## L_y perturbation

### Q: $$L_y$$ perturbation. [1] pr. 5.17

Find the first non-zero energy shift for the perturbed Hamiltonian

\label{eqn:LyPerturbation:20}
H = A \BL^2 + B L_z + C L_y = H_0 + V.

### A:

The energy eigenvalues for state $$\ket{l, m}$$ prior to perturbation are

\label{eqn:LyPerturbation:40}
A \Hbar^2 l(l+1) + B \Hbar m.

The first order energy shift is zero

\label{eqn:LyPerturbation:60}
\begin{aligned}
\Delta^1
&=
\bra{l, m} C L_y \ket{l, m} \\
&=
\frac{C}{2 i}
\bra{l, m} \lr{ L_{+} – L_{-} } \ket{l, m} \\
&=
0,
\end{aligned}

so we need the second order shift. Assuming no degeneracy to start, the perturbed state is

\label{eqn:LyPerturbation:80}
\ket{l, m}’ = \sum’ \frac{\ket{l’, m’} \bra{l’, m’}}{E_{l,m} – E_{l’, m’}} V \ket{l, m},

and the next order energy shift is
\label{eqn:LyPerturbation:100}
\begin{aligned}
\Delta^2
&=
\bra{l m} V
\sum’ \frac{\ket{l’, m’} \bra{l’, m’}}{E_{l,m} – E_{l’, m’}} V \ket{l, m} \\
&=
\sum’ \frac{\bra{l, m} V \ket{l’, m’} \bra{l’, m’}}{E_{l,m} – E_{l’, m’}} V \ket{l, m} \\
&=
\sum’ \frac{ \Abs{ \bra{l’, m’} V \ket{l, m} }^2 }{E_{l,m} – E_{l’, m’}} \\
&=
\sum_{m’ \ne m} \frac{ \Abs{ \bra{l, m’} V \ket{l, m} }^2 }{E_{l,m} – E_{l, m’}} \\
&=
\sum_{m’ \ne m} \frac{ \Abs{ \bra{l, m’} V \ket{l, m} }^2 }{
\lr{ A \Hbar^2 l(l+1) + B \Hbar m }
-\lr{ A \Hbar^2 l(l+1) + B \Hbar m’ }
} \\
&=
\inv{B \Hbar} \sum_{m’ \ne m} \frac{ \Abs{ \bra{l, m’} V \ket{l, m} }^2 }{
m – m’
}.
\end{aligned}

The sum over $$l’$$ was eliminated because $$V$$ only changes the $$m$$ of any state $$\ket{l,m}$$, so the matrix element $$\bra{l’,m’} V \ket{l, m}$$ must includes a $$\delta_{l’, l}$$ factor.
Since we are now summing over $$m’ \ne m$$, some of the matrix elements in the numerator should now be non-zero, unlike the case when the zero first order energy shift was calculated above.

\label{eqn:LyPerturbation:120}
\begin{aligned}
\bra{l, m’} C L_y \ket{l, m}
&=
\frac{C}{2 i}
\bra{l, m’} \lr{ L_{+} – L_{-} } \ket{l, m} \\
&=
\frac{C}{2 i}
\bra{l, m’}
\lr{
L_{+}
\ket{l, m}
– L_{-}
\ket{l, m}
} \\
&=
\frac{C \Hbar}{2 i}
\bra{l, m’}
\lr{
\sqrt{(l – m)(l + m + 1)} \ket{l, m + 1}

\sqrt{(l + m)(l – m + 1)} \ket{l, m – 1}
} \\
&=
\frac{C \Hbar}{2 i}
\lr{
\sqrt{(l – m)(l + m + 1)} \delta_{m’, m + 1}

\sqrt{(l + m)(l – m + 1)} \delta_{m’, m – 1}
}.
\end{aligned}

After squaring and summing, the cross terms will be zero since they involve products of delta functions with different indices. That leaves

\label{eqn:LyPerturbation:140}
\begin{aligned}
\Delta^2
&=
\frac{C^2 \Hbar}{4 B} \sum_{m’ \ne m} \frac{
(l – m)(l + m + 1) \delta_{m’, m + 1}

(l + m)(l – m + 1) \delta_{m’, m – 1}
}{
m – m’
} \\
&=
\frac{C^2 \Hbar}{4 B}
\lr{
\frac{ (l – m)(l + m + 1) }{ m – (m+1) }

\frac{ (l + m)(l – m + 1) }{ m – (m-1)}
} \\
&=
\frac{C^2 \Hbar}{4 B}
\lr{

(l^2 – m^2 + l – m)

(l^2 – m^2 + l + m)
} \\
&=
-\frac{C^2 \Hbar}{2 B} (l^2 – m^2 + l ),
\end{aligned}

so to first order the energy shift is

\label{eqn:LyPerturbation:160}
\boxed{
A \Hbar^2 l(l+1) + B \Hbar m \rightarrow
\Hbar l(l+1)
\lr{
A \Hbar
-\frac{C^2}{2 B}
}
+ B \Hbar m
+\frac{C^2 m^2 \Hbar}{2 B} .
}

### Exact perturbation equation

If we wanted to solve the Hamiltonian exactly, we’ve have to diagonalize the $$2 m + 1$$ dimensional Hamiltonian

\label{eqn:LyPerturbation:180}
\bra{l, m’} H \ket{l, m}
=
\lr{ A \Hbar^2 l(l+1) + B \Hbar m } \delta_{m’, m}
+
\frac{C \Hbar}{2 i}
\lr{
\sqrt{(l – m)(l + m + 1)} \delta_{m’, m + 1}

\sqrt{(l + m)(l – m + 1)} \delta_{m’, m – 1}
}.

This Hamiltonian matrix has a very regular structure

\label{eqn:LyPerturbation:200}
\begin{aligned}
H &=
(A l(l+1) \Hbar^2 – B \Hbar (l+1)) I \\
&+ B \Hbar
\begin{bmatrix}
1 & & & & \\
& 2 & & & \\
& & 3 & & \\
& & & \ddots & \\
& & & & 2 l + 1
\end{bmatrix} \\
&+
\frac{C \Hbar}{i}
\begin{bmatrix}
0 & -\sqrt{(2l-1)(1)} & & & \\
\sqrt{(2l-1)(1)} & 0 & -\sqrt{(2l-2)(2)}& & \\
& \sqrt{(2l-2)(2)} & & & \\
& & \ddots & & \\
& & & 0 & – \sqrt{(1)(2l-1)} \\
& & & \sqrt{(1)(2l-1)} & 0
\end{bmatrix}
\end{aligned}

Solving for the eigenvalues of this Hamiltonian for increasing $$l$$ in Mathematica (sakuraiProblem5.17a.nb), it appears that the eigenvalues are

\label{eqn:LyPerturbation:220}
\lambda_m = A \Hbar^2 (l)(l+1) + \Hbar m B \sqrt{ 1 + \frac{4 C^2}{B^2} },

so to first order in $$C^2$$, these are

\label{eqn:LyPerturbation:221}
\lambda_m = A \Hbar^2 (l)(l+1) + \Hbar m B \lr{ 1 + \frac{2 C^2}{B^2} }.

We have a $$C^2 \Hbar/B$$ term in both the perturbative energy shift, and the first order expansion of the exact solution. Comparing this for the $$l = 5$$ case, the coefficients of $$C^2 \Hbar/B$$ in the perturbative solution are all negative $$-17.5, -17., -16.5, -16., -15.5, -15., -14.5, -14., -13.5, -13., -12.5$$, whereas the coefficient of $$C^2 \Hbar/B$$ in the first order expansion of the exact solution are $$2 m$$, ranging from $$[-10, 10]$$.

# References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

## L_z and L^2 eigenvalues and probabilities for a given wave function

### Q: [1] 3.17

Given a wave function

\label{eqn:LsquaredLzProblem:20}
\psi(r,\theta, \phi) = f(r) \lr{ x + y + 3 z },

• (a) Determine if this wave function is an eigenfunction of $$\BL^2$$, and the value of $$l$$ if it is an eigenfunction.

• (b) Determine the probabilities for the particle to be found in any given $$\ket{l, m}$$ state,
• (c) If it is known that $$\psi$$ is an energy eigenfunction with energy $$E$$ indicate how we can find $$V(r)$$.

### A: (a)

Using
\label{eqn:LsquaredLzProblem:40}
\BL^2
=
-\Hbar^2 \lr{ \inv{\sin^2\theta} \partial_{\phi\phi} + \inv{\sin\theta} \partial_\theta \lr{ \sin\theta \partial_\theta} },

and

\label{eqn:LsquaredLzProblem:60}
\begin{aligned}
x &= r \sin\theta \cos\phi \\
y &= r \sin\theta \sin\phi \\
z &= r \cos\theta
\end{aligned}

it’s a quick computation to show that

\label{eqn:LsquaredLzProblem:80}
\BL^2 \psi = 2 \Hbar^2 \psi = 1(1 + 1) \Hbar^2 \psi,

so this function is an eigenket of $$\BL^2$$ with an eigenvalue of $$2 \Hbar^2$$, which corresponds to $$l = 1$$, a p-orbital state.

### (b)

Recall that the angular representation of $$L_z$$ is

\label{eqn:LsquaredLzProblem:100}
L_z = -i \Hbar \PD{\phi},

so we have

\label{eqn:LsquaredLzProblem:120}
\begin{aligned}
L_z x &= i \Hbar y \\
L_z y &= – i \Hbar x \\
L_z z &= 0,
\end{aligned}

The $$L_z$$ action on $$\psi$$ is

\label{eqn:LsquaredLzProblem:140}
L_z \psi = -i \Hbar r f(r) \lr{ – y + x }.

This wave function is not an eigenket of $$L_z$$. Expressed in terms of the $$L_z$$ basis states $$e^{i m \phi}$$, this wave function is

\label{eqn:LsquaredLzProblem:160}
\begin{aligned}
\psi
&= r f(r) \lr{ \sin\theta \lr{ \cos\phi + \sin\phi} + \cos\theta } \\
&= r f(r) \lr{ \frac{\sin\theta}{2} \lr{ e^{i \phi} \lr{ 1 + \inv{i}} + e^{-i\phi} \lr{ 1 – \inv{i} } } + \cos\theta } \\
&= r f(r) \lr{
\frac{(1-i)\sin\theta}{2} e^{1 i \phi}
+
\frac{(1+i)\sin\theta}{2} e^{- 1 i \phi}
+ \cos\theta e^{0 i \phi}
}
\end{aligned}

Assuming that $$\psi$$ is normalized, the probabilities for measuring $$m = 1,-1,0$$ respectively are

\label{eqn:LsquaredLzProblem:180}
\begin{aligned}
P_{\pm 1}
&= 2 \pi \rho \Abs{\frac{1\mp i}{2}}^2 \int_0^\pi \sin\theta d\theta \sin^2 \theta \\
&= -2 \pi \rho \int_1^{-1} du (1-u^2) \\
&= 2 \pi \rho \evalrange{ \lr{ u – \frac{u^3}{3} } }{-1}{1} \\
&= 2 \pi \rho \lr{ 2 – \frac{2}{3}} \\
&= \frac{ 8 \pi \rho}{3},
\end{aligned}

and

\label{eqn:LsquaredLzProblem:200}
P_{0} = 2 \pi \rho \int_0^\pi \sin\theta \cos\theta = 0,

where

\label{eqn:LsquaredLzProblem:220}
\rho = \int_0^\infty r^4 \Abs{f(r)}^2 dr.

Because the probabilities must sum to 1, this means the $$m = \pm 1$$ states are equiprobable with $$P_{\pm} = 1/2$$, fixing $$\rho = 3/16\pi$$, even without knowing $$f(r)$$.

### (c)

The operator $$r^2 \Bp^2$$ can be decomposed into a $$\BL^2$$ component and some other portions, from which we can write

\label{eqn:LsquaredLzProblem:240}
\begin{aligned}
H \psi
&= \lr{ \frac{\Bp^2}{2m} + V(r) } \psi \\
&=
\lr{
– \frac{\Hbar^2}{2m} \lr{ \partial_{rr} + \frac{2}{r} \partial_r – \inv{\Hbar^2 r^2} \BL^2 } + V(r) } \psi.
\end{aligned}

(See: [1] eq. 6.21)

In this case where $$\BL^2 \psi = 2 \Hbar^2 \psi$$ we can rearrange for $$V(r)$$

\label{eqn:LsquaredLzProblem:260}
\begin{aligned}
V(r)
&= E + \inv{\psi} \frac{\Hbar^2}{2m} \lr{ \partial_{rr} + \frac{2}{r} \partial_r – \frac{2}{r^2} } \psi \\
&= E + \inv{f(r)} \frac{\Hbar^2}{2m} \lr{ \partial_{rr} + \frac{2}{r} \partial_r – \frac{2}{r^2} } f(r).
\end{aligned}

# References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

## PHY1520H Graduate Quantum Mechanics. Lecture 22: Van der Wall potential and Stark effect. Taught by Prof. Arun Paramekanti

### Disclaimer

Peeter’s lecture notes from class. These may be incoherent and rough.

