## Transverse gauge

Jackson [1] has an interesting presentation of the transverse gauge. I’d like to walk through the details of this, but first want to translate the preliminaries to SI units (if I had the 3rd edition I’d not have to do this translation step).

### Gauge freedom

The starting point is noting that $$\spacegrad \cdot \BB = 0$$ the magnetic field can be expressed as a curl

\label{eqn:transverseGauge:20}

Faraday’s law now takes the form
\label{eqn:transverseGauge:40}
\begin{aligned}
0
&= \spacegrad \cross \BE + \PD{t}{\BB} \\
&= \spacegrad \cross \BE + \PD{t}{} \lr{ \spacegrad \cross \BA } \\
&= \spacegrad \cross \lr{ \BE + \PD{t}{\BA} }.
\end{aligned}

Because this curl is zero, the interior sum can be expressed as a gradient

\label{eqn:transverseGauge:60}
\BE + \PD{t}{\BA} \equiv -\spacegrad \Phi.

This can now be substituted into the remaining two Maxwell’s equations.

\label{eqn:transverseGauge:80}
\begin{aligned}
\spacegrad \cdot \BD &= \rho_v \\
\spacegrad \cross \BH &= \BJ + \PD{t}{\BD} \\
\end{aligned}

For Gauss’s law, in simple media, we have

\label{eqn:transverseGauge:140}
\begin{aligned}
\rho_v
&=
&=
\end{aligned}

For simple media again, the Ampere-Maxwell equation is

\label{eqn:transverseGauge:100}
\inv{\mu} \spacegrad \cross \lr{ \spacegrad \cross \BA } = \BJ + \epsilon \PD{t}{} \lr{ -\spacegrad \Phi – \PD{t}{\BA} }.

Expanding $$\spacegrad \cross \lr{ \spacegrad \cross \BA } = -\spacegrad^2 \BA + \spacegrad \lr{ \spacegrad \cdot \BA }$$ gives
\label{eqn:transverseGauge:120}

Maxwell’s equations are now reduced to
\label{eqn:transverseGauge:180}
\boxed{
\begin{aligned}
\spacegrad^2 \BA – \spacegrad \lr{ \spacegrad \cdot \BA + \epsilon \mu \PD{t}{\Phi}} – \epsilon \mu \PDSq{t}{\BA} &= -\mu \BJ \\
\end{aligned}
}

There are two obvious constraints that we can impose
\label{eqn:transverseGauge:200}
\spacegrad \cdot \BA – \epsilon \mu \PD{t}{\Phi} = 0,

or
\label{eqn:transverseGauge:220}

The first constraint is the Lorentz gauge, which I’ve played with previously. It happens to be really nice in a relativistic context since, in vacuum with a four-vector potential $$A = (\Phi/c, \BA)$$, that is a requirement that the four-divergence of the four-potential vanishes ($$\partial_\mu A^\mu = 0$$).

### Transverse gauge

Jackson identifies the latter constraint as the transverse gauge, which I’m less familiar with. With this gauge selection, we have

\label{eqn:transverseGauge:260}
\spacegrad^2 \BA – \epsilon \mu \PDSq{t}{\BA} = -\mu \BJ + \epsilon\mu \spacegrad \PD{t}{\Phi}

\label{eqn:transverseGauge:280}

What’s not obvious is the fact that the irrotational (zero curl) contribution due to $$\Phi$$ in \ref{eqn:transverseGauge:260} cancels the corresponding irrotational term from the current. Jackson uses a transverse and longitudinal decomposition of the current, related to the Helmholtz theorem to allude to this.

