B = (∇tr) ×
∂A
∂tr

= −
∂tr
∂t

R̂
c
×
∂A
∂tr

. (7.167)

Let us compare this to R̂ ×E

R̂ ×E = R̂ ×
(
−
∂tr
∂t

(
1
c
∂A
∂tr
−

R̂
c
∂φ

∂tr

))
= R̂ ×

(
−
∂tr
∂t

1
c
∂A
∂tr

)
.

(7.168)

This equals eq. (7.167), verifying that we have

B = R̂ ×E, (7.169)

something that we can determine even without fully evaluating E.
We are now left to evaluate the retarded time derivatives found in

eq. (7.165). Our potentials are

φ(x, t) =
e

R(tr)
∂tr
∂t

A(x, t) =
evc(tr)
cR(tr)

∂tr
∂t
.

(7.170)
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It is clear that the quantity ∂tr/∂t is going to show up all over the place, so
let us label it γtr . This is justified by comparing to a particle’s boosted rest
frame worldlinect′

x′

 = γ

 1 −β

−β 1


ct

0

 =

 γct

−γβct

 , (7.171)

where we have ∂t′/∂t = γ, so for the remainder of this part of this problem
we will write

γtr ≡
∂tr
∂t

=
1

1 − R̂ · vc
c

. (7.172)

Using primes to denote partial derivatives with respect to the retarded time
tr we have

φ′ = e
(
−

R′

R2γtr +
γ′tr
R

)
A′ = e

vc

c

(
−

R′

R2γtr +
γ′tr
R

)
+ e

ac

c
γtr

R
,

(7.173)

so the electric field is

E = −γtr

(
1
c

A′ −
R̂
c
φ′

)
= −

eγtr

c

(
vc

c

(
−

R′

R2γtr +
γ′tr
R

)
+

ac

c
γtr

R
− R̂

(
−

R′

R2γtr +
γ′tr
R

))
= −

eγtr

c

(
vc

c

(
c

R2γtr +
γ′tr
R

)
+

ac

c
γtr

R
− R̂

(
c

R2γtr +
γ′tr
R

))
= −

eγtr

cR

(
γtr

(
ac

c
+

vc

R
−

R̂c
R

)
+ γ′tr

(vc

c
− R̂

))
.

(7.174)

Here is where things get slightly messy.

γ′tr =
∂

∂tr

1
1 − vc

c · R̂

= −γ2
tr
∂

∂tr

(
1 −

vc

c
· R̂

)
= γ2

tr

(ac

c
· R̂ +

vc

c
· R̂′

)
,

(7.175)



7.7 problems 255

and messier

R̂′ =
∂

∂tr

R
R

=
R′

R
−

RR′

R2

= −
vc

R
−

R̂(−c)
R

=
1
R

(
−vc + cR̂

)
,

(7.176)

then a bit unmessier

γ′tr = γ2
tr

(ac

c
· R̂ +

vc

c
· R̂′

)
= γ2

tr

(ac

c
· R̂ +

vc

cR
· (−vc + cR̂)

)
= γ2

tr

(
R̂ ·

(ac

c
+

vc

R

)
−

v2
c

cR

)
.

(7.177)

Now we are set to plug this back into our electric field expression and start
grouping terms

E = −
eγ2

tr

cR

(
ac

c
+

vc

R
−

R̂c
R

+ γtr

(
R̂ ·

(ac

c
+

vc

R

)
−

v2
c

cR

) (vc

c
− R̂

))
= −

eγ3
tr

cR

((
ac

c
+

vc

R
−

R̂c
R

) (
1 − R̂ ·

vc

c

)
+

(
R̂ ·

(ac

c
+

vc

R

)
−

v2
c

cR

) (vc

c
− R̂

))
= −

eγ3
tr

c2R

(
ac

(
1 − R̂ ·

vc

c

)
+ R̂ · ac

(vc

c
− R̂

))
−

eγ3
tr

cR

((
vc

R
−

R̂c
R

) (
1 − R̂ ·

vc

c

)
+

(
R̂ ·

(vc

R

)
−

v2
c

cR

) (vc

c
− R̂

))
.

(7.178)

Using

a × (b × c) = b(a · c) − c(a · b). (7.179)

We can verify that

−

(
ac

(
1 − R̂ ·

vc

c

)
+ R̂ · ac

(vc

c
− R̂

))
= −ac + aR̂ ·

v
c
− R̂ · ac

vc

c
+ R̂ · acR̂

= R̂ ×
((

R̂ −
vc

c

)
× ac

)
,
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(7.180)

which gets us closer to the desired end result

E =
eγ3

tr

c2R
R̂ ×

((
R̂ −

vc

c

)
× ac

)
−

eγ3
tr

cR2

((
vc − R̂c

) (
1 − R̂ ·

vc

c

)
+

(
R̂ · vc −

v2
c

c

) (vc

c
− R̂

))
.

(7.181)

It is also easy to show that the remaining bit reduces nicely, since all the
dot product terms conveniently cancel

−

((
vc − R̂c

) (
1 − R̂ ·

vc

c

)
+

(
R̂ · vc −

v2
c

c

) (vc

c
− R̂

))
= c

(
1 −

v2
c

c2

) (
R̂ −

v
c

)
.

(7.182)

This completes the exercise, leaving us with

E =
eγ3

tr

c2R
R̂ ×

((
R̂ −

vc

c

)
× ac

)
+

eγ3
tr

R2

(
1 −

v2
c

c2

) (
R̂ −

vc

c

)
B = R̂ ×E.

(7.183)

Looking back to eq. (7.172) where γtr was defined, we see that this
compares to (63.8-9) in the text.

Part b.

EM fields from a uniformly moving source For a uniform source moving
in space at constant velocity

xc(t) = vt, (7.184)

our retarded time measured from the spacetime point (ct, x) is defined
implicitly by

R = |x − xc(tr)| = c(t − tr). (7.185)

Squaring this we have

x2 + v2t2
r − 2trx · v = c2t2 + c2t2

r − 2cttr, (7.186)
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or

(c2 − v2)t2
r + 2tr(−ct + x · v) = x2 − c2t2. (7.187)

Rearranging to complete the square we have√c2 − v2tr −
tc2 − x · v√

c2 − v2

2

= x2 − c2t2 +
(tc2 − x · v)2

c2 − v2

=
(x2 − c2t2)(c2 − v2) + (tc2 − x · v)2

c2 − v2

=
x2c2 − x2v2 −��c4t2 + c2t2v2 +��t2c4 + (x · v)2 − 2tc2(x · v)

c2 − v2

=
c2(x2 + t2v2 − 2t(x · v)) − x2v2 + (x · v)2

c2 − v2

=
c2(x − vt)2 − (x × v)2

c2 − v2 .

(7.188)

Taking roots (and keeping the negative so that we have tr = t − |x|/c for
the v = 0 case, we have√

1 −
v2

c2 ctr =
1√

1 −
v2

c2

ct − x ·
v
c
−

√
(x − vt)2

−

(
x ×

v
c

)2
 , (7.189)

or with β = v/c, this is

ctr =
1

1 − β2

(
ct − x · β −

√
(x − vt)2

− (x × β)2
)
. (7.190)

What is our retarded distance R = ct − ctr? We get

R =
β · (x − vt) +

√
(x − vt)2 − (x × β)2

1 − β2 . (7.191)

For the vector distance we get (with β · (x∧ β) = (β · x)β − xβ2)

R =
x − vt + β · (x∧ β) + β

√
(x − vt)2 − (x × β)2

1 − β2 . (7.192)
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For the unit vector R̂ = R/R we have

R̂ =
x − vt + β · (x∧ β) + β

√
(x − vt)2 − (x × β)2

β · (x − vt) +

√
(x − vt)2 − (x × β)2

. (7.193)

The acceleration term in the electric field is zero, so we are left with just

E =
eγ3

tr

R2

(
1 −

v2
c

c2

) (
R̂ −

vc

c

)
. (7.194)

Leading to γtr , we have

R̂ · β =
β · (x − vt + R∗β)
β · (x − vt) + R∗

, (7.195)

where, following §38 of the text we write

R∗ =

√
(x − vt)2 − (x × β)2. (7.196)

This gives us

γtr =
β · (x − vt) + R∗

R∗(1 − β2)
. (7.197)

Observe that this equals one when β = 0 as expected.
We can also compute

R̂ − β =
x + β · (x∧ β) − vt + β

√
(x − vt)2 − (x × β)2

β · (x − vt) +

√
(x − vt)2 − (x × β)2

− β

=
(x − vt)(1 − β2)

β · (x − vt) +

√
(x − vt)2 − (x × β)2

.

(7.198)

Our long and messy expression for the field is therefore

E = eγ3
tr

1
R2 (1 − β2)(R̂ − β)

= e
(
β · (x − vt) + R∗

R∗(1 − β2)

)3 (1 − β2)2

(β · (x − vt) + R∗)2 (1 − β2)
(x − vt)(1 − β2)
β · (x − vt) + R∗

.

(7.199)
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This gives us our final result

E = e
1

(R∗)3 (1 − β2)(x − vt). (7.200)

As a small test we observe that we get the expected result

E = e
x
|x|3

, (7.201)

for the β = 0 case.
When v = Ve1 this also recovers equation (38.6) from the text as desired,

and if we switch to primed coordinates

x′ = γ(x − vt)

y′ = y

z′ = z

(1 − β2)r′2 = (x − vt)2 + (y2 + z2)(1 − β2),

(7.202)

we recover the field equation derived twice before in previous problem
sets

E =
e

(r′)3 (x′, γy′, γz′). (7.203)

EM fields from a uniformly moving source along x axis Initially I had
errors in the vector treatment above, so tried with the simpler case using
uniform velocity v along the x axis instead. Comparison of the two showed
where my errors were in the vector algebra, and that is now also fixed up.

Performing all the algebra to solve for tr in

|x − vtre1| = c(t − tr), (7.204)

I get

ctr =
ct − xβ −

√
(x − vt)2 + (y2 + z2)(1 − β2)

1 − β2 = −γ(βx′ + r′). (7.205)

This matches the vector expression from eq. (7.190) with the special case
of v = ve1 so we at least started off on the right foot.

For the retarded distance R = ct − ctr we get

R =
β(x − vt) +

√
(x − vt)2 + (y2 + z2)(1 − β2)

1 − β2 = γ(βx′ + r′). (7.206)
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This also matches eq. (7.191), so things still seem okay with the vector
approach. What is our vector retarded distance

R = x − βctre1

= (x − βctr, y, z)

=

 x − vt + β

√
(x − vt)2 + (y2 + z2)(1 − β2)

1 − β2 , y, z


= (γ(x′ + βr′), y′, z′) ,

(7.207)

so

R̂ =
1

γ(βx′ + r′)
(γ(x′ + βr′), y′, z′)

=
1

βx′ + r′

(
x′ + βr′,

y′

γ
,

z′

γ

)
.

(7.208)

R̂ − β =
1

γ(βx′ + r′)
(γ(x′ + βr′), y′, z′) − (β, 0, 0)

=
1

βx′ + r′

(
x′(1 − β2),

y′

γ
,

z′

γ

)
=

1
γ(βx′ + r′)

(x − vt, y, z).

(7.209)

For ∂tr/∂t, using R̂ calculated above, or from eq. (7.205) calculating
directly I get

∂tr
∂t

=
r′ + βx′

r′(1 − β2)
=
γ(r′ + βx′)

R∗
, (7.210)

where, as in §38 of the text, we write

R∗ =

√
(x − vt)2 + (y2 + z2)(1 − β2). (7.211)

Putting all the pieces together I get

E = e(1 − β2)
(x − vt, y, z)

�����γ(βx′ + r′)

(
�����
γ(r′ + βx′)

R∗

)3 1

������
γ2(βx′ + r′)2

, (7.212)

so we have

E = e
1 − β2

(R∗)3 (x − vt, y, z). (7.213)

This matches equation (38.6) in the text.
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Exercise 7.5 Energy-momentum tensor and electromagnetic forces.

In class, it was argued that in the absence of charges and currents, the
energy-momentum tensor (or the “stress-energy” tensor) of the electro-
magnetic field

T km = −
1

4π
Fk jFm

j +
1

16π
gkmFi jFi j, (7.214)

is conserved:

∂kT km = 0. (7.215)

In this problem, you will study the fate of eq. (7.214), the law of energy and
momentum conservation in the presence of charged particles and currents
given by a 4-vector current jl.

a. Conservation relation in the presence of sources Use the equations
of motion in the presence of sources, ∂lFlk = 4π

c jm, the fact that
Flk = ∂lAm − ∂mAl, and appropriate index gymnastics to show that
eq. (7.215) is now replaced by

∂kT km = −
1
c

Fml jl. (7.216)

b. Timelike component of the conservation relation Consider the
m = 0 components of eq. (7.216). Show that it implies the energy
conservation equation already discussed in class (see notes pp.
125-127):

∂E

∂t
+∇ · S = −E · j. (7.217)

Recall the physical interpretation of the various terms in this equa-
tion.

c. Spacelike component of the conservation relation Consider the
m = α components of eq. (7.216). Show that it implies that:

∂

∂t

(
S α

c2

)
+

∂

∂xβ
T βα = −

(
ρEα +

1
c
(j ×B)α

)
≡ − f α.

(7.218)

Give a physical interpretation of f α.
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d. Integrated over a volume Integrate eq. (7.218) over a closed volume
V and use integration by parts to obtain

∂

∂t

∫
V

d3x
S α

c2 = −

∫
∂V=S

d2σβT βα −

∫
V

d3x f α. (7.219)

Give a physical interpretation of eq. (7.219) as expressing momen-
tum conservation. In particular, explain how, if the volume V is
that of a body (made of charged particles – bound or otherwise),
this implies that:

d
dt

(pEM field in V + pcharged particles in V)
α

=

∫
surface of body

((surface force)α, ) ,
(7.220)

where the surface force acts on body due to shears and pressures.
(Note that here d2σβ is an outward normal vector to the surface
of the body, so the surface has a relative minus signs w.r.t the one
from class, where an inward normal was used.)

e. Pressure and shear of linearly polarized EM wave Imagine that a
place linearly polarized electromagnetic wave is falling on a flat
surface at an angle of incidence α, and is completely absorbed by
the body. Find the pressure and shear on a unit area of the surface
using the Maxwell stress tensor.

Answer for Exercise 7.5

Part a. Diving straight in, a contraction of the coordinates of the four
gradient with the stress energy tensor appears to produce most of the
desired result

∂kT km =
1

4π

(
−∂k(Fk jFm

j) +
1
4

gkm∂k(Fi jFi j)
)

=
1

4π

(
−∂k(Fk jFm j) +

1
2

Fi j∂
mFi j

)

=
1

4π


−Fm j ∂kFk j

= 4π j j/c

− Fk j∂
kFm j

rename k → i

+
1
2

Fi j∂
mFi j


= −

1
c

Fma ja +
Fi j

4π

(
−∂iFm j +

1
2
∂mFi j

)
.

(7.221)
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To complete the task, it only remains to show that this second term is zero.
First let us get rid of the 1/2 by writing 1 = 1/2 + 1/2 using the index
swapping trick

Fi j∂
iFm j =

1
2

Fi j∂
iFm j +

1
2

F ji∂
jFmi

=
1
2

Fi j
(
∂iFm j − ∂ jFmi

)
.

(7.222)

This gives us for the second term

Fi j

4π

(
−∂iFm j +

1
2
∂mFi j

)
=

Fi j

8π

(
∂iF jm + ∂ jFmi + ∂mFi j

)
=

Fi j

8π

(
∂i∂ jAm − ∂i∂mA j + ∂ j∂mAi − ∂ j∂iAm + ∂m∂iA j − ∂m∂ jAi

)
.

(7.223)

By commuting derivatives, assuming the typical sufficient continuity of the
fields, all of these six terms in braces cancel. This completes this portion
of the exercise.

Part b. The goal is to express the four divergence

∂kT k0 = −
1
c

F0a ja, (7.224)

explicitly utilizing a space time split from some stationary frame where
the fields and currents are observed as E, B, j, and ρ. On the RHS, because
F00 = 0 the summation is reduced to three indices

F0a ja = F0α jα = −F0α(j)α. (7.225)

In this the tensor factor is

F0α = ∂0Aα − ∂αA0

=
1
c
∂tAα + ∂αA0

= −(E)α,

(7.226)

and the RHS of eq. (7.224) is reduced to

−
1
c

F0a ja = −
1
c

E · j. (7.227)
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Now let us expand the LHS. Recall that

T 00 =
1

8π
(E2 + B2) = E

Tα0 =
1

4π
(E ×B)α =

Sα

c
.

(7.228)

With ∂0 = ∂t/c, our equation becomes

∂kT k0 =
1
c
∂

∂t
E +

∂

∂xα
Sα

c
= −

1
c

E · j. (7.229)

Multiplying through by c recovers eq. (7.217) as desired.

Part c. The goal is to expand

∂kT kα = −
1
c

Fαl jl. (7.230)

On the RHS is

−
1
c

Fαl jl = −
1
c

(
Fα0 j0 + Fαβ jβ

)
= −Eαρ −

1
c

(−εσαβBσ)(−jβ)

= −Eαρ −
1
c
εαβσBσjβ

= −(ρE +
j
c
×B)α.

(7.231)

For the LHS of eq. (7.230), using

T 0α =
Sα

c
. (7.232)

Putting the pieces together leaves us with the desired relationship

1
c
∂

∂t
S α

c
+
∂T βα

∂xβ
= −

(
ρE +

j
c
×B

)α
. (7.233)

The RHS can be seen to be the (negated) Lorentz force per unit volume.
Introducing discrete charge and current densities utilizing delta functions
and integrating, gives us exactly the spatial (non-energy) components of
the Lorentz force equation (this is done in detail in the next portion of this
problem below).
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This is a rather interesting result. In §33 of [11] the energy momentum
tensor was found to be closely related to the spacetime translation sym-
metries for the charge and current free Lagrangian density for the field
(although this produced a non-symmetric tensor and a special value of zero
had to be added to get it into symmetric form). So without any requirement
to perform variation of the interaction action

S = −mc
∫

ds −
e
c

∫
dsuiAi, (7.234)

one still ends up with all the components of the Lorentz force equation!
Only the Lagrangian density for the field was required to obtain the result
(which was also indirectly used to obtain the relation of the field to the
charge and current densities). The interaction action (and thus the Lorentz
force equation itself) seems to be almost redundant. What it does provide,
however, is excellent motivation for the labeling of

S α

c2 , (7.235)

as momentum density for the EM field. In class when the Poynting vector
S was introduced, and a dimensional analysis motivation was presented,
we were told a more satisfying identification of S/c2 with the momentum
density would be forthcoming and here it is. With force per volume on the
RHS and the time derivative of a “something” S α/c2 on the LHS, one is
forced to conclude that this “something” is a momentum density. Not just
by dimensions, but by context in its use in a force like equation.

Part d. Integrating eq. (7.218) over a closed volume V gives

0 =

∫
V

d3x
∂

∂t

(
S α

c2

)
+

∫
V

d3x
∂

∂xβ
T βα +

∫
V

d3xρEα +
1
c
(j ×B)α

=
∂

∂t

∫
V

d3x
S α

c2 +

∫
V

d3x∇ · (eβT βα)

+
∑

b

qb

∫
V

d3x
(
Eα +

1
c
(vb(t) ×B)α

)
δ3(x − xb(t))

=
∂

∂t

∫
V

d3x
S α

c2 +

∫
∂V

d2σ(n · eβ)T βα

+
∑

b

qb

(
Eα(xb) +

(
vb(t)

c
×B(xb)

)α)
.