These are notes for the UofT course PHY1520, Graduate Quantum Mechanics, taught by Prof. Paramekanti, covering [1] ch. 5 content.

### Another approach (for last time?)

Imagine we perturb a potential, say a harmonic oscillator with an electric field

\label{eqn:qmLecture22:20}
V_0(x) = \inv{2} k x^2

\label{eqn:qmLecture22:40}
V(x) = \mathcal{E} e x

After minimizing the energy, using $$\PDi{x}{V} = 0$$, we get

\label{eqn:qmLecture22:60}
\inv{2} k x^2 + \mathcal{E} e x \rightarrow k x^\conj = – e \mathcal{E}

\label{eqn:qmLecture22:80}
p^\conj = -e x^\conj = – \frac{e^2 \mathcal{E}}{k}

For such a system the polarizability is

\label{eqn:qmLecture22:100}
\alpha = \frac{e^2 }{k}

\label{eqn:qmLecture22:120}
\begin{aligned}
\inv{2} k \lr{ -\frac{ e \mathcal{E}}{k} }^2 + \mathcal{E} e \lr{ – \frac{e \mathcal{E}}{k} }
&= – \inv{2} \lr{ \frac{e^2}{k} } \mathcal{E}^2 \\
&= – \inv{2} \alpha \mathcal{E}^2
\end{aligned}

## Van der Wall potential

\label{eqn:qmLecture22:140}
H_0 =
H_{0 1} + H_{0 2},

where

\label{eqn:qmLecture22:160}
H_{0 \alpha} = \frac{p_\alpha^2}{2m} – \frac{e^2}{4 \pi \epsilon_0 \Abs{ \Br_\alpha – \BR_\alpha} }, \qquad \alpha = 1,2

The full interaction potential is

\label{eqn:qmLecture22:180}
V =
\frac{e^2}{4 \pi \epsilon_0} \lr{
\inv{\Abs{\BR_1 – \BR_2}}
+
\inv{\Abs{\Br_1 – \Br_2}}

\inv{\Abs{\Br_1 – \BR_2}}

\inv{\Abs{\Br_2 – \BR_1}}
}

Let

\label{eqn:qmLecture22:200}
\Bx_\alpha = \Br_\alpha – \BR_\alpha,

\label{eqn:qmLecture22:220}
\BR = \BR_1 – \BR_2,

as sketched in fig. 1.

fig. 1. Two atom interaction.

\label{eqn:qmLecture22:240}
H_{0 \alpha}
=
\frac{\Bp^2}{2m}
-\frac{e^2}{4 \pi \epsilon_0 \Abs{\Bx_\alpha}}

which allows the total interaction potential to be written
\label{eqn:qmLecture22:260}
V =
\frac{e^2}{4 \pi \epsilon_0 R}
\lr{
1
+
\frac{R}{\Abs{\Bx_1 – \Bx_2 + \BR}}

\frac{R}{\Abs{\Bx_1 + \BR}}

\frac{R}{\Abs{-\Bx_2 + \BR}}
}

For $$R \gg x_1, x_2$$, this interaction potential, after a multipole expansion, is approximately

\label{eqn:qmLecture22:280}
V =
\frac{e^2}{4 \pi \epsilon_0} \lr{
\frac{\Bx_1 \cdot \Bx_2}{\Abs{\BR}^3}
-3 \frac{
(\Bx_1 \cdot \BR)
(\Bx_2 \cdot \BR)
}{\Abs{\BR}^5}
}

### 1. $$O(\lambda)$$

.

With

\label{eqn:qmLecture22:300}
\psi_0 = \ket{ 1s, 1s }

\label{eqn:qmLecture22:320}
\Delta E^{(1)} = \bra{\psi_0} V \ket{\psi_0}

The two particle wave functions are of the form

\label{eqn:qmLecture22:340}
\braket{ \Bx_1, \Bx_2 }{\psi_0} =
\psi_{1s}(\Bx_1)
\psi_{1s}(\Bx_2),

so braket integrals must be evaluated over a six-fold space. Recall that

\label{eqn:qmLecture22:740}
\psi_{1s} = \inv{\sqrt{\pi} a_0^{3/2} } e^{-r/a_0},

so

\label{eqn:qmLecture22:760}
\bra{\psi_{1s}} x_i \ket{\psi_{1s}}
\propto
\int_0^\pi \sin\theta d\theta \int_0^{2\pi} d\phi x_i

where
\label{eqn:qmLecture22:780}
x_i \in \setlr{ r \sin\theta \cos\phi, r \sin\theta \sin\phi, r \cos\theta }.

The $$x, y$$ integrals are zero because of the $$\phi$$ integral, and the $$z$$ integral is proportional to $$\int_0^\pi \sin(2 \theta) d\theta$$, which is also zero. This leads to zero averages

\label{eqn:qmLecture22:360}
\expectation{\Bx_1} = 0 = \expectation{\Bx_2}

so

\label{eqn:qmLecture22:380}
\Delta E^{(1)} = 0.

### 2. $$O(\lambda^2)$$

.

\label{eqn:qmLecture22:400}
\begin{aligned}
\Delta E^{(2)}
&= \sum_{n \ne 0} \frac{ \Abs{ \bra{\psi_n } V \ket{\psi_0} }^2 }{E_0 – E_n} \\
&= \sum_{n \ne 0} \frac{ \bra{\psi_0 } V \ket{\psi_n} \bra{\psi_n } V \ket{\psi_0} }{E_0 – E_n}.
\end{aligned}

This is a sum over all excited states. We expect that this will be of the form

\label{eqn:qmLecture22:420}
\Delta E^{(2)} = – \lr{ \frac{e^2}{4 \pi \epsilon_0} }^2 \frac{C_6}{R^6}

$$\Bx_1$$ and $$\Bx_2$$ are dipole operators. The first time this has a non-zero expectation is when we go from the 1s to the 2p states (both 1s and 2s states are spherically symmetric).

Noting that $$E_n = -e^2/2 n^2 a_0$$, we can compute a minimum bound for the energy denominator

\label{eqn:qmLecture22:440}
\begin{aligned}
\lr{E_n – E_0}^{\mathrm{min}}
&= 2 \lr{ E_{2p} – E_{1s} } \\
&= 2 E_{1s} \lr{ \inv{4} – 1 } \\
&= 2 \frac{3}{4} \Abs{E_{1s}} \\
&= \frac{3}{2} \Abs{E_{1s}}.
\end{aligned}

Note that the factor of two above comes from summing over the energies for both electrons. This gives us

\label{eqn:qmLecture22:460}
C_6
=
\frac{3}{2} \Abs{E_{1s}}
\bra{\psi_0 } \tilde{V} \ket{\psi_0},

where

\label{eqn:qmLecture22:480}
\tilde{V} =
\lr{
\Bx_1 \cdot \Bx_2
-3
(\Bx_1 \cdot \Rcap)
(\Bx_2 \cdot \Rcap)
}

\label{eqn:qmLecture22:500}
\Delta E^{(2)}_n
= \sum_{m \ne n} \frac{ \Abs{ \bra{\psi_n } V \ket{\psi_0} }^2 }{E_0 – E_n}

If $$\bra{\psi_n} V \ket{\psi_m} \propto \delta_{n m}$$ then it’s okay.
In general the we can’t expect the matrix element will be anything but fully populated, say

\label{eqn:qmLecture22:520}
V =
\begin{bmatrix}
V_{11} & V_{12} & V_{13} & V_{14} \\
V_{21} & V_{22} & V_{23} & V_{24} \\
V_{31} & V_{32} & V_{33} & V_{34} \\
V_{41} & V_{42} & V_{43} & V_{44} \\
\end{bmatrix},

If we choose a basis so that

\label{eqn:qmLecture22:540}
V =
\begin{bmatrix}
V_{11} & & & \\
& V_{22} & & \\
& & V_{33} & \\
& & & V_{44} \\
\end{bmatrix}.

When this is the case, we have no mixing of elements in the sum of \ref{eqn:qmLecture22:500}

### Degeneracy in the Stark effect

\label{eqn:qmLecture22:560}
H = H_0 + e \mathcal{E} z,

where

\label{eqn:qmLecture22:580}
H_0 = \frac{\Bp^2}{2m} – \frac{e}{4 \pi \epsilon_0} \inv{\Abs{\Bx}}

Consider the states $$2s, 2 p_x, 2p_y, 2p_z$$, for which $$E_n^{(0)} \equiv E_{2 s}$$, as sketched in fig. 2.

fig. 2. 2s 2p degeneracy.

Because of spherical symmetry

\label{eqn:qmLecture22:600}
\begin{aligned}
\bra{2 s} e \mathcal{E} z \ket{ 2 s} &= 0 \\
\bra{2 p_x} e \mathcal{E} z \ket{ 2 p_x} &= 0 \\
\bra{2 p_y} e \mathcal{E} z \ket{ 2 p_y} &= 0 \\
\bra{2 p_z} e \mathcal{E} z \ket{ 2 p_z} &= 0 \\
\end{aligned}

Looking at odd and even properties, it turns out that the only off-diagonal matrix element is

\label{eqn:qmLecture22:620}
\bra{2 s} e \mathcal{E} z \ket{ 2 p_z } = V_1 = -3 e \mathcal{E} a_0.

With a $$\setlr{ 2s, 2p_x, 2p_y, 2p_z }$$ basis the potential matrix is

\label{eqn:qmLecture22:640}
\begin{bmatrix}
0 & 0 & 0 & V_1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
V_1^\conj & 0 & 0 & 0 \\
\end{bmatrix}

\label{eqn:qmLecture22:660}
\begin{bmatrix}
0 & -\Abs{V_1} \\
-\Abs{V_1} & 0 \\
\end{bmatrix}

implies that the energy splitting goes as

\label{eqn:qmLecture22:680}
E_{2s} \rightarrow
E_{2s} \pm \Abs{V_1},

as sketched in fig. 3.

fig. 3. Stark effect energy level splitting.

The diagonalizing states corresponding to eigenvalues $$\pm 3 a_0 \mathcal{E}$$, are $$(\ket{2s} \mp \ket{2p_z})/\sqrt{2}$$.

The matrix element above is calculated explicitly in lecture22Integrals.nb.

The degeneracy that is left unsplit here, and has to be accounted for should we attempt higher order perturbation calculations.

### Appendix. Multipole expansion

Noting that

\label{eqn:qmLecture22:700}
\begin{aligned}
\lr{1 + \epsilon}^{-1/2}
&=
1 -\inv{2} \epsilon -\inv{2}\lr{\frac{-3}{2}}\inv{2!} \epsilon^2 \\
&=
1 -\inv{2} \epsilon + \frac{3}{8} \epsilon^2,
\end{aligned}

we have

\label{eqn:qmLecture22:720}
\begin{aligned}
\frac{R}{\Abs{\Bepsilon + \BR}}
&=
\frac{1}{\Abs{\frac{\Bepsilon}{R} + \Rcap}} \\
&=
\lr{ 1 + 2 \frac{\Bepsilon}{R} \cdot \Rcap + \lr{\frac{\Bepsilon}{R}}^2 }^{-1/2} \\
&=
1 – \frac{\Bepsilon}{R} \cdot \Rcap -\inv{2} \lr{\frac{\Bepsilon}{R}}^2
+ \frac{3}{8}
\lr{ 2 \frac{\Bepsilon}{R} \cdot \Rcap + \lr{\frac{\Bepsilon}{R}}^2 }^2 \\
&=
1 – \frac{\Bepsilon}{R} \cdot \Rcap -\inv{2} \lr{\frac{\Bepsilon}{R}}^2
+ \frac{3}{8}
\lr{ 4 \lr{ \frac{\Bepsilon}{R} \cdot \Rcap}^2 + \lr{\frac{\Bepsilon}{R}}^4
+ 4 \frac{\Bepsilon}{R} \cdot \Rcap \lr{\frac{\Bepsilon}{R}}^2
} \\
&\approx
1 – \frac{\Bepsilon}{R} \cdot \Rcap -\inv{2} \lr{\frac{\Bepsilon}{R}}^2
+ \frac{3}{2}
\lr{ \frac{\Bepsilon}{R} \cdot \Rcap}^2 .
\end{aligned}

Inserting the values from the brackets of \ref{eqn:qmLecture22:260} we have

\label{eqn:qmLecture22:800}
\begin{aligned}
1
+
\frac{R}{\Abs{\Bx_1 – \Bx_2 + \BR}}
&-
\frac{R}{\Abs{\Bx_1 + \BR}}

\frac{R}{\Abs{-\Bx_2 + \BR}} \\
&=
– \frac{\lr{ \Bx_1 – \Bx_2 }}{R} \cdot \Rcap -\inv{2} \lr{\frac{\lr{ \Bx_1 – \Bx_2 }}{R}}^2
+ \frac{3}{2}
\lr{ \frac{\lr{ \Bx_1 – \Bx_2 }}{R} \cdot \Rcap}^2 \\
&\quad + \frac{\Bx_1}{R} \cdot \Rcap +\inv{2} \lr{\frac{\Bx_1}{R}}^2
– \frac{3}{2}
\lr{ \frac{\Bx_1}{R} \cdot \Rcap}^2 \\
&\quad – \frac{\Bx_2}{R} \cdot \Rcap +\inv{2} \lr{\frac{\Bx_2}{R}}^2
– \frac{3}{2}
\lr{ \frac{\Bx_2}{R} \cdot \Rcap}^2 \\
&=
\frac{\Bx_1}{R} \cdot \frac{\Bx_2 }{R}
+ \frac{3}{2}
\lr{ \frac{\lr{ \Bx_1 – \Bx_2 }}{R} \cdot \Rcap}^2 \\
– \frac{3}{2}
\lr{ \frac{\Bx_1}{R} \cdot \Rcap}^2 \\
– \frac{3}{2}
\lr{ \frac{\Bx_2}{R} \cdot \Rcap}^2 \\
&=
\frac{\Bx_1}{R} \cdot \frac{\Bx_2 }{R}
– 3 \frac{\Bx_1}{R} \cdot \Rcap \frac{\Bx_2}{R} \cdot \Rcap.
\end{aligned}

This proves \ref{eqn:qmLecture22:280}.