That decomposition follows from expanding $$\spacegrad^2 J/R$$ in two ways using the delta function $$-4 \pi \delta(\Bx – \Bx’) = \spacegrad^2 1/R$$ representation, as well as directly

\label{eqn:transverseGauge:300}
\begin{aligned}
– 4 \pi \BJ(\Bx)
&=
\int \spacegrad^2 \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’ \\
&=
\int \spacegrad \cdot \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’
+
\int \spacegrad \wedge \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’ \\
&=
\int \BJ(\Bx’) \cdot \spacegrad’ \inv{\Abs{\Bx – \Bx’}} d^3 x’
+
\int \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’
} \\
&=
\int \spacegrad’ \cdot \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’
\int \frac{\spacegrad’ \cdot \BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’

\int \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’
}
\end{aligned}

The first term can be converted to a surface integral

\label{eqn:transverseGauge:320}
\int \spacegrad’ \cdot \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’
=
\int d\BA’ \cdot \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}},

so provided the currents are either localized or $$\Abs{\BJ}/R \rightarrow 0$$ on an infinite sphere, we can make the identification

\label{eqn:transverseGauge:340}
\BJ(\Bx)
=
+
\spacegrad \cross \spacegrad \cross \inv{4 \pi} \int \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’
\equiv
\BJ_l +
\BJ_t,

where $$\spacegrad \cross \BJ_l = 0$$ (irrotational, or longitudinal), whereas $$\spacegrad \cdot \BJ_t = 0$$ (solenoidal or transverse). The irrotational property is clear from inspection, and the transverse property can be verified readily

\label{eqn:transverseGauge:360}
\begin{aligned}
&=
&=
&=
&= 0.
\end{aligned}

Since

\label{eqn:transverseGauge:380}
\Phi(\Bx, t)
=
\inv{4 \pi \epsilon} \int \frac{\rho_v(\Bx’, t)}{\Abs{\Bx – \Bx’}} d^3 x’,

we have

\label{eqn:transverseGauge:400}
\begin{aligned}
&=
\inv{4 \pi \epsilon} \spacegrad \int \frac{\partial_t \rho_v(\Bx’, t)}{\Abs{\Bx – \Bx’}} d^3 x’ \\
&=
\inv{4 \pi \epsilon} \spacegrad \int \frac{-\spacegrad’ \cdot \BJ}{\Abs{\Bx – \Bx’}} d^3 x’ \\
&=
\frac{\BJ_l}{\epsilon}.
\end{aligned}

This means that the Ampere-Maxwell equation takes the form

\label{eqn:transverseGauge:420}
\spacegrad^2 \BA – \epsilon \mu \PDSq{t}{\BA}
= -\mu \BJ + \mu \BJ_l
= -\mu \BJ_t.

This justifies the transverse in the label transverse gauge.

# References

[1] JD Jackson. Classical Electrodynamics. John Wiley and Sons, 2nd edition, 1975.

## Continuity equation and Ampere’s law

### Q:

Show that without the displacement current $$\PDi{t}{\BD}$$, Maxwell’s equations will not satisfy conservation relations.

### A:

Without the displacement current, Maxwell’s equations are
\label{eqn:continuityDisplacement:20}
\begin{aligned}
\spacegrad \cross \BE( \Br, t ) &= – \PD{t}{\BB}(\Br, t) \\
\spacegrad \cross \BH( \Br, t ) &= \BJ \\
\spacegrad \cdot \BD(\Br, t) &= \rho_{\mathrm{v}}(\Br, t) \\
\spacegrad \cdot \BB(\Br, t) &= 0.
\end{aligned}

Assuming that the continuity equation must hold, we have
\label{eqn:continuityDisplacement:40}
\begin{aligned}
0
&= \spacegrad \cdot \BJ + \PD{t}{\rho_\mathrm{v}} \\
&= \PD{t}{} (\spacegrad \cdot \BD) \\
&\ne 0.
\end{aligned}

This shows that the current in Ampere’s law must be transformed to

\label{eqn:continuityDisplacement:60}
\BJ \rightarrow \BJ + \PD{t}{\BD},

should we wish the continuity equation to be satisfied. With such an addition we have

\label{eqn:continuityDisplacement:80}
\begin{aligned}
0
&= \spacegrad \cdot \BJ + \PD{t}{\rho_\mathrm{v}} \\
\end{aligned}

The first term is zero (assuming sufficient continity of $$\BH$$) and the second two terms cancel when the space and time derivatives of one are commuted.