(7.236)
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In the first integral, the integration and time derivative operational order
was exchanged. In the second integral the contraction was written as a
spatial divergence ∂βT βα = ∇ · (eβT βα), so that Stokes theorem could be
used to express this integral as the integral over the boundary of the surface,
with outward normal n. In the last, the charge and current densities were
expressed in terms of discrete particles

ρ =
∑

b

qbδ
3(x − xb(t))

j =
∑

b

qbvb(t)δ3(x − xb(t)).
(7.237)

So with the surface area element d2σ, and the outward normal n on that sur-
face, an indexed normal area element can be introduced as in the problem
statement

d2σβ ≡ d2σ(n · eβ). (7.238)

So our integrated conservation relationship is left in the form

∂

∂t

∫
V

d3x
S α

c2 +

∫
∂V

d2σβT βα = −
∑

b

qb

(
E(xb) +

(
vb(t)

c
×B(xb)

))α
.

(7.239)

Observe that the RHS is the α component of the (negated) Lorentz force
fα on the particles from the field, so the RHS represents the force of the
charge distribution on the field. Looking at the LHS of the equation where
the time derivative of

∫
d3xS α/c2 appears, there is finally an excellent

justification for calling S α/c2 the momentum density.
Once this Lorentz force is expressed as a rate of change of momentum

d
dt

pcharges =
∑

b

qb

(
E(xb) +

vb(t)
c
×B(xb)

)
, (7.240)

and the field momentum is also expressed in terms of the momentum
density

pEM field =

∫
d3x

S
c2 , (7.241)

the desired result is produced

d
dt

(pEM field + pcharges)
α

= −

∫
∂V

d2σβT βα. (7.242)
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Any change in the momentum of the field or the charges acted on by the
field in a volume, is found to equal a force per unit area, acting on the
surface of that volume. Those components of this force that are normal to
the surface can be called pressure, and just as in mechanics, the portion of
this force per unit area acting tangentially along the surface, can be called
shear.

Part e. In class we found a Coulomb gauge solution for the linearly
polarized EM wave to be

E = kβ sin(ωt − k · x)

B = k̂ ×E
c2k2 = ω2

β · k = 0,

(7.243)

where k̂ is the propagation direction. For this problem, let us align k along
the z-axis, and β along the x-axis. The fields are then just

E = kβ sin(ωt − kz)e1

B = kβ sin(ωt − kz)e2.
(7.244)

Computation of the stress energy tensor components becomes straightfor-
ward.

T 00 =
1

8π
(E2 + B2) =

k2β2

4π
sin2(ωt − k · x). (7.245)

The Poynting vector

S =
c

4π
E ×B =

ck2β2

4π
sin2(ωt − kz)e3, (7.246)

determines the energy flux components of the tensor T 0α = S α/c

T 01 = T 10 = 0

T 02 = T 20 = 0

T 03 = T 30 =
k2β2

4π
sin2(ωt − kz).

(7.247)
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The stress and shear components are left. All the off diagonal components
are zero

T 21 = T 12 = −
1

4π
(Ex��Ey +��BxBy) = 0

T 31 = T 13 = −
1

4π
(Ex��Ez +���BxBz) = 0

T 32 = T 23 = −
1

4π
(���EyEz + By��Bz) = 0.

(7.248)

Two of our diagonal stress components are also zero

T 11 =
1

4π

(
E2

x +
�
�B2
y −

1
2

(E2
x + B2

y)
)

= 0

T 22 =
1

4π

(
�
�E2
y + B2

y −
1
2

(E2
x + B2

y)
)

= 0.
(7.249)

(since E2
x = B2

y = k2β2 sin2(ωt − kz)). We are left with just the T 33 term

T 33 = −
1

4π

(
�
�E2
z + �

�B2
z −

1
2

(E2
x + B2

y)
)

=
1

4π
k2β2 sin2(ωt − kz). (7.250)

In matrix form this is

∥∥∥T ab
∥∥∥ =

k2β2

4π
sin2(ωt − kz)


1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1


. (7.251)

Check: The trace should be zero:

T i
i = T 00 − T 33 = 0. (7.252)

Continuing: From ∂aT ab = 0 we have

∂

∂t

(S z

c2

)
+

∂

∂xβ
T β3 = 0, (7.253)

which is what can be used to compute the force. Integrating this we have

∂

∂t

∫
V

d3x
S z

c2 = −

∫
∂V

d2σ(n · eβ)T β3

= −

∫
∂V

d2σ(n · e3)T 33.

(7.254)
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On the RHS, the RHS of the EM field momentum, is the force that the field
applies to the volume it passes through. Let us align the wall that absorbs
the light tilted at an angle α from the vertical. Temporarily utilizing com-
plex numbers with e3 ∼ 1 and e1 ∼ i to compute the rotated coordinates
we have

n ∼ iei(π/2−α)

= i2e−iα

= − cosα + i sinα

∼ −e3 cosα + e1 sinα.

(7.255)

PICTURE: ...
The dot product is thus

n · e3 = − cosα. (7.256)

If we create a volume bounded by an area ∆A on the surface, passing into
the wall, the stress energy tensor is only non-zero on the outwards facing
surface, so the force on that surface is

F = −

∫
∂V

d2σ(n · e3)T 33e3

= −

∫
∂V

d2σ(− cosα)
k2β2

4π
sin2(ωt − kz)e3

=

∫
∂V

d2σ cosα
k2β2

8π
(1 − cos(2(ωt − kz))e3.

(7.257)

Averaged over one period T = 2π/ω, or one wave length λ = 2π/k, we
find that the average momentum transferred to the wall per unit time is

〈F〉 = ∆A cosα
k2β2

8π
e3. (7.258)

This can be resolved into a component normal to the absorbing wall (the
pressure) and a component tangential to the wall. The normal component
is just the inwards normal

−n = e3 cosα − e1 sinα. (7.259)

Tangent to this is

t = e1 cosα + e3 sinα. (7.260)
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Dotting with the time averaged force per unit area above we have the
pressure and shear respectively

Pressure = cos2 α
k2β2

8π

Shear = cosα sinα
k2β2

8π
.

(7.261)

Check: A sanity check with α = 0, we see that the pressure is maximized
when the light is perpendicular to the wall, and we have zero shear at that
angle as expected. For α = π/2 we see that both the pressure and shear
drop to zero, also a good sanity check.

Disclaimer FIXME: One mark was lost in the calculation of the non-
diagonal terms of the Maxwell stress tensor. Believe that one of those must
have been non-zero. Go re-calculate.

Exercise 7.6 Monochromatic stress energy tensor.

a. Show that the energy momentum tensor of a plane monochromatic
wave with 4-vector

ki =

(
ω

c
,k

)
, (7.262)

and energy density E can be written as

T i j =
Ec2

ω2 kik j. (7.263)

b. Can one conclude now that Ec2

ω2 for a plane wave is a Lorentz scalar?

Answer for Exercise 7.6

Part a. Determining the stress energy tensor. In the Coulomb gauge we
used Fourier methods to find that the potential had the form

φ = 0

A = β cos(ωt − k · x)

c2k2 = ω2

β · k = 0.

(7.264)
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For this problem it appears that working in the Lorentz gauge is required,
and we want solutions of the form

Am = Dm cos(kaxa). (7.265)

First, observe that the Lorentz gauge condition ∂mAm = 0 requires

−Dmkm sin(kaxa) = 0. (7.266)

Application of the wave equation operator

∂b∂
bAm = 0, (7.267)

gives us

−Dmkbkb cos(kaxa) = 0, (7.268)

providing the lightlike constraint on k. All told our four potential with
constraints is

Am = Dm cos(kaxa)

kaka = 0

Dmkm = 0.

(7.269)

We could also arrive at this point using 4D Fourier methods, which would
be fun, but a bit more time consuming, and a little overkill given that the
problem only requires us to tackle the linear monochromatic case.

On to the problem. We now need our electromagnetic tensor components.

Fi j = ∂iA j − ∂ jAi

= D j∂i cos(kaxa) − Di∂ j cos(kaxa)

= sin(kaxa)(Dik j − D jki).

(7.270)

Our stress energy tensor is

T i j =
1

4π

(
−FiaFbagb j +

1
4

gi jFabFab
)

=
1

4π

(
−FaiFabgb j +

1
4

gi jFabFab
)
.

(7.271)
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Let us now expand the product of tensors

FabFai = sin2(kaxa)(Dakb − Dbka)(Daki − Dika)

= sin2(kaxa)(DakbDaki − DakbDika − DbkaDaki + DbkaDika)

= sin2(kaxa)(DaDakbki −�
��DakakbDi − Db���kaDaki + DbDi

�
��kaka)

= sin2(kaxa)DaDakbki.

(7.272)

We see from this that our action term is zero

FabFab = sin2(kaxa)DaDa
�
��kbkb, (7.273)

so the stress energy tensor is reduced to

T i j = −
1

4π
sin2(kaxa)DaDakbkig jb

= −
1

4π
sin2(kaxa)DaDak jki.

(7.274)

The energy density term of the stress energy tensor encapsulates most of
these terms

T 00 = −
1

4π
sin2(kaxa)DaDaω

2

c2 = E, (7.275)

so we can write

T i j = E
c2

ω2 kik j, (7.276)

which completes the first part of this problem.

Part b. On the question of the Lorentz scalar. Yes, one can now conclude
that Ec2

ω2 for a plane wave is a Lorentz scalar.
Observe that the kik j transforms as a rank 2 tensor, as does T i j. Because

the product Ec2/ω2 and kik j must transform as a rank 2 tensor, this can
only mean that the Ec2/ω2 portion transforms as a Lorentz scalar.
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Reading Covering chapter 5 §37, and chapter 8 §65 material from the
text [11], and lecture notes RelEMpp181-195.pdf.

8.1 a closed system of charged particles.

Consider a closed system of charged particles (ma, qa) and imagine there
is a frame where they are non-relativistic va/c � 1. In this case we can
describe the dynamics using a Lagrangian only for particles. i.e.

L = L(x1, · · · , xN , v1, · · · , vN). (8.1)

If we work t order (v/c)2.
If we try to go to O((v/c)3, it is difficult to only use L for particles.
This can be inferred from

P =
2
3

e2

c3

∣∣∣d̈∣∣∣2. (8.2)

because at this order, due to radiation effects, we need to include EM field
as dynamical.

8.2 start simple.

Start with a system of (non-relativistic) free particles

S =
∑

a

−mac
∫

a-th particle worldline
ds

=
∑

a

−mac2
∫ t2

t1
dt

√
1 − v2

a/c2

≈
∑

a

−mac2
∫ t2

t1
dt

(
1 −

1
2

v2

c2 −
1
8

v4
a

c4

)
=

∑
a

∫ t2

t1
dt

(
��

��
−mac2 +

1
2

mav2 +
1
8

mav2
a

v2
a

c2

)
.

(8.3)
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So in the non-relativistic limit, after dropping the constant term that does
not effect the dynamics, our Lagrangian is

L(xa, va) =
1
2

∑
a

mav2
a +

1
8

mav4
a

c2 . (8.4)

The first term is O((v/c)0) where the second is O((v/c)2).
Next include the fact that particles are charged.

Linteraction =
∑

a

(
�������
qa

va

c
·A(xa, t) − qaφ(xa, t)

)
. (8.5)

Here, working to O((v/c)0), where we consider the particles moving so
slowly that we have only a Coulomb potential φ, not A.

HERE: these are NOT ’EXTERNAL’ potentials. They are caused by all
the charged particles.

∂iFil =
4π
c

jl = 4πρ. (8.6)

For l = α we have have 4πρv/c, but we will not do this today (tomorrow).
To leading order in v/c, particles only created Coulomb fields and they

only “feel” Coulomb fields. Hence to O((v/c)0), we have

L =
∑

a

mav2
a

2
− qaφ(xa, t). (8.7)

What is the φ(xa, t), the Coulomb field created by all the particles.

How to find?

∂iFi0 =
4π
c

= 4πρ, (8.8)

or

∇ ·E = 4πρ = −∇2φ, (8.9)

where

ρ(x, t) =
∑

a

qaδ
3(x − xa(t)). (8.10)

This is a Poisson equation

∆φ(x) =
∑

a

qa4πδ3(x − xa). (8.11)
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(where the time dependence has been suppressed). This has solution

φ(x, t) =
∑

b

qb

|x − xb(t)|
. (8.12)

This is the sum of instantaneous Coulomb potentials of all particles at
the point of interest. Hence, it appears that φ(xa, t) should be evaluated in
eq. (8.12) at xa?

However eq. (8.12) becomes infinite due to contributions of the a-th
particle itself. Solution to this is to drop the term, but let us discuss this
first.

Let us talk about the electrostatic energy of our system of particles.

E =
1

8π

∫
d3x

(
E2 +��B2

)
=

1
8π

∫
d3xE · (−∇φ)

=
1

8π

∫
d3x (∇ · (Eφ) − φ∇ ·E)

= −
1

8π

∮
d2σ ·Eφ +

1
8π

∫
d3xφ∇ ·E.

(8.13)

The first term is zero since Eφ for a localized system of charges ∼ 1/r3 or
higher as V → ∞.

In the second term

∇ ·E = 4π
∑

a

qaδ
3(x − xa(t)). (8.14)

So we have∑
a

1
2

∫
d3xqaδ

3(x − xa)φ(x). (8.15)

for

E =
1
2

∑
a

qaφ(xa). (8.16)

Now substitute eq. (8.12) into eq. (8.16) for

E =
1
2

∑
a

q2
a

|x − xa|
+

1
2

∑
a,b

qaqb

|xa − xb|
. (8.17)
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or

E =
1
2

∑
a

q2
a

|x − xa|
+

∑
a<b

qaqb

|xa − xb|
. (8.18)

The first term is the sum of the electrostatic self energies of all particles.
The source of this infinite self energy is in assuming a point like nature of
the particle. i.e. We modeled the charge using a delta function instead of
using a continuous charge distribution.

Recall that if you have a charged sphere of radius r
PICTURE: total charge q, radius r, our electrostatic energy is

E ∼
q2

r
. (8.19)

Stipulate that rest energy mec2 is all of electrostatic origin ∼ e2/re we get
that

re ∼
e2

mec2 . (8.20)

This is called the classical radius of the electron, and is of a very small
scale 10−13cm.

As a matter of fact the applicability of classical electrodynamics breaks
down much sooner than this scale since quantum effects start kicking in.

Our Lagrangian is now

La =
1
2

mav2
a − qaφ(xa, t). (8.21)

where φ is the electrostatic potential due to all other particles, so we have

La =
1
2

mav2
a −

1
2

∑
a,b

qaqb

|xa − xb|
. (8.22)

and for the system

L =
1
2

∑
a

mav2
a −

∑
a<b

qaqb

|xa − xb|
. (8.23)

This is THE Lagrangian for electrodynamics in the non-relativistic case,
starting with the relativistic action.

8.3 what is next?

We continue to the next order of v/c tomorrow.
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Reading Covering chapter 8 §65 material from the text [11], and lecture
notes RelEMpp181-195.pdf.

8.4 recap.

Last time we started with our relativistic Lagrangian for a single particle

La = −mc2

√
1 −

v2
a

c2 −
qa

c
dxi

dt
Ai. (8.24)

and found that to the first order in v/c we had

La =
1
2

mav2
a − qaφ(xa, t). (8.25)

Here the potential was approximated by Taylor expansion to contain just

φ(xa, t) =
1
2

∑
a,b

qb

|xa − xb|
+

qa

“xa − x′′a
. (8.26)

The second term is something that no sane person would write, and rep-
resents the infinite electrostatic self energy of a charge. This is infinite
because we have assumed (by virtue of using a delta function for the cur-
rent and charge distribution) that the charge is pointlike. The “solution” to
this problem was to omit this self energy term completely, essentially treat-
ing the charge of the electron as distributed. We avoid looking specifically
where it is located.

The logic here is that this does not affect the motion (i.e. The Euler
Lagrange equations) for the particle, provided it is viewed from afar, with
distances� size of particle.

We made an estimate of the scale for which our Lagrangian does not
apply. Namely

e2

re
∼ mec2, (8.27)

so we were able to conclude that the “classical radius of the electron”,
something that does not really exist, was of the scale

re ∼
e2

mec2 ∼ 10−13cm. (8.28)

(We do see this quantity arise in physics, but it is not a radius in the
classical sense).
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If this estimate was right, we would calculate that classical EM is value
at r � re ∼ 10−13cm. In reality, classical electrodynamics breaks down at
much larger distances.

NOTE: LHC is probing ∼ 10−16cm.
Our strategy here is to focus on the structure that can be observed. We

do not have a way to probe to the small scale distances where the structure
of the electron is relevant, so our description avoids that small range.

FIXME: I can not honestly say that I grasp the logic used to drop this self
energy term. This was compared to the concept of mass renormalization
from Quantum field theory, where if I recall correctly, certain infinities
were avoided by carefully avoiding points of singularity where there was
nothing observable. This is definitely something to revisit. If this shows
up even in classical electrodynamics, it is going to be even harder to
understand later with the complexity of Quantum field theory tossed into
the mix.

8.5 moving on to the next order in (v/c).

Recall that we dropped terms from the original Lagrangian, which was

La = −mac2

√
1 −

v2
a

c2 − qaφ(xa, t) + qa
va

c
·A(xa, t). (8.29)

We expanded the square root previously keeping only the first order term
in (v/c)2. Now we will do one more. Recall that our fractional binomial
series expansion is

(1 + x)n = 1 +
n
1!

x + +
n(n − 1)

2!
x2 + +

n(n − 1)(n − 2)
3!

x3 + · · · . (8.30)

so the square root in the Lagrangian expands as

−mac2

√
1 −

v2
a

c2

= −mac2

1 +
1

211!

(
−

v2
a

c2

)
+

1(−1)
222!

(
−

v2
a

c2

)2

+
1(−1)(−3)

233!

(
−

v2
a

c2

)3

+ · · ·


= −mac2 + ma

v2
a

2
+ ma

v4
a

8c2 + · · · .

(8.31)
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Thus to the next order the single particle Lagrangian is

La =
1
2

mav2
a +

ma

8
v4

a

c2 − qaφ(xa, t) + qa
va

c
·A(xa, t). (8.32)

Goal: Calculate φ(xa), A(xa) due to all other particles in a v/c expansion.
We write

φ(xa, t) = φ(0)(xa, t) + φ(1)(xa, t) + φ(2)(xa, t). (8.33)

Last time we found that the zeroth order term in this approximation was

φ(0)(xa, t) =
∑
b,a

qb

|xa(t) − xb(t)|
, (8.34)

and we wish to calculate the next term in the expansion.
We also want to a first order approximation of the vector potential

A(xa, t) = �����A(0)(xa, t) + A(1)(xa, t) +�����A(2)(xa, t). (8.35)

There is no zero order term and we do not need the second order term
(today).