# References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

## 2D SHO xy perturbation

### Q: [1] pr. 5.4

Given a 2D SHO with Hamiltonian

\label{eqn:2dHarmonicOscillatorXYPerturbation:20}
H_0 = \inv{2m} \lr{ p_x^2 + p_y^2 } + \frac{m \omega^2}{2} \lr{ x^2 + y^2 },

• (a)
What are the energies and degeneracies of the three lowest states?

• (b)
With perturbation

\label{eqn:2dHarmonicOscillatorXYPerturbation:40}
V = m \omega^2 x y,

calculate the first order energy perturbations and the zeroth order perturbed states.

• (c)
Solve the $$H_0 + \delta V$$ problem exactly, and compare.

### A: part (a)

Recall that we have

\label{eqn:2dHarmonicOscillatorXYPerturbation:60}
H \ket{n_1, n_2} =
\Hbar\omega
\lr{
n_1 + n_2 + 1
}
\ket{n_1, n_2},

So the three lowest energy states are $$\ket{0,0}, \ket{1,0}, \ket{0,1}$$ with energies $$\Hbar \omega, 2 \Hbar \omega, 2 \Hbar \omega$$ respectively (with a two fold degeneracy for the second two energy eigenkets).

### A: part (b)

Consider the action of $$x y$$ on the $$\beta = \setlr{ \ket{0,0}, \ket{1,0}, \ket{0,1} }$$ subspace. Those are

\label{eqn:2dHarmonicOscillatorXYPerturbation:200}
\begin{aligned}
x y \ket{0,0}
&=
\frac{x_0^2}{2} \lr{ a + a^\dagger } \lr{ b + b^\dagger } \ket{0,0} \\
&=
\frac{x_0^2}{2} \lr{ b + b^\dagger } \ket{1,0} \\
&=
\frac{x_0^2}{2} \ket{1,1}.
\end{aligned}

\label{eqn:2dHarmonicOscillatorXYPerturbation:220}
\begin{aligned}
x y \ket{1, 0}
&=
\frac{x_0^2}{2} \lr{ a + a^\dagger } \lr{ b + b^\dagger } \ket{1,0} \\
&=
\frac{x_0^2}{2} \lr{ a + a^\dagger } \ket{1,1} \\
&=
\frac{x_0^2}{2} \lr{ \ket{0,1} + \sqrt{2} \ket{2,1} } .
\end{aligned}

\label{eqn:2dHarmonicOscillatorXYPerturbation:240}
\begin{aligned}
x y \ket{0, 1}
&=
\frac{x_0^2}{2} \lr{ a + a^\dagger } \lr{ b + b^\dagger } \ket{0,1} \\
&=
\frac{x_0^2}{2} \lr{ b + b^\dagger } \ket{1,1} \\
&=
\frac{x_0^2}{2} \lr{ \ket{1,0} + \sqrt{2} \ket{1,2} }.
\end{aligned}

The matrix representation of $$m \omega^2 x y$$ with respect to the subspace spanned by basis $$\beta$$ above is

\label{eqn:2dHarmonicOscillatorXYPerturbation:260}
x y
\sim
\inv{2} \Hbar \omega
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
\end{bmatrix}.

This diagonalizes with

\label{eqn:2dHarmonicOscillatorXYPerturbation:300}
U
=
\begin{bmatrix}
1 & 0 \\
0 & \tilde{U}
\end{bmatrix}

\label{eqn:2dHarmonicOscillatorXYPerturbation:320}
\tilde{U}
=
\inv{\sqrt{2}}
\begin{bmatrix}
1 & 1 \\
1 & -1 \\
\end{bmatrix}

\label{eqn:2dHarmonicOscillatorXYPerturbation:340}
D =
\inv{2} \Hbar \omega
\begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1 \\
\end{bmatrix}

\label{eqn:2dHarmonicOscillatorXYPerturbation:360}
x y = U D U^\dagger = U D U.

The unperturbed Hamiltonian in the original basis is

\label{eqn:2dHarmonicOscillatorXYPerturbation:380}
H_0
=
\Hbar \omega
\begin{bmatrix}
1 & 0 \\
0 & 2 I
\end{bmatrix},

So the transformation to the diagonal $$x y$$ basis leaves the initial Hamiltonian unaltered

\label{eqn:2dHarmonicOscillatorXYPerturbation:400}
\begin{aligned}
H_0′
&= U^\dagger H_0 U \\
&=
\Hbar \omega
\begin{bmatrix}
1 & 0 \\
0 & \tilde{U} 2 I \tilde{U}
\end{bmatrix} \\
&=
\Hbar \omega
\begin{bmatrix}
1 & 0 \\
0 & 2 I
\end{bmatrix}.
\end{aligned}

Now we can compute the first order energy shifts almost by inspection. Writing the new basis as $$\beta’ = \setlr{ \ket{0}, \ket{1}, \ket{2} }$$ those energy shifts are just the diagonal elements from the $$x y$$ operators matrix representation

\label{eqn:2dHarmonicOscillatorXYPerturbation:420}
\begin{aligned}
E^{{(1)}}_0 &= \bra{0} V \ket{0} = 0 \\
E^{{(1)}}_1 &= \bra{1} V \ket{1} = \inv{2} \Hbar \omega \\
E^{{(1)}}_2 &= \bra{2} V \ket{2} = -\inv{2} \Hbar \omega.
\end{aligned}

The new energies are

\label{eqn:2dHarmonicOscillatorXYPerturbation:440}
\begin{aligned}
E_0 &\rightarrow \Hbar \omega \\
E_1 &\rightarrow \Hbar \omega \lr{ 2 + \delta/2 } \\
E_2 &\rightarrow \Hbar \omega \lr{ 2 – \delta/2 }.
\end{aligned}

### A: part (c)

For the exact solution, it’s possible to rotate the coordinate system in a way that kills the explicit $$x y$$ term of the perturbation. That we could do this for $$x, y$$ operators wasn’t obvious to me, but after doing so (and rotating the momentum operators the same way) the new operators still have the required commutators. Let

\label{eqn:2dHarmonicOscillatorXYPerturbation:80}
\begin{aligned}
\begin{bmatrix}
u \\
v
\end{bmatrix}
&=
\begin{bmatrix}
\cos\theta & \sin\theta \\
-\sin\theta & \cos\theta
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix} \\
&=
\begin{bmatrix}
x \cos\theta + y \sin\theta \\
-x \sin\theta + y \cos\theta
\end{bmatrix}.
\end{aligned}

Similarly, for the momentum operators, let
\label{eqn:2dHarmonicOscillatorXYPerturbation:100}
\begin{aligned}
\begin{bmatrix}
p_u \\
p_v
\end{bmatrix}
&=
\begin{bmatrix}
\cos\theta & \sin\theta \\
-\sin\theta & \cos\theta
\end{bmatrix}
\begin{bmatrix}
p_x \\
p_y
\end{bmatrix} \\
&=
\begin{bmatrix}
p_x \cos\theta + p_y \sin\theta \\
-p_x \sin\theta + p_y \cos\theta
\end{bmatrix}.
\end{aligned}

For the commutators of the new operators we have

\label{eqn:2dHarmonicOscillatorXYPerturbation:120}
\begin{aligned}
\antisymmetric{u}{p_u}
&=
\antisymmetric{x \cos\theta + y \sin\theta}{p_x \cos\theta + p_y \sin\theta} \\
&=
\antisymmetric{x}{p_x} \cos^2\theta + \antisymmetric{y}{p_y} \sin^2\theta \\
&=
i \Hbar \lr{ \cos^2\theta + \sin^2\theta } \\
&=
i\Hbar.
\end{aligned}

\label{eqn:2dHarmonicOscillatorXYPerturbation:140}
\begin{aligned}
\antisymmetric{v}{p_v}
&=
\antisymmetric{-x \sin\theta + y \cos\theta}{-p_x \sin\theta + p_y \cos\theta} \\
&=
\antisymmetric{x}{p_x} \sin^2\theta + \antisymmetric{y}{p_y} \cos^2\theta \\
&=
i \Hbar.
\end{aligned}

\label{eqn:2dHarmonicOscillatorXYPerturbation:160}
\begin{aligned}
\antisymmetric{u}{p_v}
&=
\antisymmetric{x \cos\theta + y \sin\theta}{-p_x \sin\theta + p_y \cos\theta} \\
&= \cos\theta \sin\theta \lr{ -\antisymmetric{x}{p_x} + \antisymmetric{y}{p_p} } \\
&=
0.
\end{aligned}

\label{eqn:2dHarmonicOscillatorXYPerturbation:180}
\begin{aligned}
\antisymmetric{v}{p_u}
&=
\antisymmetric{-x \sin\theta + y \cos\theta}{p_x \cos\theta + p_y \sin\theta} \\
&= \cos\theta \sin\theta \lr{ -\antisymmetric{x}{p_x} + \antisymmetric{y}{p_p} } \\
&=
0.
\end{aligned}

We see that the new operators are canonical conjugate as required. For this problem, we just want a 45 degree rotation, with

\label{eqn:2dHarmonicOscillatorXYPerturbation:460}
\begin{aligned}
x &= \inv{\sqrt{2}} \lr{ u + v } \\
y &= \inv{\sqrt{2}} \lr{ u – v }.
\end{aligned}

We have
\label{eqn:2dHarmonicOscillatorXYPerturbation:480}
\begin{aligned}
x^2 + y^2
&=
\inv{2} \lr{ (u+v)^2 + (u-v)^2 } \\
&=
\inv{2} \lr{ 2 u^2 + 2 v^2 + 2 u v – 2 u v } \\
&=
u^2 + v^2,
\end{aligned}

\label{eqn:2dHarmonicOscillatorXYPerturbation:500}
\begin{aligned}
p_x^2 + p_y^2
&=
\inv{2} \lr{ (p_u+p_v)^2 + (p_u-p_v)^2 } \\
&=
\inv{2} \lr{ 2 p_u^2 + 2 p_v^2 + 2 p_u p_v – 2 p_u p_v } \\
&=
p_u^2 + p_v^2,
\end{aligned}

and
\label{eqn:2dHarmonicOscillatorXYPerturbation:520}
\begin{aligned}
x y
&=
\inv{2} \lr{ (u+v)(u-v) } \\
&=
\inv{2} \lr{ u^2 – v^2 }.
\end{aligned}

The perturbed Hamiltonian is

\label{eqn:2dHarmonicOscillatorXYPerturbation:540}
\begin{aligned}
H_0 + \delta V
&=
\inv{2m} \lr{ p_u^2 + p_v^2 }
+ \inv{2} m \omega^2 \lr{ u^2 + v^2 + \delta u^2 – \delta v^2 } \\
&=
\inv{2m} \lr{ p_u^2 + p_v^2 }
+ \inv{2} m \omega^2 \lr{ u^2(1 + \delta) + v^2 (1 – \delta) }.
\end{aligned}

In this coordinate system, the corresponding eigensystem is

\label{eqn:2dHarmonicOscillatorXYPerturbation:560}
H \ket{n_1, n_2}
= \Hbar \omega \lr{ 1 + n_1 \sqrt{1 + \delta} + n_2 \sqrt{ 1 – \delta } } \ket{n_1, n_2}.

For small $$\delta$$

\label{eqn:2dHarmonicOscillatorXYPerturbation:580}
n_1 \sqrt{1 + \delta} + n_2 \sqrt{ 1 – \delta }
\approx
n_1 + n_2
+ \inv{2} n_1 \delta
– \inv{2} n_2 \delta,

so
\label{eqn:2dHarmonicOscillatorXYPerturbation:600}
H \ket{n_1, n_2}
\approx \Hbar \omega \lr{ 1 + n_1 + n_2 + \inv{2} n_1 \delta – \inv{2} n_2 \delta
} \ket{n_1, n_2}.