## Application of Stokes Theorem to the Maxwell equation

The relativistic form of Maxwell’s equation in Geometric Algebra is

\label{eqn:maxwellStokes:20}
\grad F = \inv{c \epsilon_0} J,

where $$\grad = \gamma^\mu \partial_\mu$$ is the spacetime gradient, and $$J = (c\rho, \BJ) = J^\mu \gamma_\mu$$ is the four (vector) current density. The pseudoscalar for the space is denoted $$I = \gamma_0 \gamma_1 \gamma_2 \gamma_3$$, where the basis elements satisfy $$\gamma_0^2 = 1 = -\gamma_k^2$$, and a dual basis satisfies $$\gamma_\mu \cdot \gamma^\nu = \delta_\mu^\nu$$. The electromagnetic field $$F$$ is a composite multivector $$F = \BE + I c \BB$$. This is actually a bivector because spatial vectors have a bivector representation in the space time algebra of the form $$\BE = E^k \gamma_k \gamma_0$$.

A dual representation, with $$F = I G$$ is also possible

\label{eqn:maxwellStokes:60}
\grad G = \frac{I}{c \epsilon_0} J.

Either form of Maxwell’s equation can be split into grade one and three components. The standard (non-dual) form is

\label{eqn:maxwellStokes:40}
\begin{aligned}
\grad \cdot F &= \inv{c \epsilon_0} J \\
\end{aligned}

and the dual form is

\label{eqn:maxwellStokes:41}
\begin{aligned}
\grad \cdot G &= 0 \\
\grad \wedge G &= \frac{I}{c \epsilon_0} J.
\end{aligned}

In both cases a potential representation $$F = \grad \wedge A$$, where $$A$$ is a four vector potential can be used to kill off the non-current equation. Such a potential representation reduces Maxwell’s equation to

\label{eqn:maxwellStokes:80}
\grad \cdot F = \inv{c \epsilon_0} J,

or
\label{eqn:maxwellStokes:100}
\grad \wedge G = \frac{I}{c \epsilon_0} J.

In both cases, these reduce to
\label{eqn:maxwellStokes:120}

This can clearly be further simplified by using the Lorentz gauge, where $$\grad \cdot A = 0$$. However, the aim for now is to try applying Stokes theorem to Maxwell’s equation. The dual form \ref{eqn:maxwellStokes:100} has the curl structure required for the application of Stokes. Suppose that we evaluate this curl over the three parameter volume element $$d^3 x = i\, dx^0 dx^1 dx^2$$, where $$i = \gamma_0 \gamma_1 \gamma_2$$ is the unit pseudoscalar for the spacetime volume element.

\label{eqn:maxwellStokes:101}
\begin{aligned}
\int_V d^3 x \cdot \lr{ \grad \wedge G }
&=
\int_V d^3 x \cdot \lr{ \gamma^\mu \wedge \partial_\mu G } \\
&=
\int_V \lr{ d^3 x \cdot \gamma^\mu } \cdot \partial_\mu G \\
&=
\sum_{\mu \ne 3} \int_V \lr{ d^3 x \cdot \gamma^\mu } \cdot \partial_\mu G.
\end{aligned}

This uses the distibution identity $$A_s \cdot (a \wedge A_r) = (A_s \cdot a) \cdot A_r$$ which holds for blades $$A_s, A_r$$ provided $$s > r > 0$$. Observe that only the component of the gradient that lies in the tangent space of the three volume manifold contributes to the integral, allowing the gradient to be used in the Stokes integral instead of the vector derivative (see: [1]).
Defining the the surface area element

\label{eqn:maxwellStokes:140}
\begin{aligned}
d^2 x
&= \sum_{\mu \ne 3} i \cdot \gamma^\mu \inv{dx^\mu} d^3 x \\
&= \gamma_1 \gamma_2 dx dy
+ c \gamma_2 \gamma_0 dt dy
+ c \gamma_0 \gamma_1 dt dx,
\end{aligned}

Stokes theorem for this volume element is now completely specified

\label{eqn:maxwellStokes:200}
\int_V d^3 x \cdot \lr{ \grad \wedge G }
=
\int_{\partial V} d^2 \cdot G.