Because

�A ∼
ρv
c
. (8.36)

We know the charge and current distributions

φ(x, t) =

∫
d3x

ρ (x′, t − |x − x′|/c)
|x − x′|

. (8.37)

ρ(x, t) =
∑

b

qbδ
3(x − xb(t))

j(x, t) =
∑

b

qbvb(t)δ3(x − xb(t)).
(8.38)

We will use the fact that particles have v � c. The typical time where the
charge distribution will change significantly is of order rab

v �
rab
c . (Here

rab/c is the time that it takes light to cross the interval, whereas rab/v is
the time that it takes the particle to do the same).

In other words, in time |x − x′|/c ∼ rab/c, ρ will not change much.

ρ
(
x′, t −

∣∣∣x − x′
∣∣∣/c) ≈ ρ(x′, t)−

|x − x′|
c

∂

∂t
ρ(x′, t) +

1
2

(
|x − x′|

c

)2
∂2

∂t2 ρ(x′, t).
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(8.39)

φ(x, t) =

∫
d3x′

ρ(x′, t)
|x − x′|

−
∂

∂t

∫
d3x′

1
c
ρ(x′, t)

+
1

2c2

∫
d3x

∣∣∣x − x′
∣∣∣ ∂2

∂t2 ρ(x′, t).
(8.40)

The second integral is the total charge ×1/c, and does not change in time.
So to first order our charge density is

ρ
(
x′, t −

∣∣∣x − x′
∣∣∣/c) ≈ ρ(x′, t) =

∑
b

qb

|x − xb(t)|
. (8.41)

How about A?

A(xa, t) = �����A(0)(xa, t) + A(1)(xa, t) +�����A(2)(xa, t). (8.42)

A(1) =
1
c

∫
d3x′

1
|x − x′|

j
(
x′, t −

∣∣∣x − x′
∣∣∣/c)

≈
1
c

∫
d3x′

1
|x − x′|

j(x′, t).
(8.43)

Ah, this shows why it was written that there is no second order term.
Because j ∼ va, we necessarily have va/c dependence even in the zeroth
order expansion about t = 0 in our retarded time expansion of A(x′, tr).

Assembling all the results, we have

La =
1
2

mav2
a +

ma

8
v4

a

c2 − qaφ
(0)(xa, t)− qaφ

(2)(xa, t) + qa
va

c
·A(1)(xa, t).

(8.44)

φ(2)(x, t) =
∂

∂t

(
1

2c2

∂

∂t

∫
d3x′

∣∣∣x − x′
∣∣∣ρ(x′, t)

)
=
∂

∂t

 1
2c2

∂

∂t

∫
d3x′

∣∣∣x − x′
∣∣∣∑

b

qbδ
3(x − xb(t))


=
∂

∂t

 1
2c2

∂

∂t

∑
b

qb|x − xb(t)|

 .
(8.45)
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And

A(1)(x, t) =
1
c

∫
d3x′

1
|x − x′|

j(x, t)

=
1
c

∫
d3x′

1
|x − x′|

∑
b

qbvbδ
3(x − xb)

=
1
c

∑
b

qbvb
1

|x − xb|
.

(8.46)

Recall that φ(0) was given by eq. (8.34).

8.6 a gauge transformation to simplify things.

Remember: Gauge transformation

φ′(x, t) = φ(x, t) −
1
c
∂ f (x, t)
∂t

A′(x, t) = A(x, t) +∇ f (x, t).
(8.47)

This will not change the physics. Take

f (x, t) =
∑

b

qb

2c
∂

∂t
|x − xb(t)|. (8.48)

Then

φ′(2)
= 0. (8.49)

A′(1)(x, t) =
1
c

∑
b

qbvb

|x − xb|
+∇

∑
b

qb

2c
∂

∂t
|x − xb|. (8.50)

Inverting the order of time and space derivatives we find

∇
∂

∂t
|x − xb(t)| =

∂

∂t
∇|x − xb(t)|

=
∂

∂t
eα∂α((xβ − xβb(t))2)1/2

=
∂

∂t
eα

(xβ − xβb(t))∂α(xβ − xβb(t))

|x − xb(t)|

=
∂

∂t
eα

(xβ − xβb(t))δβα
|x − xb(t)|

=
∂

∂t
x − xb(t)
|x − xb(t)|

.

(8.51)
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Let us write

n ≡
x − xb(t)
|x − xb|

, (8.52)

for the unit vector in the direction pointing from xb to x. Evaluating the
time derivative, we have

ṅ =
−vb(t)
|x − xb(t)|

+ (x − xb(t))
∂

∂t
1

|x − xb(t)|

=
−vb(t)
|x − xb(t)|

+ (x − xb(t))
(
−

1

�2

)
�2(xα − xαb (t)(−vαb (t))

|x − xb(t)|3

=
−vb(t)
|x − xb(t)|

+
n(n · vb)
|x − xb(t)|

.

(8.53)

Assembling all the results we have

A′(1)(x, t) =
∑

b

qb
vb + n(n · vb)

2c|x − xb|
, (8.54)

and the Lagrangian for our particle after the gauge transformation is

La =
1
2

mav2
a +

ma

8
v4

a

c2 −
∑
b,a

qaqb

|xa(t) − xb(t)|
+

∑
b

qaqb
va · vb + (n · va)(n · vb)

2c2|x − xb|
.

(8.55)

Next time we will probably get to the Lagrangian for the entire system.
It was hinted that this is called the Darwin Lagrangian (after Charles
Darwin’s grandson).

Reading Covering chapter 8 §65 material from the text [11], and lecture
notes RelEMpp181-195.pdf.

Next week (last topic): attempt to go to the next order (v/c)3 - radiation
damping, the limitations of classical electrodynamics, and the relevant
time/length/energy scales.

8.7 recap.

A system of N charged particles ma, qa; a ∈ [1,N] closed system and
nonrelativistic, va/c � 1. In this case we can incorporate EM effects in a
Lagrangian ONLY involving particles (EM field not a dynamical DOF). In
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general case, this works to O((v/c)2), because at O((v/c)) system radiation
effects occur.

In a specific case, when

m1

q1
=

m2

q2
=

m3

q3
= · · · . (8.56)

we can do that (meaning use a Lagrangian with particles only) to O((v/c)4)
because of specific symmetries in such a system.

The Lagrangian for our particle after the gauge transformation is

La =
1
2

mav2
a +

ma

8
v4

a

c2 −
∑
b,a

qaqb

|xa(t) − xb(t)|
+

∑
b

qaqb
va · vb + (n · va)(n · vb)

2c2|x − xb|
.

(8.57)

Next time we will probably get to the Lagrangian for the entire system.
It was hinted that this is called the Darwin Lagrangian (after Charles
Darwin’s grandson).

We find for whole system

L =
∑

a

La +
1
2

∑
a

La(interaction). (8.58)

L =
1
2

∑
a

mav2
a +

∑
a

ma

8
v4

a

c2 −
∑
a<b

qaqb

|xa(t) − xb(t)|
+

∑
b

qaqb
va · vb + (n · va)(n · vb)

2c2|x − xb|
.

(8.59)

This is the Darwin Lagrangian (also Charles). The Darwin Hamiltonian,
from H =

∑
a qa pa −L, which toggles the sign on all but the first term, is

H =
∑

a

pa

2ma
v2

a −
∑

a

p4
a

8m3
ac2

+
∑
a<b

qaqb

|xa(t) − xb(t)|
−

∑
a<b

qaqb

2c2mamb

pa · pb + (nab · pa)(nab · pb)
|x − xb|

.

(8.60)

(note, this is also the result to be obtained in problem 2, §65 of the text.)
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8.8 incorporating radiation effects as a friction term.

To O((v/c)3) obvious problem due to radiation (system not closed). We
will incorporate radiation via a function term in the EOM

Again consider the dipole system

mz̈ = −kz

ω2 =
k
m
,

(8.61)

or

mz̈ = −ω2mz, (8.62)

which gives

d
dt

(
m
2

ż2 +
mω2

2
z2

)
= 0, (8.63)

because there is no radiation.
The energy radiated per unit time averaged per period is

P =
2e2

3c3

〈
z̈2

〉
. (8.64)

We will modify the EOM

mz̈ = −ω2mz + fradiation. (8.65)

Employing an integration factor ż we have

mz̈ż = −ω2mzż + fradiationż, (8.66)

or

d
dt

(
mż2 +ω2mz2

)
= fradiationż. (8.67)

Observe that the last expression, force times velocity, has the form of
power

m
d2z
dt2

dz
dt

=
d
dt

m
2

(
dz
dt

)2 . (8.68)
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So we can make an identification with the time rate of energy lost by the
system due to radiation

d
dt

(
mż2 +ω2mz2

)
≡

dE
dt
. (8.69)

Average over period both sides〈
dE
dt

〉
= 〈 fradiationż〉 = −

2e2

3c3

〈
z̈2

〉
. (8.70)

We demand this last equality, by requiring the energy change rate to equal
that of the dipole power (but negative since it is a loss) that we previously
calculated.

Claim:

fradiation =
2e2

3c3

...
z . (8.71)

Proof: We need to show

〈 fradiation〉 = −
2e2

3c3

〈
z̈2

〉
. (8.72)

We have

2e2

3c3 〈
...
z ż〉 =

2e2

3c3

1
T

∫ T

0
dt

...
z ż

=
2e2

3c3

1
T

∫ T

0
dt
�
�
�d

dt
(z̈ż) −

2e2

3c3

1
T

∫ T

0
dt(z̈)2.

(8.73)

We first used (z̈ż)′ =
...
z ż + (z̈)2. The first integral above is zero since the

derivative of z̈ż = (−ω2z0 sinωt)(ωz0 cosωt) = −ω3z2
0 sin(2ωt)/2 is also

periodic, and vanishes when integrated over the interval.

2e2

3c3 〈
...
z ż〉 = −

2e2

3c3

〈
(z̈)2

〉
. (8.74)

We can therefore write

mz̈ = −mω2z +
2e2

3c3

...
z . (8.75)

Our “frictional” correction is the radiation reaction force proportional to
the third derivative of the position.
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Rearranging slightly, this is

z̈ = −ω2z +
2
3c

(
e2

mc2

)
...
z = −ω2z +

2
3c

re

c
...
z , (8.76)

where re ∼ 10−13cm is the “classical radius” of the electron. In our fric-
tional term we have re/c, the time for light to cross the classical radius of
the electron.

There are lots of problems with this. One of the easiest is with ω = 0.
Then we have

z̈ =
2
3

re

c
...
z . (8.77)

with solution

z ∼ eαt, (8.78)

where

α ∼
c
re
∼

1
τe
. (8.79)

This is a self accelerating system! Note that we can also get into this
trouble with ω , 0, but those examples are harder to find (see: [4]).

FIXME: borrow this text again to give that section a read.
The sensible point of view is that this third term ( frad) should be taken

seriously only if it is small compared to the first two terms.

Reading Some of this, at least the second order expansion, was covered
in chapter 8 §65 material from the text [11].

Covering lecture notes RelEMpp181-195.pdf.

8.9 radiation reaction force.

We previously obtained the radiation reaction force by adding a “frictional”
force to the harmonic oscillator system. Now its time to obtain this by
continuing the expansion of the potentials to the next order in v/c.

Recall that our potentials are

φ(x, t) =

∫
d3x′

ρ (x′, t − |x − x′|/c)
|x − x′|

A(x, t) =
1
c

∫
d3x′

j (x′, t − |x − x′|/c)
|x − x′|

.

(8.80)
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We can expand in Taylor series about t. For the charge density this is

ρ
(
x′, t −

∣∣∣x − x′
∣∣∣/c)

≈ ρ(x′, t) −
|x − x′|

c
∂

∂t
ρ(x′, t)

+
1
2

(
|x − x′|

c

)2
∂2

∂t2 ρ(x′, t) −
1
6

(
|x − x′|

c

)3
∂3

∂t3 ρ(x′, t).

, (8.81)

so that our scalar potential to third order is

φ(x, t) =

∫
d3x′

ρ(x′, t)
|x − x′|

−
|x − x′|

c
∂

∂t

∫
d3x′

ρ(x′, t)
|x − x′|

+
1
2

(
|x − x′|

c

)2
∂2

∂t2

∫
d3x′

ρ(x′, t)
|x − x′|

−
1
6

(
|x − x′|

c

)3
∂3

∂t3

∫
d3x′

ρ(x′, t)
|x − x′|

=

∫
d3x′

ρ(x′, t)
|x − x′|

−
������������
∂

∂t

∫
d3x′

ρ(x′, t)
|x − x′|

|x − x′|
c

+
1
2
∂2

∂t2

∫
d3x′

ρ(x′, t)
|x − x′|

(
|x − x′|

c

)2

−
1
6
∂3

∂t3

∫
d3x′

ρ(x′, t)
|x − x′|

(
|x − x′|

c

)3

= φ(0) + φ(2) + φ(3).

(8.82)

Expanding the vector potential in Taylor series to second order we have

A(x, t) =
1
c

∫
d3x′

j(x′, t)
|x − x′|

−
1
c
|x − x′|

c
∂

∂t

∫
d3x′

j(x′, t)
|x − x′|

=
1
c

∫
d3x′

j(x′, t)
|x − x′|

−
1
c2

∂

∂t

∫
d3x′j(x′, t)

= A(1) + A(2).

(8.83)

We have already considered the effects of the A(1) term, and now move on
to A(2). We will write φ(3) as a total derivative

φ(3) =
1
c
∂

∂t

(
−

1
6c2

∂2

∂t2

∫
d3x′ρ(x′, t)

∣∣∣x − x′
∣∣∣2) =

1
c
∂

∂t
f (2)(x, t). (8.84)

and gauge transform it away as we did with φ(2) previously.

φ(3)′ = φ(3) −
1
c
∂ f (2)

∂t
= 0

A(2)′ = A(2) +∇ f (2).

(8.85)
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A(2)′ = −
1
c2

∂

∂t

∫
d3x′j(x′, t) −

1
6c2

∂2

∂t2

∫
d3x′ρ(x′, t)∇x

∣∣∣x − x′
∣∣∣2.

(8.86)

Looking first at the first integral we can employ the trick of writing eα =

∂x′/∂xα
′

, and then employ integration by parts∫
V

d3x′j(x′, t) =

∫
V

d3x′eα jα(x′, t)

=

∫
V

d3x′
∂x′

∂xα′
jα(x′, t)

=

∫
V

d3x′
∂

∂xα′
(x′ jα(x′, t)) −

∫
V

d3x′x′
∂

∂xα′
jα(x′, t)

=

∫
∂V

d2σ · (x′ jα(x′, t)) −
∫

d3x′x′ −
∂

∂t
ρ(x′, t)

=
∂

∂t

∫
d3x′x′ρ(x′, t).

(8.87)

For the second integral, we have

∇x
∣∣∣x − x′

∣∣∣2 = eα∂α(xβ − xβ
′

)(xβ − xβ
′

)

= 2eαδαβ(xβ − xβ
′

)

= 2(x − x′),

(8.88)

so our gauge transformed vector potential term is reduced to

A(2)′ = −
1
c2

∂2

∂t2

∫
d3x′ρ(x′, t)

(
x′ +

1
3

(x − x′)
)

= −
1
c2

∂2

∂t2

∫
d3x′ρ(x′, t)

(
1
3

x +
2
3

x′
)
.

(8.89)

Now we wish to employ a discrete representation of the charge density

ρ(x′, t) =

N∑
b=1

qbδ
3(x′ − xb(t)). (8.90)
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The second order vector potential becomes

A(2)′ = −
1
c2

∂2

∂t2

∫
d3x′

(
1
3

x +
2
3

x′
) N∑

b=1

qbδ
3(x′ − xb(t))

= −
1
c2

∂2

∂t2

N∑
b=1

qb

(
�
��

1
3

x +
2
3

xb(t)
)

= −
2

3c2

N∑
b=1

qbẍb(t)

= −
2

3c2

d2

dt2

 N∑
b=1

qbxb(t)

 .

(8.91)

We end up with a dipole moment

d(t) =

N∑
b=1

qbxb(t). (8.92)

so we can write

A(2)′ = −
2

3c2 d̈(t). (8.93)

Observe that there is no magnetic field due to this contribution since there
is no explicit spatial dependence

∇ ×A(2)′ = 0. (8.94)

we have also gauge transformed away the scalar potential contribution so
have only the time derivative contribution to the electric field

E = −
1
c
∂A
∂t
−��∇φ =

2
3c2

...
d(t). (8.95)

To O((v/c)3) there is a homogeneous electric field felt by all particles,
hence every particle feels a “friction” force

frad = qE =
2q
3c3

...
d(t). (8.96)

Moral: frad arises in third order term O((v/c)3) expansion and thus
should not be given a weight as important as the two other terms. i.e. Its
consequences are less.
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Example 8.1: Our dipole system.

mz̈ = −mω2a +
2e2

3c3

...
z

= −mω2a +
2m
3c

e2

mc2

...
z

= −mω2a +
2m
3

re

c
...
z .

(8.97)

Here re ∼ 10−13cm is the classical radius of the electron. For periodic
motion

z ∼ eiωtz0

z̈ ∼ ω2z0
...
z ∼ ω3z0.

(8.98)

The ratio of the last term to the inertial term is

∼
ω3m(re/c)z0

mω2z0
∼ ω

re

c
� 1, (8.99)

so

ω �
c
re

∼
1
τe

∼
1010cm/s
10−13cm

∼ 1023Hz.

(8.100)

So long as ω � 1023Hz, this approximation is valid.

8.10 limits of classical electrodynamics.

What sort of energy is this? At these frequencies QM effects come in

h̄ ∼ 10−33J · s ∼ 10−15eV · s. (8.101)
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h̄ωmax ∼ 10−15eV · s × 1023 1
s
∼ 108eV ∼ 100MeV. (8.102)

whereas the rest energy of the electron is

mec2 ∼
1
2

MeV ∼ MeV. (8.103)

At these frequencies it is possible to create e+ and e− pairs. A theory where
the number of particles (electrons and positrons) is NOT fixed anymore
is required. An estimate of this frequency, where these effects have to be
considered is possible.

PICTURE: different length scales with frequency increasing to the left
and length scales increasing to the right.

• 10−13cm, re = e2/mc2. LHC exploration.

• 137 × 10−13cm, h̄/mec ∼ λ/2π, the Compton wavelength of the
electron. QED and quantum field theory.

• (137)2 × 10−13cm ∼ 10−10cm, Bohr radius. QM, and classical elec-
trodynamics.

here

α =
e2

4πε0 h̄c
=

1
137

, (8.104)

is the fine structure constant.
Similar to the distance scale restrictions, we have field strength restric-

tions. A strong enough field (Electric) can start creating electron and
positron pairs. This occurs at about

eEλ/2π ∼ 2mec2. (8.105)

so the critical field strength is

Ecrit ∼
mec2

λ/2πe

∼
mec2

h̄e
mec

∼
m2

ec3

h̄e
.

(8.106)
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Is this real? Yes, with a very heavy nucleus with some electrons stripped
off, the field can be so strong that positron and electron pairs will be created.
This can be observed in heavy ion collisions!



AP RO F E S S O R P O P P I T Z ’ S H A N D O U T S .

The current path for Prof. Poppitz’s handouts is
http://www.physics.utoronto.ca/ poppitz/poppitz/PHY450.html.
These were a valuable resource when I took the course. At the time of

this writing (accessed Dec, 2014) the following files were available. The
descriptions are from the 2011 versions of the files and may no longer
match exactly.

• RelEM1-11.pdf

space, time and Gallilean relativity (1-6); speed of light and Einsteins
relativity principle (7-10); relativity of simultaneity (11).