The lowest order perturbed energy levels are

\label{eqn:2dHarmonicOscillatorXYPerturbation:620}
\ket{0,0} \rightarrow \Hbar \omega

\label{eqn:2dHarmonicOscillatorXYPerturbation:640}
\ket{1,0} \rightarrow \Hbar \omega \lr{ 2 + \inv{2} \delta }

\label{eqn:2dHarmonicOscillatorXYPerturbation:660}
\ket{0,1} \rightarrow \Hbar \omega \lr{ 2 – \inv{2} \delta }

The degeneracy of the $$\ket{0,1}, \ket{1,0}$$ states has been split, and to first order match the zeroth order perturbation result.

# References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

## Simplest perturbation two by two Hamiltonian

### Q: two state Hamiltonian.

Given a two-state system

\label{eqn:simplestTwoByTwoPerturbation:20}
H = H_0 + \lambda V
=
\begin{bmatrix}
E_1 & \lambda \Delta \\
\lambda \Delta & E_2
\end{bmatrix}

• (a) Solve the system exactly.
• (b) Find the first order perturbed states and second order energy shifts, and compare to the exact solution.
• (c) Solve the degenerate case for $$E_1 = E_2$$, and compare to the exact solution.

### A: part (a)

The energy eigenvalues $$\epsilon$$ are given by

\label{eqn:simplestTwoByTwoPerturbation:40}
0
=
\lr{ E_1 – \epsilon }
\lr{ E_2 – \epsilon }
– (\lambda \Delta)^2,

or

\label{eqn:simplestTwoByTwoPerturbation:60}
\epsilon^2 – \epsilon\lr{ E_1 + E_2 } + E_1 E_2 = (\lambda \Delta)^2.

After rearranging this is
\label{eqn:simplestTwoByTwoPerturbation:80}
\epsilon = \frac{ E_1 + E_2 }{2} \pm \sqrt{ \lr{ \frac{ E_1 – E_2 }{2} }^2 + (\lambda \Delta)^2 }.

Notice that for $$E_2 = E_1$$ we have

\label{eqn:simplestTwoByTwoPerturbation:100}
\epsilon = E_1 \pm \lambda \Delta.

Since a change of basis can always put the problem in a form so that $$E_1 > E_2$$, let’s assume that to make an approximation of the energy eigenvalues for $$\Abs{\lambda \Delta} \ll \ifrac{ (E_1 – E_2) }{2}$$

\label{eqn:simplestTwoByTwoPerturbation:120}
\begin{aligned}
\epsilon
&=
\frac{ E_1 + E_2 }{2} \pm \frac{ E_1 – E_2 }{2} \sqrt{ 1 + \frac{(2 \lambda \Delta)^2}{(E_1 – E_2)^2} } \\
&\approx
\frac{ E_1 + E_2 }{2} \pm \frac{ E_1 – E_2 }{2} \lr{ 1 + 2 \frac{(\lambda
\Delta)^2}{(E_1 – E_2)^2} } \\
&=
\frac{ E_1 + E_2 }{2} \pm \frac{ E_1 – E_2 }{2}
\pm
\frac{(\lambda \Delta)^2}{E_1 – E_2} \\
&=
E_1 + \frac{(\lambda \Delta)^2}{E_1 – E_2}, E_2 + \frac{(\lambda \Delta)^2}{E_2 – E_1}.
\end{aligned}

For the perturbed states, starting with the plus case, if

\label{eqn:simplestTwoByTwoPerturbation:140}
\ket{+} \propto
\begin{bmatrix}
a \\
b
\end{bmatrix},

we must have
\label{eqn:simplestTwoByTwoPerturbation:160}
\begin{aligned}
0
&=
\biglr{ E_1 – \lr{ E_1 + \frac{(\lambda \Delta)^2}{E_1 – E_2} } } a + \lambda
\Delta b \\
&=
\biglr{ – \frac{(\lambda \Delta)^2}{E_1 – E_2} } a + \lambda \Delta b,
\end{aligned}

so

\label{eqn:simplestTwoByTwoPerturbation:180}
\ket{+} \rightarrow
\begin{bmatrix}
1 \\
\frac{\lambda \Delta}{E_1 – E_2}
\end{bmatrix}
= \ket{+} + \frac{\lambda \Delta}{E_1 – E_2} \ket{-}.

Similarly for the minus case we must have

\label{eqn:simplestTwoByTwoPerturbation:200}
\begin{aligned}
0
&=
\lambda \Delta a + \biglr{ E_2 – \lr{ E_2 + \frac{(\lambda \Delta)^2}{E_2 – E_1} } } b \\
&=
\lambda \Delta b + \biglr{ – \frac{(\lambda \Delta)^2}{E_2 – E_1} } b,
\end{aligned}

for
\label{eqn:simplestTwoByTwoPerturbation:220}
\ket{-} \rightarrow
\ket{-} + \frac{\lambda \Delta}{E_2 – E_1} \ket{+}.

### A: part (b)

For the perturbation the first energy shift for perturbation of the $$\ket{+}$$ state is

\label{eqn:simplestTwoByTwoPerturbation:240}
\begin{aligned}
E_{+}^{(1)}
&= \ket{+} V \ket{+} \\
&=
\lambda \Delta
\begin{bmatrix}
1 & 0
\end{bmatrix}
\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}
\begin{bmatrix}
1 \\
0
\end{bmatrix} \\
&=
\lambda \Delta
\begin{bmatrix}
1 & 0
\end{bmatrix}
\begin{bmatrix}
0 \\
1
\end{bmatrix} \\
&=
0.
\end{aligned}

The first order energy shift for the perturbation of the $$\ket{-}$$ state is also zero. The perturbed $$\ket{+}$$ state is

\label{eqn:simplestTwoByTwoPerturbation:260}
\begin{aligned}
\ket{+}^{(1)}
&= \frac{\overline{{P}}_{+}}{E_1 – H_0} V \ket{+} \\
&= \frac{\ket{-}\bra{-}}{E_1 – E_2} V \ket{+}
\end{aligned}

The numerator matrix element is

\label{eqn:simplestTwoByTwoPerturbation:280}
\begin{aligned}
\bra{-} V \ket{+}
&=
\begin{bmatrix}
0 & 1
\end{bmatrix}
\begin{bmatrix}
0 & \Delta \\
\Delta & 0
\end{bmatrix}
\begin{bmatrix}
1 \\
0
\end{bmatrix} \\
&=
\begin{bmatrix}
0 & 1
\end{bmatrix}
\begin{bmatrix}
0 \\
\Delta
\end{bmatrix} \\
&=
\Delta,
\end{aligned}

so

\label{eqn:simplestTwoByTwoPerturbation:300}
\ket{+} \rightarrow \ket{+} + \ket{-} \frac{\Delta}{E_1 – E_2}.

Observe that this matches the first order series expansion of the exact value above.

For the perturbation of $$\ket{-}$$ we need the matrix element

\label{eqn:simplestTwoByTwoPerturbation:320}
\begin{aligned}
\bra{+} V \ket{-}
&=
\begin{bmatrix}
1 & 0
\end{bmatrix}
\begin{bmatrix}
0 & \Delta \\
\Delta & 0
\end{bmatrix}
\begin{bmatrix}
0 \\
1
\end{bmatrix} \\
&=
\begin{bmatrix}
1 & 0
\end{bmatrix}
\begin{bmatrix}
\Delta \\
0 \\
\end{bmatrix} \\
&=
\Delta,
\end{aligned}

so it’s clear that the perturbed ket is

\label{eqn:simplestTwoByTwoPerturbation:340}
\ket{-} \rightarrow \ket{-} + \ket{+} \frac{\Delta}{E_2 – E_1},

also matching the approximation found from the exact computation. The second order energy shifts can now be calculated

\label{eqn:simplestTwoByTwoPerturbation:360}
\begin{aligned}
\bra{+} V \ket{+}’
&=
\begin{bmatrix}
1 & 0
\end{bmatrix}
\begin{bmatrix}
0 & \Delta \\
\Delta & 0
\end{bmatrix}
\begin{bmatrix}
1 \\
\frac{\Delta}{E_1 – E_2}
\end{bmatrix} \\
&=
\begin{bmatrix}
1 & 0
\end{bmatrix}
\begin{bmatrix}
\frac{\Delta^2}{E_1 – E_2} \\
\Delta
\end{bmatrix} \\
&=
\frac{\Delta^2}{E_1 – E_2},
\end{aligned}

and

\label{eqn:simplestTwoByTwoPerturbation:380}
\begin{aligned}
\bra{-} V \ket{-}’
&=
\begin{bmatrix}
0 & 1
\end{bmatrix}
\begin{bmatrix}
0 & \Delta \\
\Delta & 0
\end{bmatrix}
\begin{bmatrix}
\frac{\Delta}{E_2 – E_1} \\
1 \\
\end{bmatrix} \\
&=
\begin{bmatrix}
0 & 1
\end{bmatrix}
\begin{bmatrix}
\Delta \\
\frac{\Delta^2}{E_2 – E_1} \\
\end{bmatrix} \\
&=
\frac{\Delta^2}{E_2 – E_1},
\end{aligned}

The energy perturbations are therefore
\label{eqn:simplestTwoByTwoPerturbation:400}
\begin{aligned}
E_1 &\rightarrow E_1 + \frac{(\lambda \Delta)^2}{E_1 – E_2} \\
E_2 &\rightarrow E_2 + \frac{(\lambda \Delta)^2}{E_2 – E_1}.
\end{aligned}

This is what we had by approximating the exact case.

### A: part (c)

For the $$E_2 = E_1$$ case, we’ll have to diagonalize the perturbation potential. That is

\label{eqn:simplestTwoByTwoPerturbation:420}
\begin{aligned}
V &= U \bigwedge U^\dagger \\
\bigwedge &=
\begin{bmatrix}
\Delta & 0 \\
0 & -\Delta
\end{bmatrix} \\
U &= U^\dagger = \inv{\sqrt{2}}
\begin{bmatrix}
1 & 1 \\
1 & -1
\end{bmatrix}.
\end{aligned}

A change of basis for the Hamiltonian is

\label{eqn:simplestTwoByTwoPerturbation:440}
\begin{aligned}
H’
&=
U^\dagger H U \\
&=
U^\dagger H_0 U + \lambda U^\dagger V U \\
&=
E_1 U^\dagger + \lambda U^\dagger V U \\
&=
H_0 + \lambda \bigwedge.
\end{aligned}

We can now calculate the perturbation energy with respect to the new basis, say $$\setlr{ \ket{1}, \ket{2} }$$. Those energy shifts are

\label{eqn:simplestTwoByTwoPerturbation:460}
\begin{aligned}
\Delta^{(1)} &= \bra{1} V \ket{1} = \Delta \\
\Delta^{(2)} &= \bra{2} V \ket{2} = -\Delta.
\end{aligned}

The perturbed energies are therefore

\label{eqn:simplestTwoByTwoPerturbation:480}
\begin{aligned}
E_1 &\rightarrow E_1 + \lambda \Delta \\
E_2 &\rightarrow E_2 – \lambda \Delta,
\end{aligned}

which matches \ref{eqn:simplestTwoByTwoPerturbation:100}, the exact result.

# References

## Harmonic oscillator with energy shift

December 5, 2015 phy1520 No comments , ,

### Q: [1] pr 5.1

Given a perturbed 1D SHO Hamiltonian

\label{eqn:harmonicOscillatorEnergyShiftPertubation:20}
H = \inv{2m} p^2 + \inv{2} m \omega^2 x^2 + \lambda b x,

calculate the first non-zero perturbation to the ground state energy. Then solve for that energy directly and compare.

### A:

The first order energy shift is seen to be zero

\label{eqn:harmonicOscillatorEnergyShiftPertubation:40}
\begin{aligned}
\Delta_0^{(0)}
&= V_{00} \\
&= \bra{0} b x \ket{0} \\
&= \frac{x_0}{\sqrt{2}} \bra{0} a + a^\dagger \ket{0} \\
&= \frac{x_0}{\sqrt{2}} \braket{0}{1} \\
&= 0.
\end{aligned}

The first order perturbation to the ground state is

\label{eqn:harmonicOscillatorEnergyShiftPertubation:60}
\begin{aligned}
\ket{0^{(1)}}
&= \sum_{m \ne 0} \frac{ \ket{m} \bra{m} b x \ket{0} }{ \Hbar \omega/2 – \Hbar
\omega (m – 1/2) } \\
&= -b \frac{x_0}{\sqrt{2} \Hbar \omega} \sum_{m \ne 0} \frac{ \ket{m}
\braket{m}{1} }{ m } \\
&= -b \frac{x_0}{\sqrt{2} \Hbar \omega} \ket{1}.
\end{aligned}

The second order ground state energy perturbation is

\label{eqn:harmonicOscillatorEnergyShiftPertubation:80}
\begin{aligned}
\Delta_0^{(2)}
&=
\bra{0} b x \ket{0^{(1)}} \\
&=
\frac{b x_0}{\sqrt{2}} \bra{0} a + a^\dagger \lr{ -b \frac{x_0}{\sqrt{2} \Hbar \omega} \ket{1} } \\
&=
\frac{b x_0}{\sqrt{2}} \lr{ -b \frac{x_0}{\sqrt{2} \Hbar \omega} } \\
&=
-\frac{b^2 x_0^2}{ 2 \Hbar \omega } \\
&=
-\frac{b^2 }{ 2 \Hbar \omega } \frac{\Hbar}{m \omega} \\
&=
-\frac{b^2 }{ 2 m \omega^2 },
\end{aligned}

so the total energy perturbation up to second order is

\label{eqn:harmonicOscillatorEnergyShiftPertubation:100}
\Delta_0 = -\lambda^2 \frac{b^2 }{ 2 m \omega^2 }.