Application to the dual Maxwell equation gives

\label{eqn:maxwellStokes:160}
\int_{\partial V} d^2 x \cdot G
= \inv{c \epsilon_0} \int_V d^3 x \cdot (I J).

After some manipulation, this can be restated in the non-dual form

\label{eqn:maxwellStokes:180}
\boxed{
\int_{\partial V} \inv{I} d^2 x \wedge F
= \frac{1}{c \epsilon_0 I} \int_V d^3 x \wedge J.
}

It can be demonstrated that using this with each of the standard basis spacetime 3-volume elements recovers Gauss’s law and the Ampere-Maxwell equation. So, what happened to Faraday’s law and Gauss’s law for magnetism? With application of Stokes to the curl equation from \ref{eqn:maxwellStokes:40}, those equations take the form

\label{eqn:maxwellStokes:240}
\boxed{
\int_{\partial V} d^2 x \cdot F = 0.
}

## Problem 1:

Demonstrate that the Ampere-Maxwell equation and Gauss’s law can be recovered from the trivector (curl) equation \ref{eqn:maxwellStokes:100}.

The curl equation is a trivector on each side, so dotting it with each of the four possible trivectors $$\gamma_0 \gamma_1 \gamma_2, \gamma_0 \gamma_2 \gamma_3, \gamma_0 \gamma_1 \gamma_3, \gamma_1 \gamma_2 \gamma_3$$ will give four different scalar equations. For example, dotting with $$\gamma_0 \gamma_1 \gamma_2$$, we have for the curl side

\label{eqn:maxwellStokes:460}
\begin{aligned}
\lr{ \gamma_0 \gamma_1 \gamma_2 } \cdot \lr{ \gamma^\mu \wedge \partial_\mu G }
&=
\lr{ \lr{ \gamma_0 \gamma_1 \gamma_2 } \cdot \gamma^\mu } \cdot \partial_\mu G \\
&=
(\gamma_0 \gamma_1) \cdot \partial_2 G
+(\gamma_2 \gamma_0) \cdot \partial_1 G
+(\gamma_1 \gamma_2) \cdot \partial_0 G,
\end{aligned}

and for the current side, we have

\label{eqn:maxwellStokes:480}
\begin{aligned}
\inv{\epsilon_0 c} \lr{ \gamma_0 \gamma_1 \gamma_2 } \cdot \lr{ I J }
&=
\inv{\epsilon_0 c} \gpgradezero{ \gamma_0 \gamma_1 \gamma_2 (\gamma_0 \gamma_1 \gamma_2 \gamma_3) J } \\
&=
\inv{\epsilon_0 c} \gpgradezero{ -\gamma_3 J } \\
&=
\inv{\epsilon_0 c} \gamma^3 \cdot J \\
&=
\inv{\epsilon_0 c} J^3,
\end{aligned}

so we have
\label{eqn:maxwellStokes:500}
(\gamma_0 \gamma_1) \cdot \partial_2 G
+(\gamma_2 \gamma_0) \cdot \partial_1 G
+(\gamma_1 \gamma_2) \cdot \partial_0 G
=
\inv{\epsilon_0 c} J^3.

Similarily, dotting with $$\gamma_{013}, \gamma_{023}, and \gamma_{123}$$ respectively yields
\label{eqn:maxwellStokes:620}
\begin{aligned}
\gamma_{01} \cdot \partial_3 G + \gamma_{30} \partial_1 G + \gamma_{13} \partial_0 G &= – \inv{\epsilon_0 c} J^2 \\
\gamma_{02} \cdot \partial_3 G + \gamma_{30} \partial_2 G + \gamma_{23} \partial_0 G &= \inv{\epsilon_0 c} J^1 \\
\gamma_{12} \cdot \partial_3 G + \gamma_{31} \partial_2 G + \gamma_{23} \partial_1 G &= -\inv{\epsilon_0} \rho.
\end{aligned}

Expanding the dual electromagnetic field, first in terms of the spatial vectors, and then in the space time basis, we have
\label{eqn:maxwellStokes:520}
\begin{aligned}
G
&= -I F \\
&= -I \lr{ \BE + I c \BB } \\
&= -I \BE + c \BB. \\
&= -I \BE + c B^k \gamma_k \gamma_0 \\
&= \inv{2} \epsilon^{r s t} \gamma_r \gamma_s E^t + c B^k \gamma_k \gamma_0.
\end{aligned}