• RelEM12-26.pdf

spacetime, spacetime points, worldlines, interval (12-14) ; invariance
of infinitesimal intervals (15-17); geometry of spacetime, lightlike,
spacelike, timelike intervals, and worldlines (18-22); proper time
(23-24); invariance of finite intervals (25-26).

• RelEM27-44.pdf

analogy with rotations and derivation of Lorentz transformations
(27-32); Minkowski space diagram of boosted frame (32.1) ; Using
Minkowski diagram to see the perils of superluminal propagation
(32.3); nonrelativistic limit of boosts (33); number of parameters
of Lorentz transformations (34-35); introducing four-vectors, the
metric tensor, the invariant “dot-product and SO(1,3) (36-40); the
Poincare group (41); the convenience of “upper” and “lower”indices
(42-43); tensors (44)

• RelEMpp52-56.pdf

equation of motion, symmetries, and conserved quantities (energy-
momentum 4 vector) from relativistic particle action.

• RelEMpp56.1-73.pdf
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comments on mass, energy, momentum, and massless particles (56.1-
58); particles in external fields: Lorentz scalar field (59-62); re-
minder of a vector field under spatial rotations (63) and a Lorentz
vector field (64-65) [Tuesday, Feb. 1]; the action for a relativistic par-
ticle in an external 4-vector field (65-66); the equation of motion of
a relativistic particle in an external electromagnetic (4-vector) field
(67,68,73) [Wednesday, Feb. 2]; mathematical interlude: (69-72): on
3x3 antisymmetric matrices, 3-vectors, and totally antisymmetric
3-index tensor - please read by yourselves, preferably by Wed., Feb.
2 class! (this is important, we will also soon need the 4-dimensional
generalization)

• RelEMpp74-83.pdf

gauge transformations in 3-vector language (74); energy of a rela-
tivistic particle in EM field (75); variational principle and equation
of motion in 4-vector form (76-77); the field strength tensor (78-80);
the fourth equation of motion (81) ; Lorentz transformation of the
strength tensor (82) ; extra reading for the mathematically minded:
gauge field, strength tensor, and gauge transformations in differential
form language, not to be covered in class (83)

• RelEMpp84-102.pdf

relativity, gauge invariance, and superposition principles and the
action for the electromagnetic field coupled to charged particles (91-
95); the 4-current and its physical interpretation (96-102), including
a needed mathematical interlude on delta-functions of functions
(98-100)

• RelEMpp103-113.pdf

variational principle for the electromagnetic field and the relevant
boundary conditions (103-105); the second set of Maxwell’s equa-
tions from the variational principle (106-108); Maxwell’s equations
in vacuum and the wave equation in the non-relativistic Coulomb
gauge (109-111)

• RelEMpp114-127.pdf

reminder on wave equations (115); reminder on Fourier series and in-
tegral (115-117); Fourier expansion of the EM potential in Coulomb
gauge and equation of motion for the spatial Fourier components

http://www.physics.utoronto.ca/~poppitz/poppitz/PHY450_files/RelEMpp74-83.pdf
http://www.physics.utoronto.ca/~poppitz/poppitz/PHY450_files/RelEMpp84-102.pdf
http://www.physics.utoronto.ca/~poppitz/poppitz/PHY450_files/RelEMpp103-113.pdf
http://www.physics.utoronto.ca/~poppitz/poppitz/PHY450_files/RelEMpp114-127.pdf
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(118-119); the general solution of Maxwell’s equations in vacuum
(120-121)

• RelEMpp128-135.pdf

energy flux and momentum density of the EM wave (128-129);
radiation pressure, its discovery and significance in physics (130-
131); EM fields of moving charges: setting up the wave equation with
a source (132-133); the convenience of Lorentz gauge in the study
of radiation (134); reminder on Green’s functions from electrostatics
(135)

• RelEMpp136-146.pdf

continued remainder of electrostatic Green’s function (136); the
retarded Green’s function of the d’Alembert operator: derivation
and properties (137-140); the solution of the d’Alembert equation
with a source: retarded potentials (141-142); retarded time ; the
Lienard-Wiechert potentials (143-146)

• RelEMpp147-165.pdf

EM fields of a moving source (147-148+HW5); a particle at rest
(148); a constant velocity particle (149-152); behavior of EM fields
“at infinity” for a general-worldline source and radiation (152-153) ;
radiated power (154); fields in the “wave zone” and discussions of
approximations made (155-159); EM fields due to electric dipole
radiation (160-163); Poynting vector, angular distribution, and power
of dipole radiation (164-165)

• RelEMpp166-180.pdf

spacetime translation invariance of the EM field action and the con-
servation of the energy-momentum tensor (170-172); properties of
the energy-momentum tensor (172.1); the meaning of its compo-
nents: energy ; the force on a surface element of a body (177-178);
a plane wave example (179-180).

• RelEMpp181-195.pdf

the Lagrangian for a system of non relativistic charged particles to
zeroth order in (v/c): electrostatic energy of a system of charges
and .mass renormalization ; (182-189) the EM potentials to order
(v/c)2 (190-193); the “Darwin Lagrangian. and Hamiltonian for a

http://www.physics.utoronto.ca/~poppitz/poppitz/PHY450_files/RelEMpp128-135.pdf
http://www.physics.utoronto.ca/~poppitz/poppitz/PHY450_files/RelEMpp136-146.pdf
http://www.physics.utoronto.ca/~poppitz/poppitz/PHY450_files/RelEMpp147-165.pdf
http://www.physics.utoronto.ca/~poppitz/poppitz/PHY450_files/RelEMpp166-180.pdf
http://www.physics.utoronto.ca/~poppitz/poppitz/PHY450_files/RelEMpp181-195.pdf
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system of non-relativistic charged particles to order (v/c)2 and its
many uses in physics (194-195) ; (198.1-200) (last topic): attempt
to go to the next order (v/c)3 - radiation damping, the limitations
of classical electrodynamics, and the relevant time/length/energy
scales.



BT E N S O R A N D G E O M E T R I C A L G E B R A
C O M PA R I S O N S .

b.1 motivation.

I have an ancient copy of the course text [8] from the library right now
(mine is on order still) for my PHY450H1S course (relativistic electrody-
namics). Given the transformation rule for a first rank tensor

Ai = αimA′m, (B.1)

they list the transformation rule for a second rank tensor as

Aik = αimαklA′ml. (B.2)

This is not motivated in any way. Let us compare to transformation of a
bivector expressed in the Dirac basis, transformed by outermorphism. That
is specifically a transformation of a antisymmetric tensor (once expressed
in components anyways), but should provide some intuition.

It is also worthwhile to note that there are some old fashioned notational
quirks in this text (at least the old version that I have currently borrowed).
Specifically, they uses Latin indices four vectors with Greek indices for
three vectors, completely opposite to what appears to be the current con-
ventions. They also do not use upper and lower indices to keep track of
bookkeeping. I will use the conventions I am used to for now.

b.2 notation and use of geometric algebra herein.

I will use conventions from [1] using the Dirac basis, with a preference for
index upper coordinates, and express a vector as

x = xαγα = xαγα, (B.3)

Here the basis pairs {γµ} and {γµ} are reciprocal frames with γµ · γν = δµν.
I will have no need for any specific metric convention here.
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The dot and wedge products used will be defined in terms of their
Clifford Algebra formulation

a · b =
1
2

(ab + ba)

a∧ b =
1
2

(ab − ba).
(B.4)

The dot product between two bivectors A, B will also be used, defined as
the scalar part of the product AB. In particular the identity for extraction
of that scalar component from the dot product of two wedge products will
be required

(a∧b) · (c∧d) = (a(b · c)−b(a · c)) ·d = (a ·d)(b · c)− (b ·d)(a · c). (B.5)

b.3 transformation of the coordinates.

Let us assume our transformation is linear, and we will denote its action
on vectors as follows

x′ = L(x) = xαL(γα). (B.6)

Extracting coordinates for the transformed coordinates (assuming a non-
moving frame where the unit vectors on both sides are the same), we have
after dotting with γµ

x′µ = (x′αγα) · γµ = xα (L(γα) · γµ) . (B.7)

Now introduce a coordinate representation for the transformation L

L(γα) · γµ = Lαµ, (B.8)

so our transformation rule for the four vector coordinates becomes

x′µ = xαLαµ. (B.9)

We are now ready to look at the transformation of a bivector (a quantity
having a rank two antisymmetric tensor representation in coordinates), and
see how the coordinates transform.

Let us transform by outermorphism of the transformed vector factors
the bivector

c = a∧ b→ a′ ∧ b′. (B.10)
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First we will need the coordinate representation of the bivector before
transformation. We dot with γν ∧ γµ to pick up the desired term

(a∧ b) · (γν ∧ γµ) = aαbβ(γα ∧ γβ) · (γν ∧ γµ)

= aαbβ(γαδβν − γβδαν) · γµ

= aαbβ(δαµδβν − δβµδαν)

= aµbν − aνbµ.

(B.11)

If we introduce a rank two tensor now, say

T µν = aµbν − aνbµ, (B.12)

we recover our bivector with

a∧ b =
1
2

Tαβγα ∧ γβ. (B.13)

Now let us look at the coordinate representation of the transformed bivector.
It will also be helpful to make use of the identity that can be observed
above from the initial coordinate extraction

(γα ∧ γβ) · (γν ∧ γµ) = δα
µδβ

ν − δβ
µδα

ν. (B.14)

In coordinates our transformed bivector is

a′ ∧ b′ = aσLσαbπLπβγα ∧ γβ, (B.15)

and we can proceed with the coordinate extraction by taking dot products
with γν ∧ γµ as before. This gives us

(a′ ∧ b′) · (γν ∧ γµ) = aσLσαbπLπβγα ∧ γβ
= aσLσαbπLπβ(δαµδβν − δβµδαν)

= aσLσµbπLπν − aσLσνbπLπµ

= aσLσµbπLπν − aπLπνbσLσµ

= (aσbπ − aπbσ)LσµLπν

= TσπLσµLπν.

(B.16)

We are able to conclude that the bivector coordinates transform as

T µν → TσπLσµLπν. (B.17)

Except for the lowering index differences this verifies the rule eq. (B.2)
from the text.
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It would be reasonable seeming to impose such a tensor transformation
rule on any antisymmetric rank 2 tensor, and in the text this is also imposed
as the rule for transformation of symmetric rank 2 tensors. Do we have
a simple example of a rank 2 symmetric tensor that can be expressed
geometrically? The only one that comes to mind off the top of my head is
the electrodynamic stress tensor, which is not exactly simple to work with.

b.4 lorentz transformation of the metric tensors.

Following up on the previous thought, it is not hard to come up with an
example of a symmetric tensor a whole lot simpler than the electrodynamic
stress tensor. The metric tensor is probably the simplest symmetric tensor,
and we get that by considering the dot product of two vectors. Taking the
dot product of vectors a and b for example we have

a · b = aµbνγµ · γν. (B.18)

From this, the metric tensors are defined as

gµν = γµ · γν

gµν = γµ · γν.
(B.19)

These are both symmetric and diagonal, and in fact equal (regardless of
whether one picks a +,−,−,− or −,+,+,+ signature for the space).

Let us look at the transformation of the dot product, utilizing the transfor-
mation of the four vectors being dotted to do so. By definition, when both
vectors are equal, we have the (squared) spacetime interval, which based
on the speed of light being constant, has been found to be an invariant
under transformation.

a′ · b′ = aµbνL(γµ) · L(γν). (B.20)

We note that, like any other vector, the image L(γµ) of the Lorentz trans-
form of the vector γµ can be written as

L(γµ) = (L(γµ) · γν) γν. (B.21)

Similarly we can write any vector in terms of the reciprocal frame

γν = (γν · γµ)γµ. (B.22)
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The dot product factor is a component of the metric tensor

gνµ = γν · γµ, (B.23)

so we see that the dot product transforms as

a′ · b′ = aµbν(L(γµ) · γα)(L(γν) · γβ)γα · γβ = aµbνLµαLνβgαβ. (B.24)

In particular, for a = b where we have the invariant interval defined by the
condition a2 = a′2, we must have

aµaνgµν = aµaνLµαLνβgαβ. (B.25)

This implies that the symmetric metric tensor transforms as

gµν = LµαLνβgαβ. (B.26)

Recall from eq. (B.17) that the coordinates representation of a bivector, an
antisymmetric quantity transformed as

T µν → TσπLσµLπν. (B.27)

This is a very similar transformation, but differs from the bivector case
where our free indices were upper indices. Suppose that we define an
alternate set of coordinates for the Lorentz transformation. Let

Lµν = L(γµ) · γν. (B.28)

This can be related to the previous coordinate matrix by

Lµν = gµαgνβLαβ. (B.29)

If we examine how the coordinates of x2 transform in their lower index
representation we find

x′2 = xµxνLµαLνβgαβ = x2 = xµxνgµν, (B.30)

and therefore find that the (upper index) metric tensor transforms as

gµν → gαβLµαLνβ. (B.31)

Compared to eq. (B.27) we have almost the same structure of transforma-
tion. Are these the same? Does the notation I picked here introduce an
apparent difference that does not actually exist? We really want to know if
we have the identity

L(γµ) · γν ?
= L(γν) · γµ, (B.32)

If that were to be the case, then given the notation selected it would mean
that Lµν = Lνµ. If that were true it would justify a notational simplification
Lµν = Lνµ = Lνµ.
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b.5 the inverse lorentz transformation.

To answer this question, let us consider a specific example, an x-axis boost
of rapidity α. For that our Lorentz transformation takes the following form

L(x) = e−σ1α/2xeσ1α/2, (B.33)

where σk = γkγ0. Since σ1 anticommutes with γ0 and γ1, but commutes
with γ2 and γ3, we have

L(x) = (x0γ0 + x1γ1)eσ1α + x2γ2 + x3γ3, (B.34)

and after expansion this is

L(x) = γ0(x0 coshα− x1 sinhα) + γ1(x1 coshα− x0 sinhα) + γ2 + γ3.

(B.35)

Note that this is the first time a specific metric preference has been imposed,
and +,−,−,− has been used.

Observe that for the basis vectors themselves we have
L(γ0)

L(γ1)

L(γ2)

L(γ3)


=


γ0 coshα − γ1 sinhα

−γ0 sinhα + γ1 coshα

γ2

γ3


. (B.36)

Forming a matrix with µ indexing over rows and ν indexing over columns
we have

Lµν =


coshα − sinhα 0 0

− sinhα coshα 0 0

0 0 1 0

0 0 0 1


. (B.37)

Performing the same expansion for Lνµ, again with µ indexing over rows,
we have

Lνµ =


coshα sinhα 0 0

sinhα coshα 0 0

0 0 1 0

0 0 0 1


. (B.38)
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This answers the question. We cannot assume that Lµν = Lνµ. In fact, in this
particular case, we have Lνµ = (Lµν)−1. Is that a general condition? Note
that for the general case, we have to consider compounded transformations,
where each can be a boost or rotation.

With my text still not here I have obtained a newer version of the course
text from a different UofT library. In this newer version [9] (still not the
4th edition) it is at least updated with the “modern” upper and lower index
formalism.

In this version they define a four-dimensional second rank tensor as the
set of sixteen quantities

Aµν, (B.39)

provided these transform under coordinate transformations like the prod-
ucts of components of two four vectors. They also provide raising and
lowering rules that distinguish the quantities Aµν, and Aµν by relating these
to the raising and lowering operations so that, for example, A0

1 = A01,
A0

1 = −A01. This is consistent with the notation I have used fairly blun-
deringly that seemed natural. This also highlights the difference between
Lµν, and Lνµ. We can relate both of these back to the index upper tensor
representation

Lαν = gµαLµν

Lµα = gναLµν.
(B.40)

This shows precisely how the two objects relate back to the original tensor
Lµν, and why we cannot just write Lνα or Lµα respectively.

Note that in the third edition they still (somewhat surprisingly to me)
continue to latin indices for 0, 1, 2, 3 and greek for 1, 2, 3 as in the original
1951 version.

b.6 duality in tensor form.

Let us consider the subject of duality to antisymmetric forms. Within a
geometric algebra context our duality is provided by multiplication by the
pseudoscalar for the space.

For instance in R3 the dual to a bivector is the familiar cross product

a × b = −I(a∧ b), (B.41)



304 tensor and geometric algebra comparisons.

where I = e1e2e3. In our spacetime context we use the pseudoscalar
I = γ0γ1γ2γ3. Let us compute the coordinate representation of our vec-
tor, bivector, and trivector duals, which should compare with the tensor
representation of the text.

In the text we have a statement that given an antisymmetric tensor T µν,
its dual is

1
2

eµναβTαβ. (B.42)

(I have adjusted the notation for the antisymmetric pseudotensor ε to retain
free upper indices).

How does this compare the to Geometric Algebra bivector dual in
spacetime? Let

T =
1
2

T µνγµ ∧ γν =
∑
µ<ν

T µνγµ ∧ γν. (B.43)

We dot with γν ∧ γµ to extract the (tensor) coordinate representation

T · (γν ∧ γµ) =
1
2

Tαβ(γα ∧ γβ) · (γν ∧ γµ)

=
1
2

Tαβ(δβνδαµ − δανδβµ)

=
1
2

(T µν − T νµ)

= T µν.

(B.44)

The index manipulation gets a little hairy, but one can expand the dot
products (IT ) · (γν ∧ γµ) to find that this dual has coordinates have the
value,

(IT ) · (γν ∧ γµ) = CeµναβTαβ, (B.45)

where C is a constant multiplier that I messed up computing the actual
value for.

It is also possible to verify that (IT ) · T = 0. Thus we can describe the
duality of T µν and eµναβTαβ as the geometrical condition T = ab, IT = cd,
where a, b, c, d are all mutually perpendicular.

Given a vector x = xµγµ = xµγµ it is also possible to confirm that the
coordinate representation of the Geometric Algebra vector dual has the
form

Ix ∼ eσπνµγσγσγπxν. (B.46)

The coordinates of this product are a multiple of εσπνµxµ, which has the
form specified in the text.
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b.7 stokes theorem.

I once worked through the Geometric Algebra expression for Stokes Theo-
rem. For a k − 1 grade blade, the final result of that work was∫

(∇∧ F) · dkx =
1

(k − 1)!
εrs···tu

∫
dau

∂F
∂au
· (dxr ∧ dxs ∧ · · · ∧ dxt).

(B.47)

Let us expand this in coordinates to attempt to get the equivalent expression
for an antisymmetric tensor of rank k − 1.

Starting with the RHS of eq. (B.47) we have

F =
1

(k − 1)!
Fµ1µ2···µk−1γ

µ1 ∧ γµ2 ∧ · · · ∧ γµk−1

dxr ∧ dxs ∧ · · · ∧ dxt =
∂xν1

∂ar

∂xν2

∂as
· · ·

∂xνk−1

∂at
γν1 ∧ γν2 ∧ · · · ∧ γνk−1dardas · · · dat.