To compare to the exact result, rewrite the Hamiltonian as

\label{eqn:harmonicOscillatorEnergyShiftPertubation:120}
\begin{aligned}
H
&= \inv{2m} p^2 + \inv{2} m \omega^2 \lr{ x^2 + \frac{2 \lambda b x}{m \omega^2} } \\
&= \inv{2m} p^2 + \inv{2} m \omega^2 \lr{ x + \frac{\lambda b }{m \omega^2} }^2 – \inv{2} m \omega^2 \lr{ \frac{\lambda b }{m \omega^2} }^2.
\end{aligned}

The Hamiltonian is subject to a constant energy shift

\label{eqn:harmonicOscillatorEnergyShiftPertubation:140}
\begin{aligned}
\Delta E
&=
– \inv{2} m \omega^2 \frac{\lambda^2 b^2 }{m^2 \omega^4} \\
&=
– \frac{\lambda^2 b^2 }{2 m \omega^2}.
\end{aligned}

This is an exact match with the second order perturbation result of \ref{eqn:harmonicOscillatorEnergyShiftPertubation:100}.

# References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

## Energy estimate for an absolute value potential

Here’s a simple problem, a lot like the problem set 6 variational calculation.

### Q: [1] 5.21

Estimate the lowest eigenvalue $$\lambda$$ of the differential equation

\label{eqn:absolutePotentialVariation:20}
\frac{d^2}{dx^2}\psi + \lr{ \lambda – \Abs{x} } \psi = 0.

Using $$\alpha$$ variation with the trial function

\label{eqn:absolutePotentialVariation:40}
\psi =
\left\{
\begin{array}{l l}
c(\alpha – \Abs{x}) & \quad \mbox{$$\Abs{x} < \alpha$$ } \\ 0 & \quad \mbox{$$\Abs{x} > \alpha$$ }
\end{array}
\right.

### A:

First rewrite the differential equation in a Hamiltonian like fashion

\label{eqn:absolutePotentialVariation:60}
H \psi = -\frac{d^2}{dx^2}\psi + \Abs{x} \psi = \lambda \psi.

We need the derivatives of the trial distribution. The first derivative is

\label{eqn:absolutePotentialVariation:80}
\begin{aligned}
\frac{d}{dx} \psi
&=
-c \frac{d}{dx} \Abs{x} \\
&=
-c \frac{d}{dx} \lr{ x \theta(x) – x \theta(-x) } \\
&=
-c \lr{
\theta(x) – \theta(-x)
+
x \delta(x) + x \delta(-x)
} \\
&=
-c \lr{
\theta(x) – \theta(-x)
+
2 x \delta(x)
}.
\end{aligned}

The second derivative is
\label{eqn:absolutePotentialVariation:100}
\begin{aligned}
\frac{d^2}{dx^2} \psi
&=
-c \frac{d}{dx} \lr{
\theta(x) – \theta(-x)
+
2 x \delta(x)
} \\
&=
-c \lr{
\delta(x) + \delta(-x)
+
2 \delta(x)
+
2 x \delta'(x)
} \\
&=
-c \lr{
4 \delta(x)
+
2 x \frac{-\delta(x) }{x}
} \\
&=
-2 c \delta(x).
\end{aligned}

This gives

\label{eqn:absolutePotentialVariation:120}
H \psi = -2 c \delta(x) + \Abs{x} c \lr{ \alpha – \Abs{x} }.

We are now set to compute some of the inner products. The normalization is the simplest

\label{eqn:absolutePotentialVariation:140}
\begin{aligned}
\braket{\psi}{\psi}
&= c^2 \int_{-\alpha}^\alpha ( \alpha – \Abs{x} )^2 dx \\
&= 2 c^2 \int_{0}^\alpha ( x – \alpha )^2 dx \\
&= 2 c^2 \int_{-\alpha}^0 u^2 du \\
&= 2 c^2 \lr{ -\frac{(-\alpha)^3}{3} } \\
&= \frac{2}{3} c^2 \alpha^3.
\end{aligned}

For the energy
\label{eqn:absolutePotentialVariation:160}
\begin{aligned}
\braket{\psi}{H \psi}
&=
c^2 \int dx \lr{ \alpha – \Abs{x} } \lr{ -2 \delta(x) + \Abs{x} \lr{ \alpha – \Abs{x} } } \\
&=
c^2 \lr{ – 2 \alpha + \int_{-\alpha}^\alpha dx \lr{ \alpha – \Abs{x} }^2 \Abs{x} } \\
&=
c^2 \lr{ – 2 \alpha + 2 \int_{-\alpha}^0 du u^2 \lr{ u + \alpha } } \\
&=
c^2 \lr{ – 2 \alpha + 2 \evalrange{\lr{ \frac{u^4}{4} + \alpha \frac{u^3}{3} }}{-\alpha}{0} } \\
&=
c^2 \lr{ – 2 \alpha – 2 \lr{ \frac{\alpha^4}{4} – \frac{\alpha^4}{3} } } \\
&=
c^2 \lr{ – 2 \alpha + \inv{6} \alpha^4 }.
\end{aligned}

The energy estimate is

\label{eqn:absolutePotentialVariation:180}
\begin{aligned}
\overline{{E}}
&=
\frac{\braket{\psi}{H \psi}}{\braket{\psi}{\psi}} \\
&=
\frac{ – 2 \alpha + \inv{6} \alpha^4 }{ \frac{2}{3} \alpha^3} \\
&=
– \frac{3}{\alpha^2} + \inv{4} \alpha.
\end{aligned}

This has its minimum at
\label{eqn:absolutePotentialVariation:200}
0 = -\frac{6}{\alpha^3} + \inv{4},

or
\label{eqn:absolutePotentialVariation:220}
\alpha = 2 \times 3^{1/3}.

Back subst into the energy gives

\label{eqn:absolutePotentialVariation:240}
\begin{aligned}
\overline{{E}}
&=
– \frac{3}{4 \times 3^{2/3}} + \inv{2} 3^{1/3} \\
&= \frac{3^{4/3}}{4} \\
&\approx 1.08.
\end{aligned}

The problem says the exact answer is 1.019, so the variation gets within 6 %.

# References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

## PHY1520H Graduate Quantum Mechanics. Lecture 21: Non-degenerate perturbation. Taught by Prof. Arun Paramekanti

### Disclaimer

Peeter’s lecture notes from class. These may be incoherent and rough.

These are notes for the UofT course PHY1520, Graduate Quantum Mechanics, taught by Prof. Paramekanti, covering [2] chap. 5 content.

### Non-degenerate perturbation theory. Recap.

\label{eqn:qmLecture21:20}
\ket{n} = \ket{n_0}
+ \lambda \ket{n_1}
+ \lambda^2 \ket{n_2}
+ \lambda^3 \ket{n_3} + \cdots

and

\label{eqn:qmLecture21:40}
\Delta_{n} = \Delta_{n_0}
+ \lambda \Delta_{n_1}
+ \lambda^2 \Delta_{n_2}
+ \lambda^3 \Delta_{n_3} + \cdots

\label{eqn:qmLecture21:60}
\begin{aligned}
\Delta_{n_1} &= \bra{n^{(0)}} V \ket{n^{(0)}} \\
\ket{n_0} &= \ket{n^{(0)}}
\end{aligned}

\label{eqn:qmLecture21:80}
\begin{aligned}
\Delta_{n_2} &= \sum_{m \ne n} \frac{\Abs{\bra{n^{(0)}} V \ket{m^{(0)}}}^2}{E_n^{(0)} – E_m^{(0)}} \\
\ket{n_1} &= \sum_{m \ne n} \frac{ \ket{m^{(0)}} V_{mn} }{E_n^{(0)} – E_m^{(0)}}
\end{aligned}

### Example: Stark effect

\label{eqn:qmLecture21:100}
H = H_{\textrm{atom}} + e \mathcal{E} z,

where $$H_{\textrm{atom}}$$ is assumed to be Hydrogen-like with Hamiltonian

\label{eqn:qmLecture21:120}
H_{\textrm{atom}} = \frac{\BP^2}{2m} – \frac{e^2}{4 \pi \epsilon_0 r},

and wave functions

\label{eqn:qmLecture21:140}
\braket{\Br}{\psi_{n l m}} = R_{n l}(r) Y_{lm}( \theta, \phi )

For the first level correction to the energy

\label{eqn:qmLecture21:160}
\begin{aligned}
\Delta_1
&= \bra{\psi_{100}} e \mathcal{E} z \ket{ \psi_{100}} \\
&= e \mathcal{E} \int \frac{d\Omega}{4 \pi} \cos \theta \int dr r^2 R_{100}^2(r)
\end{aligned}

The cosine integral is obliterated, so we have $$\Delta_1 = 0$$.

How about the second order energy correction? That is

\label{eqn:qmLecture21:180}
\Delta_2 = \sum_{n l m \ne 100} \frac{
\Abs{ \bra{\psi_{100}} e \mathcal{E} z \ket{ n l m }}^2
}{
E_{100}^{(0)} – E_{n l m}
}

The matrix element in the numerator is the absolute square of

\label{eqn:qmLecture21:200}
V_{100,nlm}
=
e \mathcal{E} \int d\Omega \inv{\sqrt{ 4 \pi } }
\cos\theta Y_{l m}(\theta, \phi)
\int dr r^3 R_{100}(r) R_{n l}(r).

For all $$m \ne 0$$, $$Y_{lm}$$ includes a $$e^{i m \phi}$$ factor, so this cosine integral is zero. For $$m = 0$$, each of the $$Y_{lm}$$ functions appears to contain either even or odd powers of cosines. For example:

\label{eqn:qmLecture21:760}
\begin{aligned}
Y_{00} &= \frac{1}{2 \sqrt{\pi}} \\
Y_{10} &= \frac{1}{2} \sqrt{\frac{3}{\pi }} \cos(t) \\
Y_{20} &= \frac{1}{4} \sqrt{\frac{5}{\pi }} \lr{(3 \cos^2(t)-1} \\
Y_{30} &= \frac{1}{4} \sqrt{\frac{7}{\pi }} \lr{(5 \cos^3(t)-3 \cos(t)} \\
Y_{40} &= \frac{3 \lr{(35 \cos^4(t)-30 \cos^2(t)+3}}{16 \sqrt{\pi }} \\
Y_{50} &= \frac{1}{16} \sqrt{\frac{11}{\pi }} \lr{(63 \cos^5(t)-70 \cos^3(t)+15 \cos(t)} \\
Y_{60} &= \frac{1}{32} \sqrt{\frac{13}{\pi }} \lr{(231 \cos^6(t)-315 \cos^4(t)+105 \cos^2(t)-5} \\
Y_{70} &= \frac{1}{32} \sqrt{\frac{15}{\pi }} \lr{(429 \cos^7(t)-693 \cos^5(t)+315 \cos^3(t)-35 \cos(t)} \\
Y_{80} &= \frac{1}{256} \sqrt{\frac{17}{\pi }} \lr{(6435 \cos^8(t)-12012 \cos^6(t)+6930 \cos^4(t)-1260 \cos^2(t)+35 } \\
\end{aligned}

This shows that for even $$2k = l$$, the cosine integral is zero

\label{eqn:qmLecture21:780}
\int_0^\pi \sin\theta \cos\theta \sum_k a_k \cos^{2k}\theta d\theta
=
0,

since $$\cos^{2k}(\theta)$$ is even and $$\sin\theta \cos\theta$$ is odd over the same interval. We find zero for $$\int_0^\pi \sin\theta \cos\theta Y_{30}(\theta, \phi) d\theta$$, and Mathematica appears to show that the rest of these integrals for $$l > 1$$ are also zero.

FIXME: find the property of the spherical harmonics that can be used to prove that this is true in general for $$l > 1$$.