So, dotting with a spatial vector will pick up a component of $$\BB$$, we have
\label{eqn:maxwellStokes:540}
\begin{aligned}
\lr{ \gamma_m \wedge \gamma_0 } \cdot \partial_\mu G
&=
\lr{ \gamma_m \wedge \gamma_0 } \cdot \partial_\mu \lr{
\inv{2} \epsilon^{r s t} \gamma_r \gamma_s E^t + c B^k \gamma_k \gamma_0
} \\
&=
c \partial_\mu B^k
\gamma_m \gamma_0 \gamma_k \gamma_0
} \\
&=
c \partial_\mu B^k
\gamma_m \gamma_0 \gamma_0 \gamma^k
} \\
&=
c \partial_\mu B^k
\delta_m^k \\
&=
c \partial_\mu B^m.
\end{aligned}

Written out explicitly the electric field contributions to $$G$$ are

\label{eqn:maxwellStokes:560}
\begin{aligned}
-I \BE
&=
-\gamma_{0123k0} E^k \\
&=
-\gamma_{123k} E^k \\
&=
\left\{
\begin{array}{l l}
\gamma_{12} E^3 & \quad \mbox{$$k = 3$$} \\
\gamma_{31} E^2 & \quad \mbox{$$k = 2$$} \\
\gamma_{23} E^1 & \quad \mbox{$$k = 1$$} \\
\end{array}
\right.,
\end{aligned}

so
\label{eqn:maxwellStokes:580}
\begin{aligned}
\gamma_{23} \cdot G &= -E^1 \\
\gamma_{31} \cdot G &= -E^2 \\
\gamma_{12} \cdot G &= -E^3.
\end{aligned}

We now have the pieces required to expand \ref{eqn:maxwellStokes:500} and \ref{eqn:maxwellStokes:620}, which are respectively

\label{eqn:maxwellStokes:501}
\begin{aligned}
– c \partial_2 B^1 + c \partial_1 B^2 – \partial_0 E^3 &= \inv{\epsilon_0 c} J^3 \\
– c \partial_3 B^1 + c \partial_1 B^3 + \partial_0 E^2 &= -\inv{\epsilon_0 c} J^2 \\
– c \partial_3 B^2 + c \partial_2 B^3 – \partial_0 E^1 &= \inv{\epsilon_0 c} J^1 \\
– \partial_3 E^3 – \partial_2 E^2 – \partial_1 E^1 &= – \inv{\epsilon_0} \rho
\end{aligned}

which are the components of the Ampere-Maxwell equation, and Gauss’s law

\label{eqn:maxwellStokes:600}
\begin{aligned}
\inv{\mu_0} \spacegrad \cross \BB – \epsilon_0 \PD{t}{\BE} &= \BJ \\
\end{aligned}

## Problem 2:

Prove \ref{eqn:maxwellStokes:180}.

The proof just requires the expansion of the dot products using scalar selection

\label{eqn:maxwellStokes:260}
\begin{aligned}
d^2 x \cdot G
&=
\gpgradezero{ d^2 x (-I) F } \\
&=
-\gpgradezero{ I d^2 x F } \\
&=
-I \lr{ d^2 x \wedge F },
\end{aligned}

and
for the three volume dot product

\label{eqn:maxwellStokes:280}
\begin{aligned}
d^3 x \cdot (I J)
&=
d^3 x\, I J
} \\
&=
I d^3 x\, J
} \\
&=
-I \lr{ d^3 x \wedge J }.
\end{aligned}

## Problem 3:

Using each of the four possible spacetime volume elements, write out the components of the Stokes integral
\ref{eqn:maxwellStokes:180}.