(B.48)

We need to expand the dot product of the wedges, for which we have

(γµ1 ∧ γµ2 ∧ · · · ∧ γµk−1) · (γν1 ∧ γν2 ∧ · · · ∧ γνk−1)

= δµk−1
ν1δ

µk−2
ν2 · · · δ

µ1
νk−1ε

ν1ν2···νk−1 .
(B.49)

Putting all the LHS bits together we have

1
((k − 1)! )2 ε

rs···tu
∫

dau
∂

∂au
Fµ1µ2···µk−1

δµk−1
ν1δ

µk−2
ν2 · · · δ

µ1
νk−1ε

ν1ν2···νk−1
∂xν1

∂ar

∂xν2

∂as
· · ·

∂xνk−1

∂at
dardas · · · dat

=
1

((k − 1)! )2 ε
rs···tu

∫
dau

∂

∂au
Fµ1µ2···µk−1

εµk−1µk−2···µ1
∂xµk−1

∂ar

∂xµk−2

∂as
· · ·

∂xµ1

∂at
dardas · · · dat

=
1

((k − 1)! )2 ε
rs···tu

∫
dau

∂

∂au
Fµ1µ2···µk−1

∣∣∣∣∣∂(xµk−1 , xµk−2 , · · · , xµ1)
∂(ar, as, · · · , at)

∣∣∣∣∣dardas · · · dat.

(B.50)

Now, for the LHS of eq. (B.47) we have

∇∧ F = γµ ∧ ∂µF

=
1

(k − 1)!
∂

∂xµk
Fµ1µ2···µk−1γ

µk ∧ γµ1 ∧ γµ2 ∧ · · · ∧ γµk−1 ,
(B.51)
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and the volume element of

dkx =
∂xν1

∂a1

∂xν2

∂a2
· · ·

∂xνk

∂ak
γν1 ∧ γν2 ∧ · · · ∧ γνk da1da2 · · · dak. (B.52)

Our dot product is

(γµk ∧ γµ1 ∧ γµ2 ∧ · · · ∧ γµk−1) · (γν1 ∧ γν2 ∧ · · · ∧ γνk)

= δµk−1
ν1δ

µk−2
ν2 · · · δ

µ1
νk−1δ

µk
νkε

ν1ν2···νk .

(B.53)

The LHS of our k-form now evaluates to

(γµ ∧ ∂µF) · dkx

=
1

(k − 1)!
∂

∂xµk
Fµ1µ2···µk−1

δµk−1
ν1δ

µk−2
ν2 · · · δ

µ1
νk−1δ

µk
νkε

ν1ν2···νk
∂xν1

∂a1

∂xν2

∂a2
· · ·

∂xνk

∂ak
da1da2 · · · dak

=
1

(k − 1)!
∂

∂xµk
Fµ1µ2···µk−1

εµk−1µk−2···µ1µk
∂xµk−1

∂a1

∂xµk−2

∂a2
· · ·

∂xµ1

∂ak−1

∂xµk

∂ak
da1da2 · · · dak

=
1

(k − 1)!
∂

∂xµk
Fµ1µ2···µk−1

∣∣∣∣∣∂(xµk−1 , xµk−2 , · · · xµ1 , xµk )
∂(a1, a2, · · · , ak−1, ak)

∣∣∣∣∣da1da2 · · · dak.

(B.54)

Presuming no mistakes were made anywhere along the way (including
in the original Geometric Algebra expression), we have arrived at Stokes
Theorem for rank k − 1 antisymmetric tensors F∫

∂

∂xµk
Fµ1µ2···µk−1

∣∣∣∣∣∂(xµk−1 , xµk−2 , · · · xµ1 , xµk )
∂(a1, a2, · · · , ak−1, ak)

∣∣∣∣∣da1da2 · · · dak

=
1

(k − 1)!
εrs···tu∫

dau
∂

∂au
Fν1ν2···νk−1

∣∣∣∣∣∂(xνk−1 , xνk−2 , · · · , xν1)
∂(ar, as, · · · , at)

∣∣∣∣∣dardas · · · dat.

(B.55)
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The next task is to validate this, expanding it out for some specific
ranks and hypervolume element types, and to compare the results with the
familiar 3d expressions.





CF R E Q U E N C Y F O U R V E C T O R .

Simon (our TA) stated eq. (3.52) without justification. Here’s a little
justification for the frequency four vector.

We know some of it from the QM context, and if we have been reading
ahead know a bit of this from our text [11] (the energy momentum four
vector relationships). Let us go back to the classical electromagnetism and
recall what we know about the relation of frequency and wave numbers
for continuous fields. We want solutions to Maxwell’s equation in vacuum
and can show that such solution also implies that our fields obey a wave
equation

1
c2

∂2Ψ
∂t2 −∇

2Ψ = 0, (C.1)

where Ψ is one of E or B or any component of either of these. There are
other constraints imposed on the solutions by Maxwell’s equations, but the
electric and magnetic field components must obey eq. (C.1) in addition to
those constraints.

A Fourier transform trial solution of the form

Ψ = (2π)−3/2
∫

Ψ̃(k, 0)ei(ωt±k·x)d3k. (C.2)

can be applied to the wave equation, producing the constraint

1
c2 (iω)2Ψ − (±ik)2Ψ = 0. (C.3)

So even in the continuous field domain (no QM), we have a relationship
between frequency and wave number. We see that this also happens to
have the form of a lightlike spacetime interval

ω2

c2 − k2 = 0. (C.4)

Also recall that the photoelectric effect imposes an experimental constraint
on photon energy, where we have

E = hν =
h

2π
2πν = h̄ω. (C.5)
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Therefore if we impose a mechanics like P = (E/c,p) relativistic energy-
momentum relationship on light, it then makes sense to form a nilpotent
(lightlike) four vector for our photon energy. This combines our special
relativistic expectations, with the constraints on the fields imposed by clas-
sical electromagnetism. We can then write for the photon four momentum

P =

(
h̄ω
c
, h̄k

)
. (C.6)



DN O N - I N E RT I A L ( L O C A L ) O B S E RV E R S .

This was from the second tutorial.

d.1 basis construction.

Observations are made of either the three-vector, or the time like compo-
nents of four-vectors, since these are the quantities that we can measure
from our local observer frame. This is something that can be viewed in an
approximate sense as being inertial, provided that we ignore the earth’s ro-
tation, the rotation around the solar system, the rotation of the solar system
in the galaxy, the rotation of the galaxy in the local cluster, and so forth.
Provided none of these are changing too fast relative to our measurements,
we can make the inertial approximation.

Example. If we want to measure energy, it is the timelike component of
the momentum.

E = cp0. (D.1)

PICTURE: Let us imagine a moving worldline in three dimensions. We
can setup a frame and associated basis along the worldline of the particle,
as well as a frame and basis for the stationary observer.

In class Simon used notation like {ei
ô}, and {ei

â}, but also used ei
0̂
, ei

1̂
, ei

2̂
,

ei
3̂
. It was fairly clear by the context what was meant, but lets avoid any

more than one index at a time, and write { fi} for the frame moving along
the worldline, and {ei} for the stationary frame.

Constructing a basis along the worldline For any timelike four-vector
worldline we have a four-vector velocity of magnitude c, so we are free to
define a timelike basis vector for our moving frame as

f0 = u. (D.2)

going back to the first problem for ui we have

f0 = (cosh(act), sinh(act), 0, 0). (D.3)
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We are free to pick spatial unit vectors perpendicular to this, so for the y
and z components it is natural to use

f2 = (0, 0, 1, 0)

f3 = (0, 0, 0, 1).
(D.4)

We need one more, that is perpendicular to each of the above. By inspection
one can pick

f1 = (sinh(act), cosh(act), 0, 0). (D.5)

Did Simon use any other principle to define this last beastie? I missed it if
he did. I see that this happens to be the unit vector proportional to xi.

Consider the stationary observer For a stationary observer, our world-
line and four velocity respectively, for some constant x0 is

X = (ct, x0)
dX
ds

=
1
c

dX
dτ

= (1, 0).
(D.6)

Our time like unit vector is very simple

e0 =
dX
ds

= (1, 0). (D.7)

For the spatial unit vectors we have many choices. One would be aligned
from the origin to the position vector

e1 =

(
0,

x
|x|

)
, (D.8)

with e2 and e3 oriented in any pair of mutually perpendicular spatial
directions. Another option would be simply pick a eα for each of the
normal Euclidean basis directions

e1 = (0, 1, 0, 0)

e2 = (0, 0, 1, 0)

e3 = (0, 0, 0, 1).

(D.9)

Observe, that we have (no sum) eα · eα = −1 (and e0 · e0 = 1).
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Consider an inertial observer Now consider a slightly more complex
case, where an observer is moving with some constant velocity V = cβ.
Our worldline is

X = (ct, x0 + βct). (D.10)

Let us calculate the four velocity. We have

dX
dt

= c(1,β). (D.11)

From this our proper time is

τ =
1
c

∫ t

0
c
√

(1,β)2dt =

√
1 − β2t. (D.12)

Our worldline and four-velocity, parametrized in terms of proper time,
with γ = (1 − β2)−1/2, are then

X = (γcτ, x0 + γβcτ)

u = γ(1,β).
(D.13)

For this system, let us label the basis {hk}. From above our time like unit
vector is

h0 = γ(1,β). (D.14)

We observe that this has the desired time like property, (h0)2 = 1 > 0.
Now, let us try Gram-Schmidt, subtracting the projection of h0 on e1

from e1 and see what we get. Our projection is

Projh0
(e1) =

e1 · h0

h0 · h0
h0

= (0, 1, 0, 0) · γ(1,β)γ(1,β)

= −γ2βx(1,β).

(D.15)

We should have a space like vector normal to h0 once we take the Gram-
Schmidt difference

e1 −
e1 · h0

h0 · h0
h0 = (0, 1, 0, 0) + γ2βx(1,β). (D.16)
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Let us compute the norm of this vector and verify that it is space like. We
should also verify that it is normal to h0 as expected. For the norm we have

−1 + β2
x + 2βxγ

2(0, 1, 0, 0) · (1,β) = −1 + β2
x + 2βxγ

2(−βx)

= β2
x(1 − 2γ2) − 1

= β2
x
1 − β2 − 2

1 − β2 − 1

= −β2
x
1 + β2

1 − β2 − 1.

(D.17)

This is less than zero as we expect for a spacelike vector. Good. Our second
spacelike unit vector is thus

h1 =

(
β2

x
1 + β2

1 − β2 + 1
)−1/2 (

(0, 1, 0, 0) + γ2βx(1,β)
)
. (D.18)

Let us verify that these two computed spacetime basis vectors are normal.
Their dot product is proportional to

((0, 1, 0, 0) + γ2βx(1,β)) · (1,β) = −βx + γ2βx(1 − β2)

= −βx + βx

= 0 �.

(D.19)

We could continue this, continuing the Gram-Schmidt iteration using e2

and e3 for the remainder of the initial spanning set.
Doing so, we would have

h2 ∼ e2 −
e2 · h1

h1 · h1
h1 −

e2 · h0

h0 · h0
h0. (D.20)

After scaling so that h2 · h2 = −1, we would then have

h3 ∼ e3 −
e3 · h2

h2 · h2
h2 −

e3 · h1

h1 · h1
h1 −

e3 · h0

h0 · h0
h0. (D.21)

Projections and the reciprocal basis Recall that for Euclidean space,
when we had orthonormal vectors, we could simplify the Gram-Schmidt
procedure from

ek+1 ∼ fk+1 −

k∑
i=0

fk+1 · ei

ei · ei
ei, (D.22)



D.1 basis construction. 315

to

ek+1 ∼ fk+1 −

k∑
i=0

( fk+1 · ei) ei. (D.23)

However, for our non-Euclidean space, we cannot do this. This suggests a
nice intuitive motivation for the reciprocal basis. We can define, for any
normalized basis { f i} in our Minkowski space (no sum)

ei =
ei

ei · ei
. (D.24)

Now our Gram-Schmidt iteration becomes

ek+1 ∼ fk+1 −

k∑
i=0

( fk+1 · ei) ei, (D.25)

and we identify, for a four vector b, the projection onto the chosen basis
vector, as (no sum)

Projei(b) = (b · ei)ei. (D.26)

In particular, we have for the resolution of identity (now with summation
implied again)

b = (b · ei)ei. (D.27)

This is nice and it allows us to work with four vectors in their entirety,
instead of in coordinates. We have

x = xiei = xiei, (D.28)

where

xi = x · ei

xi = x · ei.
(D.29)

Also note that eα = −eα and e0 = e0, just as the coordinates themselves
vary sign with index raising and lowering dependent on whether they are
time like or space like.

We have seen that the representation of the basis can be chosen to
depend on the observer, and for the stationary observer, we had simply

e0 = (1, 0, 0, 0)

e1 = (0, 1, 0, 0)

e2 = (0, 0, 1, 0)

e3 = (0, 0, 0, 1),

(D.30)
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with a reciprocal basis ei · e j = δi
j

e0 = (1, 0, 0, 0)

e1 = −(0, 1, 0, 0)

e2 = −(0, 0, 1, 0)

e3 = −(0, 0, 0, 1).

(D.31)

An alternate basis for the inertial frame Given the same h0 as defined
above for the inertial frame, let us define an alternate h1, subtracting the
timelike component from the worldline of the particle itself. Let

X = (γcτ, x0 + γβcτ)

h0 = γ(1,β)

Y = X − (X · h0)h0.

(D.32)

The dot product above is

X · h0 = (γcτ, x0 + γβcτ) · γ(1,β)

= γ2cτ − γ(β · x0) − γ2β2cτ

= γ2cτ(1 − β2) − γ(β · x0)

= cτ − γ(β · x0).

(D.33)

Our rejection of h0 from X is then

Y = (γcτ, x0 + γβcτ) − (cτ − γ(β · x0))γ(1,β)

= (γ2(β · x0), x0 + γβcτ − cτγβ + γ2(β · x0)β)

= (γ2(β · x0), x0 + γ2(β · x0)β)

= γ2(β · x0)(1,β) + (0, x0).

(D.34)

We can verify that this is spacelike by computing the square

Y2 = γ2(β · x0)2 − x2
0 + 2γ2(β · x0)(1,β) · (0, x0)

= γ2(β · x0)2 − x2
0 − 2γ2(β · x0)2

= −γ2(β · x0)2 − x2
0

< 0.

(D.35)

A final normalization of this yields

h1 = (γ1(β · x0)2 + x2
0)−1/2

(
γ2(β · x0)(1,β) + (0, x0)

)
. (D.36)

It is easy enough to verify that we have h1 · h0 = 0 as desired.
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A followup note on the worldline basis Note that we can construct the
spatial vector f 1 in eq. (D.5) systematically without use of any sort of
intuition. We get this by Gram-Schmidt directly

f1 ∼ e1 − (e1 · e0)e0 − (���e1 · e2)e2 − (���e1 · e3)e3

= (0, 1, 0, 0) − (0, 1, 0, 0) · (cosh(acτ), sinh(acτ), 0, 0)e0

= (0, 1, 0, 0) + sinh(acτ)(cosh(acτ), sinh(acτ), 0, 0)

= (sinh(acτ) cosh(acτ), 1 + sinh2(acτ), 0, 0)

= (sinh(acτ) cosh(acτ), cosh2(acτ), 0, 0)

∼ (sinh(acτ), cosh(acτ), 0, 0) �.

(D.37)

It is also noteworthy to observe that we have fi · f j = 0, i , j, and f0 · f0 = 1
and fα · fα = −1, as desired.

Relating the Lorentz transformation and coordinate transformations We
are familiar now with the tensor form of the Lorentz transformation. This
takes coordinates to coordinates

x′i = L j
ix j. (D.38)

Specifying just the coordinates and not the basis associated with the coor-
dinates leaves out some valuable seeming information. For instance, is the
basis associated with the pre and post transformed coordinates the same?

For example, suppose that our basis for the primed coordinates is { fi},
construction of the four vector (in its entirety) out of its coordinates and
this basis requires the sum

X = x′i fi
= (L j

i fi)x j.
(D.39)

This interior sum L j
i fi is a linear combination of the primed basis vectors,

but we see that these are in fact a set of vectors, and can be considered the
basis for the unprimed coordinates. We could for example write

ei = L j
i fi. (D.40)

With such a description, our Lorentz transformation becomes just a mech-
anism to map vectors in one basis into another. To make this clear, let us
work in the opposite order, and suppose that we have a pair of bases {ei}
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and { fi}. For any vector X we can calculate the coordinates utilizing the
reciprocal frame.

X = (X · ei)ei = (X · f j) f j. (D.41)

Writing

xi = X · ei

x′i = X · f i.
(D.42)

This is

x′k fk = x je j. (D.43)

Dotting with f i we have

x′i = x j(e j · f i). (D.44)

In this form we see explicitly that the Lorentz transformation is in fact the
“direction cosines” associated with a change of basis. Specifically, we can
write

L j
i = e j · f i. (D.45)

I like this as a way to view the Lorentz transformation, since the explicit
inclusion of the basis sets involved makes the geometry clear.

Example D.1: A coordinate calculation example.

I have gone to the effort of calculating some basis representations in
a lot more detail than we covered in the tutorial, and explore some
of the ideas further. This seemed important to get a feel for what we
were discussing, and to see how the pieces fit together.

Let us do one more simple example, where we look at the coordi-
nates of a four vector in the coordinate system where the time like
direction is the proper velocity, and also eliminate the the y and z
coordinates from the mix to simplify it further. For such a system we
have only two choices for our spatial basis vector (we can alter the
sign).

For our spacetime point, consider the worldline for a particle mov-
ing at a constant velocity. That is

X = (ct, p0 + βct). (D.46)
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As before our proper time is

τ =

√
1 − β2t, (D.47)

allowing us to re-parametrize the worldline, and have a proper time
parametrized velocity

X = (γcτ, p0 + βγcτ)

u = γ(1, β).
(D.48)

Let us utilize the standard basis for the stationary frame, and denote
this {ei}

e0 = (1, 0)

e1 = (0, 1).
(D.49)

and calculate a basis { fi} for which f0 = u is the time like direction.
By Gram-Schmidt, our space like basis vector is

f1 ∼ e1 − (e1 · f0) f 0

= (0, 1) − (0, 1) · γ(1, β)γ(1, β)

= (0, 1) − γ2(−β)(1, β)

= (γ2β, 1 + β2γ2)

=

(
γ2β,

1
1 − β2 (1 − β2 + β2)

)
=

(
γ2β, γ2

)
∼ −γ(β, 1).

(D.50)

The negative sign here is a bit of sneaky move and chosen only after
calculating the coordinates of the vector in this frame, so that at speed
β = 0, the coordinates in frames {ei} and { f i} are the same. Our basis
is then

f0 = γ(1, β)

f1 = −γ(β, 1).
(D.51)



320 non- inertial (local) observers.

One can quickly verify that f0 · f0 = 1, f1 · f1 = −1, and f0 · f1 = 0.
Our reciprocal frame, defined so that f i · f j = δi

j is

f 0 = γ(1, β)

f 1 = γ(β, 1).
(D.52)

With this basis our coordinate representation is

X = (X · f 0)

x0

f0 + (X · f 1)

x1

f1, (D.53)

and we calculate our coordinates to be

x0 = cτ − γp0β

x1 = γp0.
(D.54)

As a check one can verify that X = x0 f0 + x1 f1 as expected. So we
see that in a frame for which the proper velocity is the time like basis
vector, our particle is at rest (moving only in time).

Some interesting information can be extracted after making the
coordinate calculation. It is interesting to note that the position x1 =

γp0 equals p0 when β = 0. When the particle is observed at rest in one
frame, it remains at rest in the frame for which its proper velocity is
the time like direction (the particle’s rest frame). Furthermore, when
the particle is observed moving, the position in the particles rest frame
is always greater than the observed position x0γ ≥ x0. In other words,
the particle’s position appears closer to the origin in the observer’s
frame than it is in the rest frame (it is position is contracted).