This leaves

\label{eqn:qmLecture21:220}
\begin{aligned}
\Delta_2
&= \sum_{n \ne 1} \frac{
\Abs{ \bra{\psi_{100}} e \mathcal{E} z \ket{ n 1 0 }}^2
}{
E_{100}^{(0)} – E_{n 1 0}
} \\
&=
-e^2 \mathcal{E}^2
\sum_{n \ne 1} \frac{
\Abs{ \bra{\psi_{100}} z \ket{ n 1 0 }}^2
}{
E_{n 1 0}
-E_{100}^{(0)}
}.
\end{aligned}

This is sometimes written in terms of a polarizability $$\alpha$$

\label{eqn:qmLecture21:260}
\Delta_2 = -\frac{\mathcal{E}^2}{2} \alpha,

where

\label{eqn:qmLecture21:280}
\alpha =
2 e^2
\sum_{n \ne 1} \frac{
\Abs{ \bra{\psi_{100}} z \ket{ n 1 0 }}^2
}{
E_{n 1 0}
-E_{100}^{(0)}
}.

With
\label{eqn:qmLecture21:840}
\BP = \alpha \boldsymbol{\mathcal{E}},

the energy change upon turning on the electric field from $$0 \rightarrow \mathcal{E}$$ is simply $$– \BP \cdot d\boldsymbol{\mathcal{E}}$$ integrated from $$0 \rightarrow \mathcal{E}$$. Putting $$\BP = \alpha \mathcal{E} \zcap$$, we have

\label{eqn:qmLecture21:400}
\begin{aligned}
– \int_0^\mathcal{E} p_z d\mathcal{E}
&=
– \int_0^\mathcal{E} \alpha \mathcal{E} d\mathcal{E} \\
&=
– \inv{2} \alpha \mathcal{E}^2
\end{aligned}

leading to an energy change $$– \alpha \mathcal{E}^2/2$$, so we can directly compute $$\expectation{\BP}$$ or we can compute change in energy, and both contain information about the polarization factor $$\alpha$$.

There is an exact answer to the sum \ref{eqn:qmLecture21:280}, but we aren’t going to try to get it here. Instead let’s look for bounds

\label{eqn:qmLecture21:240}
\Delta_2^{\mathrm{min}} < \Delta_2 < \Delta_2^{\mathrm{max}} $$\label{eqn:qmLecture21:320} \alpha^{\mathrm{min}} = 2 e^2 \frac{ \Abs{ \bra{\psi_{100}} z \ket{\psi_{210}} }^2 }{E_{210}^{(0)} - E_{100}^{(0)}}$$ For the hydrogen atom we have $$\label{eqn:qmLecture21:820} E_n = -\frac{ e^2}{ 2 n^2 a_0 },$$ allowing any difference of energy levels to be expressed as a fraction of the ground state energy, such as $$\label{eqn:qmLecture21:340} E_{210}^{(0)} = \inv{4} E_{100}^{(0)} = \inv{4} \frac{ -\Hbar^2 }{ 2 m a_0^2 }$$ So $$\label{eqn:qmLecture21:360} E_{210}^{(0)} - E_{100}^{(0)} = \frac{3}{4} \frac{ \Hbar^2 }{ 2 m a_0^2 }$$ In the numerator we have \label{eqn:qmLecture21:380} \begin{aligned} \bra{\psi_{100}} z \ket{\psi_{210}} &= \int r^2 d\Omega \lr{ \inv{\sqrt{\pi} a_0^{3/2}} e^{-r/a_0} } r \cos\theta \lr{ \inv{4 \sqrt{2 \pi} a_0^{3/2}} \frac{r}{a_0} e^{-r/2a_0} \cos\theta } \\ &= (2 \pi) \inv{\sqrt{\pi}} \inv{4 \sqrt{2 \pi} } a_0 \int_0^\pi d\theta \sin\theta \cos^2\theta \int_0^\infty \frac{dr}{a_0} \frac{r^4}{a_0^4} e^{-r/a_0 - r/2 a_0} \\ &= (2 \pi) \inv{\sqrt{\pi}} \inv{4 \sqrt{2 \pi} } a_0 \lr{ \evalrange{-\frac{u^3}{3}}{1}{-1} } \int_0^\infty s^4 ds e^{- 3 s/2 } \\ &= 2 \inv{4 \sqrt{2} } a_0 \lr{ \evalrange{-\frac{u^3}{3}}{1}{-1} } \int_0^\infty s^4 ds e^{- 3 s/2 } \\ &= \inv{2 \sqrt{2}} \frac{2}{3} a_0 \frac{256}{81} \\ &= \frac{1}{3 \sqrt{2} } \frac{ 256}{81} a_0 \approx 0.75 a_0. \end{aligned} This gives \label{eqn:qmLecture21:420} \begin{aligned} \alpha^{\mathrm{min}} &= \frac{ 2 e^2 (0.75)^2 a_0^2 }{ \frac{3}{4} \frac{\Hbar^2}{2 m a_0^2} } \\ &= \frac{6}{4} \frac{2 m e^2 a_0^4}{ \Hbar^2 } \\ &= 3 \frac{m e^2 a_0^4}{ \Hbar^2 } \\ &= 3 \frac{ 4 \pi \epsilon_0 }{a_0} a_0^4 \\ &\approx 4 \pi \epsilon_0 a_0^3 \times 3. \end{aligned} The factor $$4 \pi \epsilon_0 a_0^3$$ are the natural units for the polarizability. There is a neat trick that generalizes to many problems to find the upper bound. Recall that the general polarizability was $$\label{eqn:qmLecture21:440} \alpha = 2 e^2 \sum_{nlm \ne 100} \frac{ \Abs{ \bra{100} z \ket{ n l m }}^2 }{ E_{n l m} -E_{100}^{(0)} }.$$ If we are looking for the upper bound, and replace the denominator by the smallest energy difference that will be encountered, it can be brought out of the sum, for $$\label{eqn:qmLecture21:460} \alpha^{\mathrm{max}} = 2 e^2 \inv{E_{2 1 0} -E_{100}^{(0)} } \sum_{nlm \ne 100} \bra{100} z \ket{ n l m } \bra{nlm} z \ket{ 100 }$$ Because $$\bra{nlm} z \ket{100} = 0$$, the constraint in the sum can be removed, and the identity summation evaluated \label{eqn:qmLecture21:480} \begin{aligned} \alpha^{\mathrm{max}} &= 2 e^2 \inv{E_{2 1 0} -E_{100}^{(0)} } \sum_{nlm} \bra{100} z \ket{ n l m } \bra{nlm} z \ket{ 100 } \\ &= \frac{2 e^2 }{ \frac{3}{4} \frac{\Hbar^2}{ 2 m a_0^2} } \bra{100} z^2 \ket{ 100 } \\ &= \frac{16 e^2 m a_0^2 }{ 3 \Hbar^2 } \times a_0^2 \\ &= 4 \pi \epsilon_0 a_0^3 \times \frac{16}{3}. \end{aligned} The bounds are $$\label{eqn:qmLecture21:520} \boxed{ 3 \ge \frac{\alpha}{\alpha^{\mathrm{at}}} < \frac{16}{3}, }$$ where $$\label{eqn:qmLecture21:560} \alpha^{\mathrm{at}} = 4 \pi \epsilon_0 a_0^3.$$ The actual value is $$\label{eqn:qmLecture21:580} \frac{\alpha}{\alpha^{\mathrm{at}}} = \frac{9}{2}.$$

### Example: Computing the dipole moment

\label{eqn:qmLecture21:600}
\expectation{P_z}
= \alpha \mathcal{E}
= \bra{\psi_{100}} e z \ket{\psi_{100}}.

Without any perturbation this is zero. After perturbation, retaining only the terms that are first order in $$\delta \psi_{100}$$ we have

\label{eqn:qmLecture21:620}
\bra{\psi_{100} + \delta \psi_{100}} e z \ket{\psi_{100} + \delta \psi_{100}}
\approx
\bra{\psi_{100}} e z \ket{\delta \psi_{100}}
+
\bra{\delta \psi_{100}} e z \ket{\psi_{100}}.

### Next time: Van der Walls

We will look at two hyrdogenic atomic systems interacting where the pair of nuclei are supposed to be infinitely heavy and stationary. The wave functions each set of atoms are individually known, but we can consider the problem of the interactions of atom 1’s electrons with atom 2’s nucleus and atom 2’s electrons, and also the opposite interactions of atom 2’s electrons with atom 1’s nucleus and its electrons. This leads to a result that is linear in the electric field (unlike the above result, which is called the quadratic Stark effect).

### Appendix. Hydrogen wavefunctions

From [3], with the $$a_0$$ factors added in.

\label{eqn:qmLecture21:660}
\psi_{1 s} = \psi_{100} = \inv{\sqrt{\pi} a_0^{3/2}} e^{-r/a_0}

\label{eqn:qmLecture21:680}
\psi_{2 s} = \psi_{200} = \inv{4 \sqrt{2 \pi} a_0^{3/2}} \lr{ 2 – \frac{r}{a_0} } e^{-r/2a_0}

\label{eqn:qmLecture21:700}
\psi_{2 p_x} = \inv{\sqrt{2}} \lr{ \psi_{2,1,1} – \psi_{2,1,-1} }
= \inv{4 \sqrt{2 \pi} a_0^{3/2}} \frac{r}{a_0} e^{-r/2a_0} \sin\theta\cos\phi

\label{eqn:qmLecture21:720}
\psi_{2 p_y} = \frac{i}{\sqrt{2}} \lr{ \psi_{2,1,1} + \psi_{2,1,-1} }
= \inv{4 \sqrt{2 \pi} a_0^{3/2}} \frac{r}{a_0} e^{-r/2a_0} \sin\theta\sin\phi

\label{eqn:qmLecture21:740}
\psi_{2 p_z} = \psi_{210} = \inv{4 \sqrt{2 \pi} a_0^{3/2}} \frac{r}{a_0} e^{-r/2a_0} \cos\theta

I looked to [1] to see where to add in the $$a_0$$ factors.

# References

[1] Carl R. Nave. Hydrogen Wavefunctions, 2015. URL http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/hydwf.html. [Online; accessed 03-Dec-2015].

[2] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

[3] Robert Field Troy Van Voorhis. Hydrogen Atom, 2013. URL http://ocw.mit.edu/courses/chemistry/5-61-physical-chemistry-fall-2013/lecture-notes/MIT5_61F13_Lecture19-20.pdf. [Online; accessed 03-Dec-2015].

## PHY1520H Graduate Quantum Mechanics. Lecture 20: Perturbation theory. Taught by Prof. Arun Paramekanti

### Disclaimer

Peeter’s lecture notes from class. These may be incoherent and rough.

These are notes for the UofT course PHY1520, Graduate Quantum Mechanics, taught by Prof. Paramekanti, covering [1] ch. 5 content.

### Perturbation theory

Given a $$2 \times 2$$ Hamiltonian $$H = H_0 + V$$, where

\label{eqn:qmLecture20:20}
H =
\begin{bmatrix}
a & c \\
c^\conj & b
\end{bmatrix}

which has eigenvalues

\label{eqn:qmLecture20:40}
\lambda_\pm = \frac{a + b}{2} \pm \sqrt{ \lr{ \frac{a – b}{2}}^2 + \Abs{c}^2 }.

If $$c = 0$$,

\label{eqn:qmLecture20:60}
H_0 =
\begin{bmatrix}
a & 0 \\
0 & b
\end{bmatrix},

so

\label{eqn:qmLecture20:80}
V =
\begin{bmatrix}
0 & c \\
c^\conj & 0
\end{bmatrix}.

Suppose that $$\Abs{c} \ll \Abs{a – b}$$, then

\label{eqn:qmLecture20:100}
\lambda_\pm \approx \frac{a + b}{2} \pm \Abs{ \frac{a – b}{2} } \lr{ 1 + 2 \frac{\Abs{c}^2}{\Abs{a – b}^2} }.

If $$a > b$$, then

\label{eqn:qmLecture20:120}
\lambda_\pm \approx \frac{a + b}{2} \pm \frac{a – b}{2} \lr{ 1 + 2 \frac{\Abs{c}^2}{\lr{a – b}^2} }.

\label{eqn:qmLecture20:140}
\begin{aligned}
\lambda_{+}
&= \frac{a + b}{2} + \frac{a – b}{2} \lr{ 1 + 2 \frac{\Abs{c}^2}{\lr{a – b}^2} } \\
&= a + \lr{a – b} \frac{\Abs{c}^2}{\lr{a – b}^2} \\
&= a + \frac{\Abs{c}^2}{a – b},
\end{aligned}

and
\label{eqn:qmLecture20:680}
\begin{aligned}
\lambda_{-}
&= \frac{a + b}{2} – \frac{a – b}{2} \lr{ 1 + 2 \frac{\Abs{c}^2}{\lr{a – b}^2} } \\
&=
b + \lr{a – b} \frac{\Abs{c}^2}{\lr{a – b}^2} \\
&= b + \frac{\Abs{c}^2}{a – b}.
\end{aligned}

This adiabatic evolution displays a “level repulsion”, quadradic in $$\Abs{c}$$ as sketched in fig. 1, and is described as a non-degenerate perbutation.