Also see that the rest frame time matches the observer frame time
when the particle is observed at rest (β = 0). The time in the rest frame
is always less than the time in the observer frame and by increasing
beta we can shift the initial time position of the particle in its rest
frame as far backwards as we like. Similarly, if the particle is observed
moving backwards in the observer frame, the initial time position of
the particle in the rest frame can be pushed as far forward in time as
we like.
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An initially confusing aspect of the given non-inertial worldline For the
worldline

X =
1
a

(sinh(acτ), cosh(acτ)), (D.55)

we calculated

u = (cosh(acτ), sinh(acτ))

f0 = u = (cosh(acτ), sinh(acτ))

f1 = (sinh(acτ), cosh(acτ)).

(D.56)

The curious thing about this basis is that when one calculates the rest frame
coordinates

x0 = X · f 0 = 0

x1 = X · f 1 =
1
a
,

(D.57)

the timelike coordinate is zero uniformly? We can verify easily that the
position four vector is recovered as expected from X = x0 f0 + x1 f1, but it
still seems irregular that we have no timelike coordinate?

Oh! I see. This is a spacelike four vector. Look at the length

X2 =
1
a2 (sinh2(acτ) − cosh2(acτ)) = −

1
a2 < 0. (D.58)

Because it is spacelike in one frame, it can only be (just) spacelike in its
rest frame.

d.2 split of energy and momentum (very rough notes).

Disclaimer. At the very end of the tutorial Simon jotted some very quick
notes, and I have included what I got of those without editing below. I
have yet to go through these and make something coherent of them. In a
coordinate representation, the timelike component of our momentum was
obtained by extracting the first coordinate

p0 = (p0, p1, p2, p3) · (1, 0, 0, 0). (D.59)

This was (after scaling) was our energy term E = cp0, and we can extract
this in the observer frame by dotting with our observer frame timelike
basis vector e0

Eobserver = cp · e0 ≡ cp0. (D.60)
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In the observers reference frame, where ui = (1, 0, 0, 0), and pi = mcui, we
have

pi = (mc, 0, 0, 0). (D.61)

u′iobserved = γ((1, v/c, 0, 0). (D.62)

ui
observer = (1, 0, 0, 0). (D.63)

u′iobserver =


γ γv/c 0 0

γv/c γ 0 0

0 0 0 0

0 0 0 0


ui. (D.64)

p0 = γmc. (D.65)

d.3 frequency of light from a distant star (again very rough
notes).

Suppose we have a star far away. What is the frequency of the light emitted

ω̂ = ωe−acτ. (D.66)

FIXME: derive.
where ω is the emitted frequency.
FIXME: This implied an elapsed time before the star would no longer

be visible?



E3 D G P S G E O M E T R I E S .

For exercise 3.6 I’d initially gotten very carried away playing with alge-
bra and geometry of circular intersection. I did end up with a numerical
computation (handed in on paper) where I attempted to force a bit of SR
into the mix in the end. I know that I really ought to have been tackling the
problem without considering 3D geometries and only using SR concepts
but had too much fun playing with things, and ran out of time. I paid for
that with a really poor mark, and later reworked part (a) as a basic SR
problem.

Here is the play I did the first time around.

Discussion of the non-toy model It is fairly easy to find interesting info
about the mechanisms that real GPS works using. NASA has a nice How
does GPS work page [14], and How stuff works has a nice How GPS
Receivers Work article [12]. Reading these one finds that the GPS clocks
are actually kept synchronized. The typical GPS receiver obviously has
a clock, since we have countdown timers for time until arrival, is that
clock accurate enough compared to the satellite atomic clocks to be used
for the GPS location algorithm? What is done in fact is to use the local
receiver time to seed the iterative algorithms, allowing the local time to
be calculated eventually with an accuracy that actually approaches that of
the satellite’s atomic clocks. Some of the sources of error, like reflection
of the signals, delaying them, and interference by atmosphere are also
discussed in these articles. Also interesting is that there is a table lookup
of the satellites position implemented in the GPS receivers. This table
lookup is used to seed the iterative algorithms, and can be used to reduce
calculation error.

Our basic GPS problem is to calculate the intersection of a number of
“spherical” hypersurfaces. This is made more interesting by the fact that
this is both a non-linear and an over-specified problem. Let us consider the
geometric problem to get an idea of how to set up this problem. Suppose
that we have a set of k satellites, located at position pi, i ∈ [1, k], and we
know that these are located with distance di from our position x.

http://www.nasm.si.edu/gps/work.html
http://www.nasm.si.edu/gps/work.html
http://electronics.howstuffworks.com/gadgets/travel/gps.htm
http://electronics.howstuffworks.com/gadgets/travel/gps.htm
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Our problem is then to find the simultaneous solution to the following
set of equations

(x − p1)2 = d2
1

(x − p2)2 = d2
2

...

(x − k2)2 = d2
k .

(E.1)

Observe that even if we reduce this to a one dimensional problem in a
single variable x, we still have a non-linear system

0 = (x − p1)2 − d2
1

0 = (x − p2)2 − d2
2

...

0 = (x − k2)2 − d2
k .

(E.2)

We also need to be aware of the fact that each of the positions pi, and
the respective distances di will in reality both have associated errors, so
there is not likely any specific single value of x that “solves” this problem,
unless it is setup in a contrived and perfect fashion. This intrinsic error, and
the k equations, one unknown nature of the problem (or three unknowns
for spatial, or four for spatial and time position) suggests a least squares
approach, but it will have to be one that also incorporates iteration.

We can setup our problem in matrix form, where we are looking for a
solution to

F(x) =
[
Fi(x)

]
=


|x − p1| − c|t − t1|

|x − p2| − c|t − t2|
...

|x − pk| − c|t − tk|


= 0. (E.3)

We seek the spacetime event vector x = (ct, x) for the spatial location
and the exact local time at the location of the GPS receiver. Given any
approximation of the solution, we can refine the solution using Newton’s
root finding method by taking partials, forming the Jacobian matrix for
our function F(x). That is

F(x0 + ∆x) ≈ F(x0) +
∂Fi(x)
∂x j

∣∣∣∣∣
x0

∆x j = F(x0) + J(x0)∆x = 0. (E.4)



3d gps geometries. 325

This leaves us with the our least squares problem, requiring the generalized
inverse to the matrix equation

x1 = x0 − J†(x0)F(x0), (E.5)

where

J† = (JTJ)−1JT. (E.6)

This is a solution in the least squares sense that given b = Jx, the norm
|Jx − b| is minimized by x = J†b.

This iterative method of solution, in the context of finding fitting circles
and ellipses can be found discussed in detail in [3].

Goofing around with the geometry of it all For our toy model we have
two satellites A and B both moving in the positive x-axis direction at
velocity Vx at height h. As seen above, we do not require the velocity of
the satellites to setup the problem, and could express the problem to solve
as the numerical solution of the set of equations

F(x) =


√

h2 + (x − x′A)2 − c
∣∣∣t − t′A

∣∣∣√
h2 + (x − x′B)2 − c

∣∣∣t − t′B
∣∣∣
 = 0. (E.7)

If we assume that our GPS receiver’s clock is synchronized sufficiently
with satellites A and B, this single variable problem admits a closed form
for one iteration of the least squares process. However, since we are asked
for a result that includes a Vx/c term, we can augment our matrix equation
by two additional rows, with a secondary set of data points introduced at
an offset time interval. That is

F(x) =



√
h2 + (x − x′A)2 −

∣∣∣ct − ct′A
∣∣∣√

h2 + (x − x′B)2 −
∣∣∣ct − ct′B

∣∣∣√
h2 + (x − x′A − (Vx/c)cδt)2 −

∣∣∣ct − ct′A − cδt
∣∣∣√

h2 + (x − x′B − (Vx/c)cδt)2 −
∣∣∣ct − ct′B − cδt

∣∣∣


= 0. (E.8)

With t, δt, x′A, and x′B given, and an initial seed value for the iterative
procedure assumed to be the midpoint x0 = (x′A + x′B)/2, we can calculate
a first approximation to the receiver position x1 = x0 + ∆x using the
Newton’s procedure outlined above.
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For this system our Jacobian elements are all differentials of the follow-
ing form

∂

∂x

√
h2 + (x − p)2 − ∆ =

x − p√
h2 + (x − p)2

, (E.9)

so, our Jacobian is

J =



x−x′A√
h2 + (x − x′A)2

x−x′B√
h2 + (x − x′B)2

x−x′A−(Vx/c)cδt√
h2 + (x − x′A − (Vx/c)cδt)2

x−x′B−(Vx/c)cδt√
h2 + (x − x′B − (Vx/c)cδt)2


. (E.10)

Our deviation from the midpoint to first order in Vx/c is

∆x = −
JTF
JT J

∣∣∣∣∣∣
x=(x′A+x′B)/2

. (E.11)

To tidy this up, let

s =
1
2

(x′B − x′A). (E.12)

D = (Vx/c)cδt. (E.13)

JTJ
∣∣∣
(x′A+x′B)/2 =

s2

h2 + s2 +
(−s)2

h2 + s2 +
(s − D)2

h2 + (s − D)2 +
(−s − D)2

h2 + (−s − D)2

=
2s2

h2 + s2 +
(s − D)2

h2 + (s − D)2 +
(s + D)2

h2 + (s + D)2 ,

(E.14)



3d gps geometries. 327

and

JTF
∣∣∣
(x′A+x′B)/2

=

[
s√

h2 + (s)2
−s√

h2 + (−s)2
s−D√

h2 + (s − D)2
−s−D√

h2 + (−s − D)2

]
×

√
h2 + (s)2 −

∣∣∣ct − ct′A
∣∣∣√

h2 + (−s)2 −
∣∣∣ct − ct′B

∣∣∣√
h2 + (s − D)2 −

∣∣∣ct − ct′A − cδt
∣∣∣√

h2 + (−s − D)2 −
∣∣∣ct − ct′B − cδt

∣∣∣


=

s√
s2 + D2

(∣∣∣ct − ct′B
∣∣∣ − ∣∣∣ct − ct′A

∣∣∣) − 2D

−
(s − D)

∣∣∣ct − ct′A − cδt
∣∣∣√

h2 + (s − D)2
+

(s + D)
∣∣∣ct − ct′B − cδt

∣∣∣√
h2 + (s + D)2

.

(E.15)

The final beastly ugly result, utilizing the helper variables of eq. (E.13),
and eq. (E.12), we have for the deviation from the midpoint (after one
iteration of this least squares Newton’s method):

∆x =

− s√
s2 + D2

(∣∣∣ct − ct′B
∣∣∣ − ∣∣∣ct − ct′A

∣∣∣) + 2D +
(s−D)|ct−ct′A−cδt|√

h2 + (s − D)2
−

(s+D)|ct−ct′B−cδt|√
h2 + (s + D)2

2s2

h2+s2 +
(s−D)2

h2+(s−D)2 +
(s+D)2

h2+(s+D)2

.

(E.16)

In practice it does not make much sense to compute this. You will want
to use a computer, and assuming the availability of a pre-canned SVD
routine to compute the generalized inverse, the toy model would not be
any easier to solve than the real thing.





FC O M P L E X N OTAT I O N F O R P L A N E R E L AT I V I S T I C
A P P L I C AT I O N S .

f.1 motivation.

In the electrodynamics midterm we had a question on circular motion.
This screamed for use of complex numbers to describe the spatial parts of
the spacetime trajectories.

Let us play with this a bit.

f.2 our invariant.

Suppose we describe our spacetime point as a paired time and complex
number

X = (ct, z). (F.1)

Our spacetime invariant interval in this form is thus

X2 ≡ (ct)2 − |z|2. (F.2)

Not much different than the usual coordinate representation of the spatial
coordinates, except that we have a |z|2 replacing the usual x2.

Taking the spacetime distance between X and another point, say X̃ =

(ct̃, z̃) motivates the inner product between two points in this representation

(X − X̃)2 = (ct − ct̃)2 − |z − z̃|2

= (ct − ct̃)2 − (z − z̃)(z∗ − z̃∗)

= (ct)2 − 2(ct)(ct̃) + (ct̃)2 − |z|2 − |z̃|2 + (zz̃∗ + z∗z̃)

= X2 + X̃2 − 2
(
(ct)(ct̃) −

1
2

(zz̃∗ + z∗z̃)
)
.

(F.3)

It is clear that it makes sense to define

X · X̃ = (ct)(ct̃) −Re(zz̃∗), (F.4)
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consistent with our original starting point

X2 = X · X. (F.5)

Let us also introduce a complex inner product

〈z, z̃〉 ≡
1
2
(zz̃∗ + z∗z̃)) = Re(zz̃∗). (F.6)

Our dot product can now be written

X · X̃ = (ct)(ct̃) − 〈z, z̃〉. (F.7)

f.3 change of basis.

Our standard basis for our spatial components is {1, i}, but we are free to
pick any other basis should we choose. In particular, if we rotate our basis
counterclockwise by φ, our new basis, still orthonormal, is {eiφ, ieiφ}.

In any orthonormal basis the coordinates of a point with respect to that
basis are real, so just as we can write

z = 〈1, z〉 + i〈i, z〉, (F.8)

we can extract the coordinates in the rotated frame, also simply by taking
inner products

z = eiφ〈eiφ, z〉 + ieiφ〈ieiφ, z〉. (F.9)

The values 〈eiφ, z〉, and 〈ieiφ, z〉 are the (real) coordinates of the point z in
this rotated basis.

This is enough that we can write the Lorentz boost immediately for a
velocity ~v = cβeiφ at an arbitrary angle φ in the plane

ct′

〈eiφ, z′〉

〈ieiφ, z′〉

 =


γ −γβ 0

−γβ γ 0

0 0 1




ct

〈eiφ, z〉

〈ieiφ, z〉

 . (F.10)

Let us translate this to ct, x, y coordinates as a check. For the spatial
component parallel to the boost direction we have

〈eiφ, x + iy〉 = Re(e−iφ(x + iy))

= Re((cos φ − i sin φ)(x + iy))

= x cos φ + y sin φ,

(F.11)
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and the perpendicular components are

〈ieiφ, x + iy〉 = Re(−ie−iφ(x + iy))

= Re((−i cos φ − sin φ)(x + iy))

= −x sin φ + y cos φ.

(F.12)

Grouping the two gives 〈eiφ, x + iy〉

〈ieiφ, x + iy〉

 =

 cos φ sin φ

− sin φ cos φ


x

y

 = R−φ

x

y

 . (F.13)

The boost equation in terms of the cartesian coordinates is thus

1 0

0 R−φ



ct′

x′

y′

 =


γ −γβ 0

−γβ γ 0

0 0 1


1 0

0 R−φ



ct

x

y

 . (F.14)

Writing
ct′

x′

y′

 =
∥∥∥∧µν∥∥∥


ct

x

y

 , (F.15)

the boost matrix ‖∧µν‖ is found to be (after a bit of work)

∥∥∥∧µν∥∥∥ =

1 0

0 Rφ



γ −γβ 0

−γβ γ 0

0 0 1


1 0

0 R−φ



=


γ −γβ cos φ −γβ sin φ

−γβ cos φ γ cos2 φ + sin2 φ (γ − 1) sin φ cos φ

−γβ sin φ (γ − 1) sin φ cos φ γ sin2 φ + cos2 φ.


.

(F.16)

A final bit of regrouping gives

∥∥∥∧µν∥∥∥ =


γ −γβ cos φ −γβ sin φ

−γβ cos φ 1 + (γ − 1) cos2 φ (γ − 1) sin φ cos φ

−γβ sin φ (γ − 1) sin φ cos φ 1 + (γ − 1) sin2 φ

 . (F.17)

This is consistent with the result stated in [16], finishing the game for the
day.





GWAV E G U I D E S : C O N F I N E D E M WAV E S .

g.1 motivation.

While this is not part of the course, the topic of waveguides is one of so
many applications that it is worth a mention, and that will be done in this
tutorial.

We will setup our system with a waveguide (conducting surface that
confines the radiation) oriented in the ẑ direction. The shape can be arbi-
trary

PICTURE: cross section of wacky shape.

At the surface of a conductor At the surface of the conductor (I presume
this means the interior surface where there is no charge or current enclosed)
we have

∇ ×E = −
1
c
∂B
∂t

∇ ×B =
1
c
∂E
∂t

∇ ·B = 0

∇ ·E = 0.

(G.1)

If we are talking about the exterior surface, do we need to make any other
assumptions (perfect conductors, or constant potentials)?

Wave equations For electric and magnetic fields in vacuum, we can show
easily that these, like the potentials, separately satisfy the wave equation

Taking curls of the Maxwell curl equations above we have

∇ × (∇ ×E) = −
1
c2

∂2E
∂t2

∇ × (∇ ×B) = −
1
c2

∂2B
∂t2 ,

(G.2)

but we have for vector M

∇ × (∇ ×M) = ∇(∇ ·M) − ∆M, (G.3)
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which gives us a pair of wave equations

�E = 0

�B = 0.
(G.4)

We still have the original constraints of Maxwell’s equations to deal with,
but we are free now to pick the complex exponentials as fundamental
solutions, as our starting point

E = E0eika xa = E0ei(k0 x0−k·x)

B = B0eika xa = B0ei(k0 x0−k·x),
(G.5)

With k0 = ω/c and x0 = ct this is

E = E0ei(ωt−k·x)

B = B0ei(ωt−k·x).
(G.6)

For the vacuum case, with monochromatic light, we treated the amplitudes
as constants. Let us see what happens if we relax this assumption, and
allow for spatial dependence (but no time dependence) of E0 and B0. For
the LHS of the electric field curl equation we have

0 = ∇ ×E0eika xa

= (∇ ×E0 −E0 ×∇)eika xa

= (∇ ×E0 −E0 × eαika∂αxa)eika xa

= (∇ ×E0 + E0 × eαikaδα
a)eika xa

= (∇ ×E0 + iE0 × k)eika xa
.

(G.7)

Similarly for the divergence we have

0 = ∇ ·E0eika xa

= (∇ ·E0 + E0 ·∇)eika xa

= (∇ ·E0 + E0 · eαika∂αxa)eika xa

= (∇ ·E0 −E0 · eαikaδα
a)eika xa

= (∇ ·E0 − ik ·E0)eika xa
.

(G.8)

This provides constraints on the amplitudes

∇ ×E0 − ik ×E0 = −i
ω

c
B0

∇ ×B0 − ik ×B0 = i
ω

c
E0

∇ ·E0 − ik ·E0 = 0

∇ ·B0 − ik ·B0 = 0.

(G.9)
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Applying the wave equation operator to our phasor we get

0 =

(
1
c2 ∂tt −∇

2
)

E0ei(ωt−k·x)

=

(
−
ω2

c2 −∇
2 + k2

)
E0ei(ωt−k·x).

(G.10)

So the momentum space equivalents of the wave equations are(
∇

2 +
ω2

c2 − k2
)

E0 = 0(
∇

2 +
ω2

c2 − k2
)

B0 = 0.
(G.11)

Observe that if c2k2 = ω2, then these amplitudes are harmonic functions
(solutions to the Laplacian equation). However, it does not appear that we
require such a light like relation for the four vector ka = (ω/c,k).

g.2 back to the tutorial notes.