If $$\Abs{c} \gg \Abs{a -b}$$, then

\label{eqn:qmLecture20:160}
\begin{aligned}
\lambda_\pm
&= \frac{a + b}{2} \pm \Abs{c} \sqrt{ 1 + \inv{\Abs{c}^2} \lr{ \frac{a – b}{2}}^2 } \\
&\approx \frac{a + b}{2} \pm \Abs{c} \lr{ 1 + \inv{2 \Abs{c}^2} \lr{ \frac{a – b}{2}}^2 } \\
&= \frac{a + b}{2} \pm \Abs{c} \pm \frac{\lr{a – b}^2}{8 \Abs{c}}.
\end{aligned}

Here we loose the adiabaticity, and have “level repulsion” that is linear in $$\Abs{c}$$, as sketched in fig. 2. We no longer have the sign of $$a – b$$ in the expansion. This is described as a degenerate perbutation.

fig. 2. Degenerate perbutation

### General non-degenerate perturbation

Given an unperturbed system with solutions of the form

\label{eqn:qmLecture20:180}
H_0 \ket{n^{(0)}} = E_n^{(0)} \ket{n^{(0)}},

we want to solve the perturbed Hamiltonian equation

\label{eqn:qmLecture20:200}
\lr{ H_0 + \lambda V } \ket{ n } = \lr{ E_n^{(0)} + \Delta n } \ket{n}.

Here $$\Delta n$$ is an energy shift as that goes to zero as $$\lambda \rightarrow 0$$. We can write this as

\label{eqn:qmLecture20:220}
\lr{ E_n^{(0)} – H_0 } \ket{ n } = \lr{ \lambda V – \Delta_n } \ket{n}.

We are hoping to iterate with application of the inverse to an initial estimate of $$\ket{n}$$

\label{eqn:qmLecture20:240}
\ket{n} = \lr{ E_n^{(0)} – H_0 }^{-1} \lr{ \lambda V – \Delta_n } \ket{n}.

This gets us into trouble if $$\lambda \rightarrow 0$$, which can be fixed by using

\label{eqn:qmLecture20:260}
\ket{n} = \lr{ E_n^{(0)} – H_0 }^{-1} \lr{ \lambda V – \Delta_n } \ket{n} + \ket{ n^{(0)} },

which can be seen to be a solution to \ref{eqn:qmLecture20:220}. We want to ask if

\label{eqn:qmLecture20:280}
\lr{ \lambda V – \Delta_n } \ket{n} ,

contains a bit of $$\ket{ n^{(0)} }$$? To determine this act with $$\bra{n^{(0)}}$$ on the left

\label{eqn:qmLecture20:300}
\begin{aligned}
\bra{ n^{(0)} } \lr{ \lambda V – \Delta_n } \ket{n}
&=
\bra{ n^{(0)} } \lr{ E_n^{(0)} – H_0 } \ket{n} \\
&=
\lr{ E_n^{(0)} – E_n^{(0)} } \braket{n^{(0)}}{n} \\
&=
0.
\end{aligned}

This shows that $$\ket{n}$$ is entirely orthogonal to $$\ket{n^{(0)}}$$.

Define a projection operator

\label{eqn:qmLecture20:320}
P_n = \ket{n^{(0)}}\bra{n^{(0)}},

which has the idempotent property $$P_n^2 = P_n$$ that we expect of a projection operator.

Define a rejection operator
\label{eqn:qmLecture20:340}
\overline{{P}}_n
= 1 –
\ket{n^{(0)}}\bra{n^{(0)}}
= \sum_{m \ne n}
\ket{m^{(0)}}\bra{m^{(0)}}.

Because $$\ket{n}$$ has no component in the direction $$\ket{n^{(0)}}$$, the rejection operator can be inserted much like we normally do with the identity operator, yielding

\label{eqn:qmLecture20:360}
\ket{n}’ = \lr{ E_n^{(0)} – H_0 }^{-1} \overline{{P}}_n \lr{ \lambda V – \Delta_n } \ket{n} + \ket{ n^{(0)} },

valid for any initial $$\ket{n}$$.

### Power series perturbation expansion

Instead of iterating, suppose that the unknown state and unknown energy difference operator can be expanded in a $$\lambda$$ power series, say

\label{eqn:qmLecture20:380}
\ket{n}
=
\ket{n_0}
+ \lambda \ket{n_1}
+ \lambda^2 \ket{n_2}
+ \lambda^3 \ket{n_3} + \cdots

and

\label{eqn:qmLecture20:400}
\Delta_{n} = \Delta_{n_0}
+ \lambda \Delta_{n_1}
+ \lambda^2 \Delta_{n_2}
+ \lambda^3 \Delta_{n_3} + \cdots

We usually interpret functions of operators in terms of power series expansions. In the case of $$\lr{ E_n^{(0)} – H_0 }^{-1}$$, we have a concrete interpretation when acting on one of the unpertubed eigenstates

\label{eqn:qmLecture20:420}
\inv{ E_n^{(0)} – H_0 } \ket{m^{(0)}} =
\inv{ E_n^{(0)} – E_m^0 } \ket{m^{(0)}}.

This gives

\label{eqn:qmLecture20:440}
\ket{n}
=
\inv{ E_n^{(0)} – H_0 }
\sum_{m \ne n}
\ket{m^{(0)}}\bra{m^{(0)}}
\lr{ \lambda V – \Delta_n } \ket{n} + \ket{ n^{(0)} },

or

\label{eqn:qmLecture20:460}
\boxed{
\ket{n}
=
\ket{ n^{(0)} }
+
\sum_{m \ne n}
\frac{\ket{m^{(0)}}\bra{m^{(0)}}}
{
E_n^{(0)} – E_m^{(0)}
}
\lr{ \lambda V – \Delta_n } \ket{n}.
}

From \ref{eqn:qmLecture20:220}, note that

\label{eqn:qmLecture20:500}
\Delta_n =
\frac{\bra{n^{(0)}} \lambda V \ket{n}}{\braket{n^0}{n}},

however, we will normalize by setting $$\braket{n^0}{n} = 1$$, so

\label{eqn:qmLecture20:521}
\boxed{
\Delta_n =
\bra{n^{(0)}} \lambda V \ket{n}.
}

### to $$O(\lambda^0)$$

If all $$\lambda^n, n > 0$$ are zero, then we have

\label{eqn:qmLecture20:780}
\label{eqn:qmLecture20:740}
\ket{n_0}
=
\ket{ n^{(0)} }
+
\sum_{m \ne n}
\frac{\ket{m^{(0)}}\bra{m^{(0)}}}
{
E_n^{(0)} – E_m^{(0)}
}
\lr{ – \Delta_{n_0} } \ket{n_0}

\label{eqn:qmLecture20:800}
\Delta_{n_0} \braket{n^{(0)}}{n_0} = 0

so

\label{eqn:qmLecture20:540}
\begin{aligned}
\ket{n_0} &= \ket{n^{(0)}} \\
\Delta_{n_0} &= 0.
\end{aligned}

### to $$O(\lambda^1)$$

Requiring identity for all $$\lambda^1$$ terms means

\label{eqn:qmLecture20:760}
\ket{n_1} \lambda
=
\sum_{m \ne n}
\frac{\ket{m^{(0)}}\bra{m^{(0)}}}
{
E_n^{(0)} – E_m^{(0)}
}
\lr{ \lambda V – \Delta_{n_1} \lambda } \ket{n_0},

so

\label{eqn:qmLecture20:560}
\ket{n_1}
=
\sum_{m \ne n}
\frac{
\ket{m^{(0)}} \bra{ m^{(0)}}
}
{
E_n^{(0)} – E_m^{(0)}
}
\lr{ V – \Delta_{n_1} } \ket{n_0}.

With the assumption that $$\ket{n^{(0)}}$$ is normalized, and with the shorthand

\label{eqn:qmLecture20:600}
V_{m n} = \bra{ m^{(0)}} V \ket{n^{(0)}},

that is

\label{eqn:qmLecture20:580}
\begin{aligned}
\ket{n_1}
&=
\sum_{m \ne n}
\frac{
\ket{m^{(0)}}
}
{
E_n^{(0)} – E_m^{(0)}
}
V_{m n}
\\
\Delta_{n_1} &= \bra{ n^{(0)} } V \ket{ n^0} = V_{nn}.
\end{aligned}

### to $$O(\lambda^2)$$

The second order perturbation states are found by selecting only the $$\lambda^2$$ contributions to

\label{eqn:qmLecture20:820}
\lambda^2 \ket{n_2}
=
\sum_{m \ne n}
\frac{\ket{m^{(0)}}\bra{m^{(0)}}}
{
E_n^{(0)} – E_m^{(0)}
}
\lr{ \lambda V – (\lambda \Delta_{n_1} + \lambda^2 \Delta_{n_2}) }
\lr{
\ket{n_0}
+ \lambda \ket{n_1}
}.

Because $$\ket{n_0} = \ket{n^{(0)}}$$, the $$\lambda^2 \Delta_{n_2}$$ is killed, leaving

\label{eqn:qmLecture20:840}
\begin{aligned}
\ket{n_2}
&=
\sum_{m \ne n}
\frac{\ket{m^{(0)}}\bra{m^{(0)}}}
{
E_n^{(0)} – E_m^{(0)}
}
\lr{ V – \Delta_{n_1} }
\ket{n_1} \\
&=
\sum_{m \ne n}
\frac{\ket{m^{(0)}}\bra{m^{(0)}}}
{
E_n^{(0)} – E_m^{(0)}
}
\lr{ V – \Delta_{n_1} }
\sum_{l \ne n}
\frac{
\ket{l^{(0)}}
}
{
E_n^{(0)} – E_l^{(0)}
}
V_{l n},
\end{aligned}

which can be written as

\label{eqn:qmLecture20:620}
\ket{n_2}
=
\sum_{l,m \ne n}
\ket{m^{(0)}}
\frac{V_{m l} V_{l n}}
{
\lr{ E_n^{(0)} – E_m^{(0)} }
\lr{ E_n^{(0)} – E_l^{(0)} }
}

\sum_{m \ne n}
\ket{m^{(0)}}
\frac{V_{n n} V_{m n}}
{
\lr{ E_n^{(0)} – E_m^{(0)} }^2
}.

For the second energy perturbation we have

\label{eqn:qmLecture20:860}
\lambda^2 \Delta_{n_2} =
\bra{n^{(0)}} \lambda V \lr{ \lambda \ket{n_1} },

or

\label{eqn:qmLecture20:880}
\begin{aligned}
\Delta_{n_2}
&=
\bra{n^{(0)}} V \ket{n_1} \\
&=
\bra{n^{(0)}} V
\sum_{m \ne n}
\frac{
\ket{m^{(0)}}
}
{
E_n^{(0)} – E_m^{(0)}
}
V_{m n}.
\end{aligned}

That is

\label{eqn:qmLecture20:900}
\Delta_{n_2}
=
\sum_{m \ne n} \frac{V_{n m} V_{m n} }{E_n^{(0)} – E_m^{(0)}}.

### to $$O(\lambda^3)$$

Similarily, it can be shown that

\label{eqn:qmLecture20:640}
\Delta_{n_3} =
\sum_{l, m \ne n} \frac{V_{n m} V_{m l} V_{l n} }{
\lr{ E_n^{(0)} – E_m^{(0)} }
\lr{ E_n^{(0)} – E_l^{(0)} }
}

\sum_{ m \ne n} \frac{V_{n m} V_{n n} V_{m n} }{
\lr{ E_n^{(0)} – E_m^{(0)} }^2
}.

In general, the energy perturbation is given by

\label{eqn:qmLecture20:660}
\Delta_n^{(l)} = \bra{n^{(0)}} V \ket{n^{(l-1)}}.

# References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

## Alternate Dirac equation representation

November 27, 2015 phy1520 No comments , ,

Given an alternate representation of the Dirac equation

\label{eqn:diracAlternate:20}
H =
\begin{bmatrix}
m c^2 + V_0 & c \hat{p} \\
c \hat{p} & – m c^2 + V_0
\end{bmatrix},

calculate the constant momentum solutions, the Heisenberg velocity operator $$\hat{v}$$, and find the form of the probability density current.

### Plane wave solutions

The action of the Hamiltonian on

\label{eqn:diracAlternate:40}
\psi =
e^{i k x – i E t/\Hbar}
\begin{bmatrix}
\psi_1 \\
\psi_2
\end{bmatrix}

is
\label{eqn:diracAlternate:60}
\begin{aligned}
H \psi
&=
\begin{bmatrix}
m c^2 + V_0 & c (-i \Hbar) i k \\
c (-i \Hbar) i k & – m c^2 + V_0
\end{bmatrix}
\begin{bmatrix}
\psi_1 \\
\psi_2
\end{bmatrix}
e^{i k x – i E t/\Hbar} \\
&=
\begin{bmatrix}
m c^2 + V_0 & c \Hbar k \\
c \Hbar k & – m c^2 + V_0
\end{bmatrix}
\psi.
\end{aligned}

Writing

\label{eqn:diracAlternate:80}
H_k
=
\begin{bmatrix}
m c^2 + V_0 & c \Hbar k \\
c \Hbar k & – m c^2 + V_0
\end{bmatrix}

the characteristic equation is

\label{eqn:diracAlternate:100}
0
=
(m c^2 + V_0 – \lambda)
(-m c^2 + V_0 – \lambda)
– (c \Hbar k)^2
=
\lr{ (\lambda – V_0)^2 – (m c^2)^2 } – (c \Hbar k)^2,

so

\label{eqn:diracAlternate:120}
\lambda = V_0 \pm \epsilon,

where
\label{eqn:diracAlternate:140}
\epsilon^2 = (m c^2)^2 + (c \Hbar k)^2.