In class we went straight to an assumed solution of the form

E = E0(x, y)ei(ωt−kz)

B = B0(x, y)ei(ωt−kz),
(G.12)

where k = kẑ. Our Laplacian was also written as the sum of components
in the propagation and perpendicular directions

∇
2 =

∂2

∂x⊥2 +
∂2

∂z2 . (G.13)

With no z dependence in the amplitudes we have(
∂2

∂x⊥2 +
ω2

c2 − k2
)

E0 = 0(
∂2

∂x⊥2 +
ω2

c2 − k2
)

B0 = 0.
(G.14)
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g.3 separation into components.

It was left as an exercise to separate out our Maxwell equations, so that
our field components E0 = E⊥ + Ez and B0 = B⊥ + Bz in the propagation
direction, and components in the perpendicular direction are separated

∇ ×E0 = (∇⊥ + ẑ∂z) ×E0

= ∇⊥ ×E0

= ∇⊥ × (E⊥ + Ez)

= ∇⊥ ×E⊥ +∇⊥ ×Ez

= (x̂∂x + ŷ∂y) × (x̂Ex + ŷEy) +∇⊥ ×Ez

= ẑ(∂xEy − ∂zEz) +∇⊥ ×Ez.

(G.15)

We can do something similar for B0. This allows for a split of eq. (G.9)
into ẑ and perpendicular components

∇⊥ ×E⊥ = −i
ω

c
Bz

∇⊥ ×B⊥ = i
ω

c
Ez

∇⊥ ×Ez − ik ×E⊥ = −i
ω

c
B⊥

∇⊥ ×Bz − ik ×B⊥ = i
ω

c
E⊥

∇⊥ ·E⊥ = ikEz − ∂zEz

∇⊥ ·B⊥ = ikBz − ∂zBz.

(G.16)

So we see that once we have a solution for Ez and Bz (by solving the wave
equation above for those components), the components for the fields in
terms of those components can be found. Alternately, if one solves for the
perpendicular components of the fields, these propagation components are
available immediately with only differentiation.

In the case where the perpendicular components are taken as given

Bz = i
c
ω
∇⊥ ×E⊥

Ez = −i
c
ω
∇⊥ ×B⊥,

(G.17)
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we can express the remaining ones strictly in terms of the perpendicular
fields

ω

c
B⊥ =

c
ω
∇⊥ × (∇⊥ ×B⊥) + k ×E⊥

ω

c
E⊥ =

c
ω
∇⊥ × (∇⊥ ×E⊥) − k ×B⊥

∇⊥ ·E⊥ = −i
c
ω

(ik − ∂z)ẑ · (∇⊥ ×B⊥)

∇⊥ ·B⊥ = i
c
ω

(ik − ∂z)ẑ · (∇⊥ ×E⊥).

(G.18)

Is it at all helpful to expand the double cross products?

ω2

c2 B⊥ = ∇⊥(∇⊥ ·B⊥) −∇⊥2B⊥ +
ω

c
k ×E⊥

= i
c
ω

(ik − ∂z)∇⊥ẑ · (∇⊥ ×E⊥) −∇⊥2B⊥ +
ω

c
k ×E⊥.

(G.19)

This gives us(
∇⊥

2 +
ω2

c2

)
B⊥ = −

c
ω

(k + i∂z)∇⊥ẑ · (∇⊥ ×E⊥) +
ω

c
k ×E⊥(

∇⊥
2 +

ω2

c2

)
E⊥ = −

c
ω

(k + i∂z)∇⊥ẑ · (∇⊥ ×B⊥) −
ω

c
k ×B⊥,

(G.20)

but that does not seem particularly useful for completely solving the
system? It appears fairly messy to try to solve for E⊥ and B⊥ given the
propagation direction fields. I wonder if there is a simplification available
that I am missing?

g.4 solving the momentum space wave equations.

Back to the class notes. We proceeded to solve for Ez and Bz from the
wave equations by separation of variables. We wish to solve equations of
the form(

∂2

∂x2 +
∂2

∂y2 +
ω2

c2 − k2
)
φ(x, y) = 0. (G.21)

Write φ(x, y) = X(x)Y(y), so that we have

X′′

X
+

Y ′′

Y
= k2 −

ω2

c2 . (G.22)
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One solution is sinusoidal

X′′

X
= −k2

1

Y ′′

Y
= −k2

2

−k2
1 − k2

2 = k2 −
ω2

c2 .

(G.23)

The example in the tutorial now switched to a rectangular waveguide, still
oriented with the propagation direction down the z-axis, but with lengths a
and b along the x and y axis respectively.

Writing k1 = 2πm/a, and k2 = 2πn/b, we have

φ(x, y) =
∑
mn

amn exp
(
2πim

a
x
)

exp
(
2πin

b
y
)
. (G.24)

We were also provided with some definitions

Definition G.1

TE (Transverse Electric)
E3 = 0.

Definition G.2

TM (Transverse Magnetic)
B3 = 0.

Definition G.3

TEM (Transverse Electromagnetic)
E3 = B3 = 0.

claim: TEM do not existing in a hollow waveguide.
Why: I had in my notes

∇ ×E = 0 =⇒
∂E2

∂x1 −
∂E1

∂x2 = 0

∇ ·E = 0 =⇒
∂E1

∂x1 +
∂E2

∂x2 = 0.
(G.25)
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and then

∇
2φ = 0

φ = const.
(G.26)

In retrospect I fail to see how these are connected? What happened to
the ∂tB term in the curl equation above? It was argued that we have
E‖ = B⊥ = 0 on the boundary. So for the TE case, where E3 = 0, we have
from the separation of variables argument

ẑ ·B0(x, y) =
∑
mn

amn cos
(
2πim

a
x
)

cos
(
2πin

b
y
)
. (G.27)

No sines because

B1 ∼
∂B3

∂xa
→ cos(k1x1). (G.28)

The quantity

amn cos
(
2πim

a
x
)

cos
(
2πin

b
y
)
. (G.29)

is called the T Emn mode. Note that since B = const an ampere loop
requires B = 0 since there is no current.

Writing

k =
ω

c

√
1 −

(
ωmn

ω

)2

ωmn = 2πc

√(m
a

)2
+

(n
b

)2
.

(G.30)

Since ω < ωmn we have k purely imaginary, and the term

e−ikz = e−|k|z. (G.31)

represents the die off.
ω10 is the smallest.
Note that the convention is that the m in T Emn is the bigger of the two

indices, so ω > ω10.
The phase velocity

Vφ =
ω

k
=

c√
1 −

(
ωmn

ω

)2
≥ c. (G.32)
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However, energy is transmitted with the group velocity, the ratio of the
Poynting vector and energy density

〈S〉
〈U〉

= Vg =
∂ω

∂k
= 1/

∂k
∂ω

. (G.33)

(This can be shown).
Since(
∂k
∂ω

)−1

=

(
∂

∂ω

√
(ω/c)2 − (ωmn/c)2

)−1

= c
√

1 − (ωmn/ω)2 ≤ c. (G.34)

We see that the energy is transmitted at less than the speed of light as
expected.

g.5 final remarks.

I had started converting my handwritten scrawl for this tutorial into an
attempt at working through these ideas with enough detail that they self
contained, but gave up part way. This appears to me to be too big of a
sub-discipline to give it justice in one hours class. As is, it is enough to at
least get an concept of some of the ideas involved. I think were I to learn
this for real, I had need a good text as a reference (or the time to attempt
to blunder through the ideas in much much more detail).



H3 D D I V E R G E N C E F O R PA R A M E T R I Z E D VO L U M E
E L E M E N T.

With the divergence of the energy momentum tensor converted from a
volume to a surface integral given by∫

V
d3x∂βT βα =

∮
∂V

d2σβT βα, (H.1)

I got to wondering what a closed form algebraic expression for this curious
(and foreign seeming) quantity d2σβ was. It obviously must be related to
the normal to the surface. It seemed to me that a natural way to answer
this question was to consider this divergence integral over an arbitrarily
parametrized volume. This turns out to be overkill, but a useful seeming
digression.

h.1 a generally parametrized parallelepiped volume element.

Suppose we parametrize a volume by specifying that all the points in that
volume are covered by the position vector from the origin, given by

x = x(a1, a2, a3). (H.2)

At any point in the volume of interest, we can create a level curve, holding
two of the parameters aα constant, and varying the remaining one. In
particular, we can construct three direction vectors along these level curves,
one for each parameter not held constant

dx1 = da1
∂x
∂a1

dx2 = da2
∂x
∂a2

dx3 = da3
∂x
∂a3

.

(H.3)

The span of these vectors, provided they are non-degenerate, forms a
parallelepiped, the volume of which is

d3x = dx3 · (dx1 × dx2). (H.4)
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This volume element can be expanded in a number of ways

d3x =
∂x
∂a1
·

(
∂x
∂a2
×
∂x
∂a3

)
=
∂xα

∂a1

∂xβ

∂a2

∂xγ

∂a3
εαβγda1da2da3

=
∂x1

∂aα

∂x2

∂aβ

∂x3

∂aγ
εαβγda1da2da3

=
∂x1

∂a[1

∂x2

∂a2

∂x3

∂a3]
da1da2da2

=

∣∣∣∣∣∣∂(x1, x2, x3)
∂(a1, a2, a3)

∣∣∣∣∣∣da1da2da3.

(H.5)

where the Jacobian determinant is given by

∣∣∣∣∣∣∂(x1, x2, x3)
∂(a1, a2, a3)

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣
∂x1

∂a1

∂x2

∂a1

∂x3

∂a1
∂x1

∂a2

∂x2

∂a2

∂x3

∂a2
∂x1

∂a3

∂x2

∂a3

∂x3

∂a3

∣∣∣∣∣∣∣∣∣∣∣ . (H.6)

Provided we are interested in a volume for which the sign of this Jacobian
determinant does not change sign, our task is to evaluate and reduce the
integral∫ ∣∣∣∣∣∣∂(x1, x2, x3)

∂(a1, a2, a3)

∣∣∣∣∣∣da1da2da3
∂T βα

∂xβ
. (H.7)

to a set (and sum of) two dimensional integrals.

h.2 on the geometry of the surfaces.

Suppose that we integrate over the ranges [a1−, a1+], [a2−, a2+], [a3−, a3+].
Observe that the outwards normals along the a1 = a1+ face is dn1+ =

da2da3∂x/∂a2 × ∂x/∂a3. This is

dn1+ = da2da3
∂x
∂a2
×
∂x
∂a3

= da2da3
∂xµ

∂a2

∂xν

∂a3
εµνγeγ. (H.8)

Similarly our normal on the a2 = a2+ face is

dn2+ = da3da1
∂x
∂a3
×
∂x
∂a1

= da3da1
∂xµ

∂a3

∂xν

∂a1
εµνγeγ, (H.9)
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and on the a3 = a3+ face the outward normal is

dn3+ = da1da2
∂x
∂a1
×
∂x
∂a2

= da1da2
∂xµ

∂a1

∂xν

∂a2
εµνγeγ. (H.10)

Along the aα− faces these are just negated. We can summarize these as

dnσ± = ±
1
2!

daαdaβ
∂x
∂aα
×
∂x
∂aβ

εαβσ = ±
1
2!

daαdaβ
∂xµ

∂aα

∂xν

∂aβ
εαβσεµνγeγ.

(H.11)

h.3 expansion of the jacobian determinant.

Suppose, to start with, our divergence volume integral eq. (H.7) has just
the following term∫

d3x∂3M. (H.12)
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The specifics of how the scalar M = T 3α is indexed will not matter yet, so
let us suppress it. The Jacobian determinant can be expanded along the ∂x3

∂aα
column for∫

d3x∂3M

=

∫
da1da2da3

∣∣∣∣∣∣∂(x1, x2, x3)
∂(a1, a2, a3)

∣∣∣∣∣∣∂M
∂x3

=

∫
da1da2da3

(
∂x1

∂a[1

∂x2

∂a2

∂x3

∂a3]

)
∂M
∂x3

=

∫
da1da2da3

(
∂x1

∂a[1

∂x2

∂a2]

∂x3

∂a3
+
∂x1

∂a[2

∂x2

∂a3]

∂x3

∂a1
+
∂x1

∂a[3

∂x2

∂a1]

∂x3

∂a2

)
∂M
∂x3

=

∫
da1da2da3

(∣∣∣∣∣∣∂(x1, x2)
∂(a1, a2)

∣∣∣∣∣∣∂x3

∂a3
+

∣∣∣∣∣∣∂(x1, x2)
∂(a2, a3)

∣∣∣∣∣∣∂x3

∂a1
+

∣∣∣∣∣∣∂(x1, x2)
∂(a3, a1)

∣∣∣∣∣∣∂x3

∂a2

)
∂M
∂x3

=

∫
da1da2

∣∣∣∣∣∣∂(x1, x2)
∂(a1, a2)

∣∣∣∣∣∣
∫

da3
∂x3

∂a3

∂M
∂x3

+

∫
da2da3

∣∣∣∣∣∣∂(x1, x2)
∂(a2, a3)

∣∣∣∣∣∣
∫

da1
∂x3

∂a1

∂M
∂x3

+

∫
da3da1

∣∣∣∣∣∣∂(x1, x2)
∂(a3, a1)

∣∣∣∣∣∣
∫

da2
∂x3

∂a2

∂M
∂x3

=

∫
da1da2

∣∣∣∣∣∣∂(x1, x2)
∂(a1, a2)

∣∣∣∣∣∣
∫

da3
∂M
∂a3

+

∫
da2da3

∣∣∣∣∣∣∂(x1, x2)
∂(a2, a3)

∣∣∣∣∣∣
∫

da1
∂M
∂a1

+

∫
da3da1

∣∣∣∣∣∣∂(x1, x2)
∂(a3, a1)

∣∣∣∣∣∣
∫

da2
∂M
∂a2

=

∫
da1da2

∣∣∣∣∣∣∂(x1, x2)
∂(a1, a2)

∣∣∣∣∣∣(M(a3+) −M(a3+))

+

∫
da2da3

∣∣∣∣∣∣∂(x1, x2)
∂(a2, a3)

∣∣∣∣∣∣(M(a1+) −M(a1+))

+

∫
da3da1

∣∣∣∣∣∣∂(x1, x2)
∂(a3, a1)

∣∣∣∣∣∣(M(a2+) −M(a2+)).

(H.13)
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Performing the same task (really just performing cyclic permutation of
indices) we can now construct the whole divergence integral∫

d3x∂βT βα =

∫
da1da2

∣∣∣∣∣∣∂(x1, x2)
∂(a1, a2)

∣∣∣∣∣∣(T 3α(a3+) − T 3α(a3+))

+

∫
da2da3

∣∣∣∣∣∣∂(x1, x2)
∂(a2, a3)

∣∣∣∣∣∣(T 3α(a1+) − T 3α(a1+))

+

∫
da3da1

∣∣∣∣∣∣∂(x1, x2)
∂(a3, a1)

∣∣∣∣∣∣(T 3α(a2+) − T 3α(a2+))

+

∫
da1da2

∣∣∣∣∣∣∂(x2, x3)
∂(a1, a2)

∣∣∣∣∣∣(T 1α(a3+) − T 1α(a3+))

+

∫
da2da3

∣∣∣∣∣∣∂(x2, x3)
∂(a2, a3)

∣∣∣∣∣∣(T 1α(a1+) − T 1α(a1+))

+

∫
da3da1

∣∣∣∣∣∣∂(x2, x3)
∂(a3, a1)

∣∣∣∣∣∣(T 1α(a2+) − T 1α(a2+))

+

∫
da1da2

∣∣∣∣∣∣∂(x3, x1)
∂(a1, a2)

∣∣∣∣∣∣(T 2α(a3+) − T 2α(a3+))

+

∫
da2da3

∣∣∣∣∣∣∂(x3, x1)
∂(a2, a3)

∣∣∣∣∣∣(T 2α(a1+) − T 2α(a1+))

+

∫
da3da1

∣∣∣∣∣∣∂(x3, x1)
∂(a3, a1)

∣∣∣∣∣∣(T 2α(a2+) − T 2α(a2+)).

(H.14)

Regrouping we have∫
d3x∂βT βα =∫
da1da2

(∣∣∣∣∣∣∂(x1, x2)
∂(a1, a2)

∣∣∣∣∣∣T 3α
∣∣∣
∆a3

+

∣∣∣∣∣∣∂(x2, x3)
∂(a1, a2)

∣∣∣∣∣∣T 1α
∣∣∣
∆a3

+

∣∣∣∣∣∣∂(x3, x1)
∂(a1, a2)

∣∣∣∣∣∣T 2α
∣∣∣
∆a3

)
+

∫
da2da3

(∣∣∣∣∣∣∂(x1, x2)
∂(a2, a3)

∣∣∣∣∣∣T 3α
∣∣∣
∆a3

+

∣∣∣∣∣∣∂(x2, x3)
∂(a2, a3)

∣∣∣∣∣∣T 1α
∣∣∣
∆a3

+

∣∣∣∣∣∣∂(x3, x1)
∂(a2, a3)

∣∣∣∣∣∣T 2α
∣∣∣
∆a3

)
+

∫
da3da1

(∣∣∣∣∣∣∂(x1, x2)
∂(a3, a1)

∣∣∣∣∣∣T 3α
∣∣∣
∆a3

+

∣∣∣∣∣∣∂(x2, x3)
∂(a3, a1)

∣∣∣∣∣∣T 1α
∣∣∣
∆a3

+

∣∣∣∣∣∣∂(x3, x1)
∂(a3, a1)

∣∣∣∣∣∣T 2α
∣∣∣
∆a3

)
.

(H.15)
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Observe that we can factor these sums utilizing the normals for the paral-
lelepiped volume element∫

d3x∂βT βα =

∫
da1da2

∣∣∣∣∣∂(xµ, xν)
∂(a1, a2)

∣∣∣∣∣εµνγeγ · eβT βα
∣∣∣
∆a3

+

∫
da2da3

∣∣∣∣∣∂(xµ, xν)
∂(a2, a3)

∣∣∣∣∣εµνγeγ · eβT βα
∣∣∣
∆a1

+

∫
da3da1

∣∣∣∣∣∂(xµ, xν)
∂(a3, a1)

∣∣∣∣∣εµνγeγ · eβT βα
∣∣∣
∆a2
.

(H.16)

Let us look at the first of these integrals in more detail. We integrate
the values of the eβT βα evaluated on the points of the surface for which
a3 = a3+. To perform this integral we dot against the outward normal area
element

da1da2∂xµ/∂a1∂xν/∂a2εµνγeγ. (H.17)

We do the same, but subtract the integral where eβT βα is evaluated on the
surface a3 = a3−, where we dot with the area element that has the inwards
normal direction on that surface. This is then done for each of the surfaces
of the parallelepiped that we are integrating over.

In terms of the outwards (area scaled) normals dn3, dn1, dn2 on the
a3+, a1+ and a2+ surfaces respectively we can write

(H.18)

∫
d3x∂βT βα =

∫
dn3 · eβT βα

∣∣∣
∆a3

+

∫
dn1

· eβT βα
∣∣∣
∆a1

+

∫
dn2 · eβT βα

∣∣∣
∆a2
.

This can be written more concisely in index form with

d2σβ = εµνβ

(
∂xµ

∂a2

∂xν

∂a3
da2da3 +

∂xµ

∂a3

∂xν

∂a1
da3da1 +

∂xµ

∂a1

∂xν

∂a2
da1da2

)
,

(H.19)

so that the divergence integral is just

(H.20)

∫
d3x =

∫
over level surfaces a1+, a2+, a3+

d2σβT βα

−

∫
over level surfaces a1−, a2−, a3−

d2σβT βα.
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In each case, for the aα− surfaces, our negated inwards normal form can
be redefined so that we integrate over only the outwards normal directions,
and we can use the oriented integral notation∫

d3x =

∮
d2σβT βα, (H.21)

To encode (or imply) whether we require a positive or negative sign on the
area element tensor of eq. (H.19) for the surface in question.

h.4 a look back, and looking forward.

Now, having performed this long winded calculation, the meaning of d2σβ

becomes clear. What is also clear is how this could have been arrived at
directly utilizing the divergence theorem in its normal vector form. We had
only to re-write our equation as a vector equation in terms of the gradient∫

V
d3x

∂T βα

∂xα
=

∫
V

d3x∇ · (eβT βα) =

∫
∂V

dAn · eβT βα. (H.22)

From this we see directly that d2σβ = dAn · eβ.
Despite there being an easier way to find the form of d2σβ, I still

consider this a worthwhile exercise. It hints how one could generalize the
arguments to the higher dimensional cases. The main task would be to
construct the normals to the hypersurfaces bounding the hypervolume, and
how to do this algebraically utilizing determinants may not be too hard
(since we want a Jacobian determinant as the hypervolume element in
the “volume” integral). We also got more than the normal physics text
book proof of the divergence theorem for Cartesian coordinates, and did
it here for a general parametrization. This was not a complete argument
since we did not consider a general surface, broken down into a triangular
mesh. We really want volume elements with triangular sides instead of
parallelograms.





IE M F I E L D S F RO M M AG N E T I C D I P O L E C U R R E N T.

i.1 review.

Recall for the electric dipole we started with a system like

z+ = 0

z− = e3(z0 + a sin(ωt)).
(I.1)

(we did it with the opposite polarity)

E =
qaω2

c2 sinωto sin θ
1
|x|

(−θ̂) =
1

c2|x|
(d̈(tr) × r̂) × r̂

B = −
qaω2

c2 sinωto sin θ
1
|x|

(−φ̂) = r̂ ×E.
(I.2)

This was after the multipole expansion (λ � l).
Physical analogy: a high and low frequency wave interacting. The low

frequency wave becomes the envelope, and does not really “see” the
dynamics of the high frequency wave.

We also figured out the Poynting vector was

S =
c

4π
E ×B = r̂

sin2 θ
∣∣∣d̈(tr)

∣∣∣2
4πc3|x|2

, (I.3)

and our Power was

Power(R) =

∮
S R

2
d2σ · 〈S〉 =

q2a2ω4

3c3 . (I.4)

i.2 magnetic dipole.

PICTURE: positively oriented current I circulating around the normal m
at radius b in the x-y plane. We have

(from third year)

|m| = Iπb2. (I.5)
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With the magnetic moment directed upwards along the z-axis

m = Iπb2e3, (I.6)

where we have a frequency dependence in the current

I = Io sin(ωt). (I.7)

With no static charge distribution we have zero scalar potential

ρ = 0 =⇒ A0 = 0. (I.8)

Our first moments approximation of the vector potential was

Aα(x, t) ≈
1

c|x|

∫
d3x′ jα(x′, t) + O(higher moments). (I.9)

Now we use our new trick introducing a 1 = 1 to rewrite the current(
∂x′α

∂x′β

)
jβ = δαβ jβ = jα, (I.10)

or equivalently

∇xα = eα. (I.11)

Carrying out the trickery we have

Aα =
1

c|x|

∫
d3x′(∇′x′α) · J(x′, tr)

=
1

c|x|

∫
d3x′(∂β′ x′α) jβ(x′, tr)

=
1

c|x|

∫
d3x′(∂β′(x′α jβ(x′, tr)) − x′α( ∇′ · J(x′, tr)

= −∂0ρ = 0

))

=
1

c|x|

∫
d3x′∇′ · (x′αJ)

=

∮
S R

2
d2σ · (x′αJ)

= 0.

(I.12)

We see that the first order approximation is insufficient to calculate the
vector potential for the magnetic dipole system, and that we have

Aα = 0 + higher moments. (I.13)
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Looking back to what we would done in class, we would also dropped this
term of the vector potential, using the same arguments. What we had left
was

A(x, t) =
1

c|x|
ḋ
(
t −
|x|
c

)
=

1
c|x|

∫
d3x′x′α

∂

∂t
ρ

(
x′, t −

|x|
c

)
, (I.14)

but that additional term is also zero in this magnetic dipole system since
we have no static charge distribution.

There are two options to resolve this

1. calculate A using higher order moments λ � b. Go to next order in
b/λ.

This is complicated!

2. Use EM dualities (the slick way!)

Recall that Maxwell’s equations are

∇ ·E = 4πρ

∇ ·B = 0

∇ ×E = −
1
c
∂B
∂t

∇ ×B =
1
c
∂E
∂t

+ 4πJ.

(I.15)

If ji = 0, then taking E→ B and B→ E we get the same equations.
Introduce dual charges ρm and Jm

∇ ·E = 4πρe

∇ ·B = 4πρm

∇ ×E = −
1
c
∂B
∂t

+ 4πJm

∇ ×B =
1
c
∂E
∂t

+ 4πJe.

(I.16)

Duality E→ B provided ρe → ρm and Je → Jm, or

Fi j → F̃i j = εi jklFkl

jk → j̃k.
(I.17)
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With radiation : the duality transformation takes the electric dipole moment
to the magnetic dipole moment d→ m.

B = −
1

c2|x|
(m̈ × r̂) × r̂

E = r̂ ×B.
(I.18)

with

Power ∼
〈∣∣∣m̈2

∣∣∣〉 . (I.19)

〈∣∣∣m̈2
∣∣∣〉 =

1
2

(Ioπb2ω2)2. (I.20)

where

Io = q̇ = ωq. (I.21)

So the power of the magnetic dipole is

Pm(R) =
b4q2π2ω6

3c5 . (I.22)

Taking ratios of the magnetic and electric power we find

Pm

Em
=

b4q2π2ω6

b2q2ω4c2

∼
b2ω2

c2

=

(
bω
c

)2

=

(
b
λ

)2

.

(I.23)

This difference in power shows the second order moment dependence, in
the λ � b approximations.

FIXME: go back and review the “third year” content and see where
the magnetic dipole moment came from. That is the key to this argument,
since we need to see how this ends up equivalent to a pair of charges in
the electric field case.



JY U K AWA P OT E N T I A L N OT E .

In the last part of the tutorial, the bonus question from the tutorial was
covered. This was to determine the Yukawa potential from the differential
equation that we found in the earlier part of the problem.

I took a couple notes about this on paper, but do not intend to write them
up. Everything proceeded exactly as I would have expected them to for
solving the problem (I barely finished the midterm as is, so I did not have
a chance to try it). Take Fourier transforms and then evaluate the inverse
Fourier integral. This is exactly what we can do for the Coulomb potential,
but actually easier since we do not have to introduce anything to offset the
poles (and we recover the Coulomb potential in the M → 0 case).

There was one notable point in this Yukawa potential derivation, which
was not obvious to me immediately

ρ̃(k) =

∫
d3xe−ik·xρ(x) = 1. (J.1)

However, the Fourier transform equal to unity followed straight from the
definition of the potential, which was a delta function

ρ(x) =

∫
dsδ4(x − x(τ)). (J.2)





KP RO O F O F T H E D ’ A L E M B E RT I A N G R E E N ’ S
F U N C T I O N .

Our Prof is excellent at motivating any results that he pulls out of magic
hats. He is said that he is included a derivation using Fourier transforms and
tricky contour integration arguments in the class notes for anybody who is
interested (and for those who also know how to do contour integration).
For those who do not know contour integration yet (some people are taking
it concurrently), one can actually prove this by simply applying the wave
equation operator to this function. This treats the delta function as a normal
function that one can take the derivatives of, something that can be well
defined in the context of generalized functions. Chugging ahead with this
approach we have

�G(x, t) =

(
1
c2

∂2

∂t2 − ∆
)
δ
(
t − |x|c

)
4π|x|

=
δ′′

(
t − |x|c

)
4πc2|x|

−∆
δ
(
t − |x|c

)
4π|x|

. (K.1)

This starts things off and now things get a bit hairy. It is helpful to consider
a chain rule expansion of the Laplacian

∆(uv) = ∂αα(uv)

= ∂α(v∂αu + u∂αv)

= (∂αv)(∂αu) + v∂ααu + (∂αu)(∂αv) + u∂ααv).

(K.2)

In vector form this is

∆(uv) = u∆v + 2(∇u) · (∇v) + v∆u. (K.3)

Applying this to the Laplacian portion of eq. (K.1) we have

∆
δ
(
t − |x|c

)
4π|x|

= δ

(
t −
|x|
c

)
∆

1
4π|x|

+

(
∇

1
2π|x|

)
·

(
∇δ

(
t −
|x|
c

))
+

1
4π|x|

∆δ
(
t −
|x|
c

)
.

(K.4)

Here we make the identification

∆
1

4π|x|
= −δ3(x). (K.5)
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This could be considered a given from our knowledge of electrostatics, but
it is not too much work to just do so.

k.1 an aside. proving the laplacian green’s function .

If −1/4π|x| is a Green’s function for the Laplacian, then the Laplacian of
the convolution of this with a test function should recover that test function

∆
∫

d3x′
(
−

1
4π|x − x′|

)
f (x′) = f (x). (K.6)

We can directly evaluate the LHS of this equation, following the approach
in [13]. First note that the Laplacian can be pulled into the integral and
operates only on the presumed Green’s function. For that operation we
have

∆
(
−

1
4π|x − x′|

)
= −

1
4π
∇ ·∇

∣∣∣x − x′
∣∣∣. (K.7)

It will be helpful to compute the gradient of various powers of |x|

∇|x|a = eα∂α(xβxβ)a/2

= eα
(a
2

)
2xβδβα|x|a−2.

(K.8)

In particular we have, when x , 0, this gives us

∇|x| =
x
|x|

∇
1
|x|

= −
x
|x|3

∇
1

|x|3
= −3

x
|x|5

.

(K.9)
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For the Laplacian of 1/|x|, at the points e , 0 where this is well defined
we have

∆
1
|x|

= ∇ ·∇
1
|x|

= −∂α
xα

|x|3

= −
3

|x|3
− xα∂α

1

|x|3

= −
3

|x|3
− x ·∇

1

|x|3

= −
3

|x|3
+ 3

x2

|x|5
.

(K.10)

So we have a zero. This means that the Laplacian operation

∆
∫

d3x′
1

|x − x′|
f (x′) = lim

ε=|x−x′ |→0
f (x)

∫
d3x′∆

1
|x − x′|

, (K.11)

can only have a value in a neighborhood of point x. Writing ∆ = ∇ ·∇ we
have

∆
∫

d3x′
1

|x − x′|
f (x′) = lim

ε=|x−x′ |→0
f (x)

∫
d3x′∇ · −

x − x′

|x − x′|
. (K.12)

Observing that ∇ · f (x − x′) = −∇′ f (x − x′) we can put this in a form that
allows for use of Stokes theorem so that we can convert this to a surface
integral

∆
∫

d3x′
1

|x − x′|
f (x′) = lim

ε=|x−x′ |→0
f (x)

∫
d3x′∇′ ·

x − x′

|x − x′|3

= lim
ε=|x−x′ |→0

f (x)
∫

d2x′n ·
x − x′

|x − x′|3

=

∫ 2π

φ=0

∫ π

θ=0
ε2 sin θdθdφ

x′ − x
|x − x′|

·
x − x′

|x − x′|3

= −

∫ 2π

φ=0

∫ π

θ=0
ε2 sin θdθdφ

ε2

ε4 .

(K.13)

where we use (x′ − x)/|x′ − x| as the outwards normal for a sphere centered
at x of radius ε. This integral is just −4π, so we have

∆
∫

d3x′
1

−4π|x − x′|
f (x′) = f (x). (K.14)
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The convolution of f (x) with −∆/4π|x| produces f (x), allowing an identi-
fication of this function with a delta function, since the two have the same
operational effect∫

d3x′δ(x − x′) f (x′) = f (x). (K.15)

k.2 returning to the d’alembertian green’s function .

We need two additional computations to finish the job. The first is the
gradient of the delta function

∇δ

(
t −
|x|
c

)
=?

∆δ
(
t −
|x|
c

)
=? .

(K.16)

Consider ∇ f (g(x)). This is

∇ f (g(x)) = eα
∂ f (g(x))
∂xα

= eα
∂ f
∂g

∂g
∂xα

,
(K.17)

so we have

∇ f (g(x)) =
∂ f
∂g
∇g. (K.18)

The Laplacian is similar

∆ f (g) = ∇ ·

(
∂ f
∂g
∇g

)
= ∂α

(
∂ f
∂g
∂αg

)
=

(
∂α
∂ f
∂g

)
∂αg +

∂ f
∂g
∂ααg

=
∂2 f
∂g2 (∂αg) (∂αg) +

∂ f
∂g

∆g,

(K.19)

so we have

∆ f (g) =
∂2 f
∂g2 (∇g)2 +

∂ f
∂g

∆g. (K.20)
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With g(x) = |x|, we will need the Laplacian of this vector magnitude

∆|x| = ∂α
xα
|x|

=
3
|x|

+ xα∂α(xβxβ)−1/2

=
3
|x|
−

xαxα
|x|3

=
2
|x|
.

(K.21)

So that we have

∇δ

(
t −
|x|
c

)
= −

1
c
δ′

(
t −
|x|
c

)
x
|x|

∆δ
(
t −
|x|
c

)
=

1
c2 δ

′′

(
t −
|x|
c

)
−

1
c
δ′

(
t −
|x|
c

)
2
|x|
.

(K.22)

Now we have all the bits and pieces of eq. (K.4) ready to assemble

∆
δ
(
t − |x|c

)
4π|x|

= −δ

(
t −
|x|
c

)
δ3(x)

+
1

2π

(
−

x
|x|3

)
· −

1
c
δ′

(
t −
|x|
c

)
x
|x|

+
1

4π|x|

(
1
c2 δ

′′

(
t −
|x|
c

)
−

1
c
δ′

(
t −
|x|
c

)
2
|x|

)
= −δ

(
t −
|x|
c

)
δ3(x) +

1
4π|x|c2 δ

′′

(
t −
|x|
c

)
.

(K.23)

Since we also have

1
c2 ∂tt

δ
(
t − |x|c

)
4π|x|

=
δ′′

(
t − |x|c

)
4π|x|c2 . (K.24)

The δ′′ terms cancel out in the d’Alembertian, leaving just

�
δ
(
t − |x|c

)
4π|x|

= δ

(
t −
|x|
c

)
δ3(x). (K.25)

Noting that the spatial delta function is non-zero only when x = 0, which
means δ(t − |x|/c) = δ(t) in this product, and we finally have

�
δ
(
t − |x|c

)
4π|x|

= δ(t)δ3(x). (K.26)
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We write

G(x, t) =
δ
(
t − |x|c

)
4π|x|

, (K.27)



LM AT H E M AT I C A N OT E B O O K S .

These Mathematica notebooks, some just trivial ones used to generate
figures, others more elaborate, and perhaps some even polished, can be
found in

https://github.com/peeterjoot/mathematica/tree/master/phy450/.
The free Wolfram CDF player, is capable of read-only viewing these

notebooks to some extent.

• Apr 21, 2011 dipolePlot.nb

plot of dipole moment

• Apr 21, 2011 ps5IntegralTakeII.nb

Integrate x sin(a - |x|)/|x|

https://github.com/peeterjoot/mathematica/tree/master/phy450/
http://www.wolfram.com/cdf-player/
https://raw.github.com/peeterjoot/mathematica/master/phy450/dipolePlot.nb
https://raw.github.com/peeterjoot/mathematica/master/phy450/ps5IntegralTakeII.nb
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acceleration
spatial, 44

action, 97, 104, 118, 132
external 4-scalar field, 112
field, 131, 139, 145
particle, 97
principles, 140
relativistic, 101

antisymmetric, 115

basis
worldline, 317

Bianchi identity, 123, 147
boost, 153

causality, 17, 19
conservation

energy momentum, 225
Coulomb gauge, 153, 157, 162

wave equation, 150
current density, 142

d’Alembertian, 355
Green’s function, 358

Darwin
Lagrangian, 276

dipole radiation, 194
dynamics, 97

Einstein summation convention,
32

electric dipole field, 201
electric field

uniform, 44
energy, 166

field, 165
energy density, 169
energy density conservation, 162
energy flux, 201
energy momentum tensor, 225,

226
events, 5, 9

field
angular momentum, 236
Lorentz invariants, 123
variational principle, 144

flux density, 35
four acceleration, 100
four momentum, 109
four vector, 27, 29, 31, 122
frequency

four vector, 309

gauge invariance, 118
gauge transformation, 117, 281
GPS, 323
Green’s function, 169, 187

inertial frame, 316
interaction, 110
invariance, 5, 9

spacetime translation, 106
time translation, 107

Lagrangian
Darwin, 276
electrostatic, 273

Lagrangian density, 227
Laplacian



Green’s function, 152, 356
length contraction, 17, 18
Lienard-Wiechert potential, 190
Lienard-Wiechert potentials, 185,

186, 190, 252
light cone, 11
light like, 7
lightlike, 9
local observer, 311
Lorentz boost, 30
Lorentz force, 118, 122, 123

four vector form, 118
Lorentz gauge, 153, 157

wave equation, 150
Lorentz invariant, 153
Lorentz transformation, 13, 14,

123
electrodynamic tensor, 130

lower indexes, 34

magnetic dipole, 349
magnetic field

uniform, 44
work, 49

Mathematica, 361
Maxwell’s equation, 169

solving, 185
Maxwell’s equations, 123

vacuum, 153
Minkowski diagram, 13
momentum, 166

field, 165
momentum density, 239
multiple particles, 132
multipole expansion, 194

power, 203
Poynting vector, 162, 169, 201,

239

pressure, 230
proper time, 5, 12, 17
proper velocity, 104

dimensions, 114

radiation, 204
radiation effects, 284
radiation reaction, 273
radiation reaction force, 286
reciprocal basis, 314
relativistic dynamics, 97
relativity principle, 1, 5, 10, 97
retarded time, 189, 250

shear, 230
simultaneity, 1
spacelike, 9
spacetime, 5, 7, 9, 11
spacetime interval, 9
spatial velocity, 43
special orthogonal group

Euclidean, 29
spacetime, 30

Speed of light, 148
speed of light, 1
strength tensor, 124
stress energy tensor

energy, 229
momentum, 229

superluminal, 19

TE, 338
TEM, 338
tensor, 29

raising, 125
rank two, 127

time dialation, 17
timelike, 9, 40, 42
TM, 338
TM magnetic, 338



transverse electric, 338
transverse electromagnetic, 338
transverse magnetic, 338

velocity
four vector, 98

wave equation, 157, 160, 162
Coulomb gauge, 150, 156
forced, 187
Lorentz gauge, 150

waveguide, 333, 338
worldline, 101, 311
worldlines, 5, 9

Yukawa potential, 353
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