We’ve got

\label{eqn:diracAlternate:160}
\begin{aligned}
H – ( V_0 + \epsilon )
&=
\begin{bmatrix}
m c^2 – \epsilon & c \Hbar k \\
c \Hbar k & – m c^2 – \epsilon
\end{bmatrix} \\
H – ( V_0 – \epsilon )
&=
\begin{bmatrix}
m c^2 + \epsilon & c \Hbar k \\
c \Hbar k & – m c^2 + \epsilon
\end{bmatrix},
\end{aligned}

so the eigenkets are

\label{eqn:diracAlternate:180}
\begin{aligned}
\ket{V_0+\epsilon}
&\propto
\begin{bmatrix}
-c \Hbar k \\
m c^2 – \epsilon
\end{bmatrix} \\
\ket{V_0-\epsilon}
&\propto
\begin{bmatrix}
-c \Hbar k \\
m c^2 + \epsilon
\end{bmatrix}.
\end{aligned}

Up to an arbitrary phase for each, these are

\label{eqn:diracAlternate:200}
\begin{aligned}
\ket{V_0 + \epsilon}
&=
\inv{\sqrt{ 2 \epsilon ( \epsilon – m c^2) }}
\begin{bmatrix}
c \Hbar k \\
\epsilon -m c^2
\end{bmatrix} \\
\ket{V_0 – \epsilon}
&=
\inv{\sqrt{ 2 \epsilon ( \epsilon + m c^2) }}
\begin{bmatrix}
-c \Hbar k \\
\epsilon + m c^2
\end{bmatrix} \\
\end{aligned}

We can now write

\label{eqn:diracAlternate:220}
H_k =
E
\begin{bmatrix}
V_0 + \epsilon & 0 \\
0 & V_0 – \epsilon
\end{bmatrix}
E^{-1},

where
\label{eqn:diracAlternate:240}
\begin{aligned}
E &=
\inv{\sqrt{2 \epsilon} }
\begin{bmatrix}
\frac{c \Hbar k}{ \sqrt{ \epsilon – m c^2 } } & -\frac{c \Hbar k}{ \sqrt{ \epsilon + m c^2 } } \\
\sqrt{ \epsilon – m c^2 } & \sqrt{ \epsilon + m c^2 }
\end{bmatrix}, \qquad k > 0 \\
E &=
\inv{\sqrt{2 \epsilon} }
\begin{bmatrix}
-\frac{c \Hbar k}{ \sqrt{ \epsilon – m c^2 } } & -\frac{c \Hbar k}{ \sqrt{ \epsilon + m c^2 } } \\
-\sqrt{ \epsilon – m c^2 } & \sqrt{ \epsilon + m c^2 }
\end{bmatrix}, \qquad k < 0. \end{aligned} Here the signs have been adjusted to ensure the transformation matrix has a unit determinant. Observe that there's redundancy in this matrix since $$\ifrac{c \Hbar \Abs{k}}{ \sqrt{ \epsilon - m c^2 } } = \sqrt{ \epsilon + m c^2 }$$, and $$\ifrac{c \Hbar \Abs{k}}{ \sqrt{ \epsilon + m c^2 } } = \sqrt{ \epsilon - m c^2 }$$, which allows the transformation matrix to be written in the form of a rotation matrix \label{eqn:diracAlternate:260} \begin{aligned} E &= \inv{\sqrt{2 \epsilon} } \begin{bmatrix} \frac{c \Hbar k}{ \sqrt{ \epsilon - m c^2 } } & -\frac{c \Hbar k}{ \sqrt{ \epsilon + m c^2 } } \\ \frac{c \Hbar k}{ \sqrt{ \epsilon + m c^2 } } & \frac{c \Hbar k}{ \sqrt{ \epsilon - m c^2 } } \end{bmatrix}, \qquad k > 0 \\
E &=
\inv{\sqrt{2 \epsilon} }
\begin{bmatrix}
-\frac{c \Hbar k}{ \sqrt{ \epsilon – m c^2 } } & -\frac{c \Hbar k}{ \sqrt{ \epsilon + m c^2 } } \\
\frac{c \Hbar k}{ \sqrt{ \epsilon + m c^2 } } & -\frac{c \Hbar k}{ \sqrt{ \epsilon – m c^2 } }
\end{bmatrix}, \qquad k < 0 \\ \end{aligned} With \label{eqn:diracAlternate:280} \begin{aligned} \cos\theta &= \frac{c \Hbar \Abs{k}}{ \sqrt{ 2 \epsilon( \epsilon - m c^2) } } = \frac{\sqrt{ \epsilon + m c^2} }{ \sqrt{ 2 \epsilon}}\\ \sin\theta &= \frac{c \Hbar k}{ \sqrt{ 2 \epsilon( \epsilon + m c^2) } } = \frac{\textrm{sgn}(k) \sqrt{ \epsilon - m c^2}}{ \sqrt{ 2 \epsilon } }, \end{aligned} the transformation matrix (and eigenkets) is $$\label{eqn:diracAlternate:300} \boxed{ E = \begin{bmatrix} \ket{V_0 + \epsilon} & \ket{V_0 - \epsilon} \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}. }$$ Observe that \ref{eqn:diracAlternate:280} can be simplified by using double angle formulas \label{eqn:diracAlternate:320} \begin{aligned} \cos(2 \theta) &= \frac{\lr{ \epsilon + m c^2} }{ 2 \epsilon } - \frac{\lr{ \epsilon - m c^2}}{ 2 \epsilon } \\ &= \frac{1}{ 2 \epsilon } \lr{ \epsilon + m c^2 - \epsilon + m c^2 } \\ &= \frac{m c^2 }{ \epsilon }, \end{aligned} and $$\label{eqn:diracAlternate:340} \sin(2\theta) = 2 \frac{1}{2 \epsilon} \textrm{sgn}(k ) \sqrt{ \epsilon^2 - (m c^2)^2 } = \frac{\Hbar k c}{\epsilon}.$$ This allows all the $$\theta$$ dependence on $$\Hbar k c$$ and $$m c^2$$ to be expressed as a ratio of momenta $$\label{eqn:diracAlternate:360} \boxed{ \tan(2\theta) = \frac{\Hbar k}{m c}. }$$

### Hyperbolic solutions

For a wave function of the form

\label{eqn:diracAlternate:380}
\psi =
e^{k x – i E t/\Hbar}
\begin{bmatrix}
\psi_1 \\
\psi_2
\end{bmatrix},

some of the work above can be recycled if we substitute $$k \rightarrow -i k$$, which yields unnormalized eigenfunctions

\label{eqn:diracAlternate:400}
\begin{aligned}
\ket{V_0+\epsilon}
&\propto
\begin{bmatrix}
i c \Hbar k \\
m c^2 – \epsilon
\end{bmatrix} \\
\ket{V_0-\epsilon}
&\propto
\begin{bmatrix}
i c \Hbar k \\
m c^2 + \epsilon
\end{bmatrix},
\end{aligned}

where

\label{eqn:diracAlternate:420}
\epsilon^2 = (m c^2)^2 – (c \Hbar k)^2.

The squared magnitude of these wavefunctions are

\label{eqn:diracAlternate:440}
\begin{aligned}
(c \Hbar k)^2 + (m c^2 \mp \epsilon)^2
&=
(c \Hbar k)^2 + (m c^2)^2 + \epsilon^2 \mp 2 m c^2 \epsilon \\
&=
(c \Hbar k)^2 + (m c^2)^2 + (m c^2)^2 \mp (c \Hbar k)^2 – 2 m c^2 \epsilon \\
&= 2 (m c^2)^2 \mp 2 m c^2 \epsilon \\
&= 2 m c^2 ( m c^2 \mp \epsilon ),
\end{aligned}

so, up to a constant phase for each, the normalized kets are

\label{eqn:diracAlternate:460}
\begin{aligned}
\ket{V_0+\epsilon}
&=
\inv{\sqrt{ 2 m c^2 ( m c^2 – \epsilon ) }}
\begin{bmatrix}
i c \Hbar k \\
m c^2 – \epsilon
\end{bmatrix} \\
\ket{V_0-\epsilon}
&=
\inv{\sqrt{ 2 m c^2 ( m c^2 + \epsilon ) }}
\begin{bmatrix}
i c \Hbar k \\
m c^2 + \epsilon
\end{bmatrix},
\end{aligned}

After the $$k \rightarrow -i k$$ substitution, $$H_k$$ is not Hermitian, so these kets aren’t expected to be orthonormal, which is readily verified

\label{eqn:diracAlternate:480}
\begin{aligned}
\braket{V_0+\epsilon}{V_0-\epsilon}
&=
\inv{\sqrt{ 2 m c^2 ( m c^2 – \epsilon ) }}
\inv{\sqrt{ 2 m c^2 ( m c^2 + \epsilon ) }}
\begin{bmatrix}
-i c \Hbar k &
m c^2 – \epsilon
\end{bmatrix}
\begin{bmatrix}
i c \Hbar k \\
m c^2 + \epsilon
\end{bmatrix} \\
&=
\frac{ 2 ( c \Hbar k )^2 }{2 m c^2 \sqrt{(\Hbar k c)^2} } \\
&=
\textrm{sgn}(k)
\frac{
\Hbar k }{m c } .
\end{aligned}

### Heisenberg velocity operator

\label{eqn:diracAlternate:500}
\begin{aligned}
\hat{v}
&= \inv{i \Hbar} \antisymmetric{ \hat{x} }{ H} \\
&= \inv{i \Hbar} \antisymmetric{ \hat{x} }{ m c^2 \sigma_z + V_0 + c \hat{p} \sigma_x } \\
&= \frac{c \sigma_x}{i \Hbar} \antisymmetric{ \hat{x} }{ \hat{p} } \\
&= c \sigma_x.
\end{aligned}

### Probability current

Acting against a completely general wavefunction the Hamiltonian action $$H \psi$$ is

\label{eqn:diracAlternate:520}
\begin{aligned}
i \Hbar \PD{t}{\psi}
&= m c^2 \sigma_z \psi + V_0 \psi + c \hat{p} \sigma_x \psi \\
&= m c^2 \sigma_z \psi + V_0 \psi -i \Hbar c \sigma_x \PD{x}{\psi}.
\end{aligned}

Conversely, the conjugate $$(H \psi)^\dagger$$ is

\label{eqn:diracAlternate:540}
-i \Hbar \PD{t}{\psi^\dagger}
= m c^2 \psi^\dagger \sigma_z + V_0 \psi^\dagger +i \Hbar c \PD{x}{\psi^\dagger} \sigma_x.

These give

\label{eqn:diracAlternate:560}
\begin{aligned}
i \Hbar \psi^\dagger \PD{t}{\psi}
&=
m c^2 \psi^\dagger \sigma_z \psi + V_0 \psi^\dagger \psi -i \Hbar c \psi^\dagger \sigma_x \PD{x}{\psi} \\
-i \Hbar \PD{t}{\psi^\dagger} \psi
&= m c^2 \psi^\dagger \sigma_z \psi + V_0 \psi^\dagger \psi +i \Hbar c \PD{x}{\psi^\dagger} \sigma_x \psi.
\end{aligned}

Taking differences
\label{eqn:diracAlternate:580}
\psi^\dagger \PD{t}{\psi} + \PD{t}{\psi^\dagger} \psi
=
– c \psi^\dagger \sigma_x \PD{x}{\psi} – c \PD{x}{\psi^\dagger} \sigma_x \psi,

or

\label{eqn:diracAlternate:600}
0
=
\PD{t}{}
\lr{
\psi^\dagger \psi
}
+
\PD{x}{}
\lr{
c \psi^\dagger \sigma_x \psi
}.

The probability current still has the usual form $$\rho = \psi^\dagger \psi = \psi_1^\conj \psi_1 + \psi_2^\conj \psi_2$$, but the probability current with this representation of the Dirac Hamiltonian is

\label{eqn:diracAlternate:620}
\begin{aligned}
j
&= c \psi^\dagger \sigma_x \psi \\
&= c
\begin{bmatrix}
\psi_1^\conj &
\psi_2^\conj
\end{bmatrix}
\begin{bmatrix}
\psi_2 \\
\psi_1
\end{bmatrix} \\
&= c \lr{ \psi_1^\conj \psi_2 + \psi_2^\conj \psi_1 }.
\end{aligned}