The four possible volume and associated area elements are
\label{eqn:maxwellStokes:220}
\begin{aligned}
d^3 x = c \gamma_0 \gamma_1 \gamma_2 dt dx dy & \qquad d^2 x = \gamma_1 \gamma_2 dx dy + c \gamma_2 \gamma_0 dy dt + c \gamma_0 \gamma_1 dt dx \\
d^3 x = c \gamma_0 \gamma_1 \gamma_3 dt dx dz & \qquad d^2 x = \gamma_1 \gamma_3 dx dz + c \gamma_3 \gamma_0 dz dt + c \gamma_0 \gamma_1 dt dx \\
d^3 x = c \gamma_0 \gamma_2 \gamma_3 dt dy dz & \qquad d^2 x = \gamma_2 \gamma_3 dy dz + c \gamma_3 \gamma_0 dz dt + c \gamma_0 \gamma_2 dt dy \\
d^3 x = \gamma_1 \gamma_2 \gamma_3 dx dy dz & \qquad d^2 x = \gamma_1 \gamma_2 dx dy + \gamma_2 \gamma_3 dy dz + c \gamma_3 \gamma_1 dz dx \\
\end{aligned}

Wedging the area element with $$F$$ will produce pseudoscalar multiples of the various $$\BE$$ and $$\BB$$ components, but a recipe for these components is required.

First note that for $$k \ne 0$$, the wedge $$\gamma_k \wedge \gamma_0 \wedge F$$ will just select components of $$\BB$$. This can be seen first by simplifying

\label{eqn:maxwellStokes:300}
\begin{aligned}
I \BB
&=
\gamma_{0 1 2 3} B^m \gamma_{m 0} \\
&=
\left\{
\begin{array}{l l}
\gamma_{3 2} B^1 & \quad \mbox{$$m = 1$$} \\
\gamma_{1 3} B^2 & \quad \mbox{$$m = 2$$} \\
\gamma_{2 1} B^3 & \quad \mbox{$$m = 3$$}
\end{array}
\right.,
\end{aligned}

or

\label{eqn:maxwellStokes:320}
I \BB = – \epsilon_{a b c} \gamma_{a b} B^c.

From this it follows that

\label{eqn:maxwellStokes:340}
\gamma_k \wedge \gamma_0 \wedge F = I c B^k.

The electric field components are easier to pick out. Those are selected by

\label{eqn:maxwellStokes:360}
\begin{aligned}
\gamma_m \wedge \gamma_n \wedge F
&= \gamma_m \wedge \gamma_n \wedge \gamma_k \wedge \gamma_0 E^k \\
&= -I E^k \epsilon_{m n k}.
\end{aligned}

The respective volume element wedge products with $$J$$ are

\label{eqn:maxwellStokes:400}
\begin{aligned}
\inv{I} d^3 x \wedge J = \inv{c \epsilon_0} J^3
\inv{I} d^3 x \wedge J = \inv{c \epsilon_0} J^2
\inv{I} d^3 x \wedge J = \inv{c \epsilon_0} J^1,
\end{aligned}

and the respective sum of surface area elements wedged with the electromagnetic field are

\label{eqn:maxwellStokes:380}
\begin{aligned}
\inv{I} d^2 x \wedge F &= – \evalbar{E^3}{c \Delta t} dx dy + c \lr{ \evalbar{B^2}{\Delta x} dy – \evalbar{B^1}{\Delta y} dx } dt \\
\inv{I} d^2 x \wedge F &= \evalbar{E^2}{c \Delta t} dx dz + c \lr{ \evalbar{B^3}{\Delta x} dz – \evalbar{B^1}{\Delta z} dx } dt \\
\inv{I} d^2 x \wedge F &= – \evalbar{E^1}{c \Delta t} dy dz + c \lr{ \evalbar{B^3}{\Delta y} dz – \evalbar{B^2}{\Delta z} dy } dt \\
\inv{I} d^2 x \wedge F &= – \evalbar{E^3}{\Delta z} dy dx – \evalbar{E^2}{\Delta y} dx dz – \evalbar{E^1}{\Delta x} dz dy,
\end{aligned}

so
\label{eqn:maxwellStokes:381}
\begin{aligned}
\int_{\partial V} – \evalbar{E^3}{c \Delta t} dx dy + c \lr{ \evalbar{B^2}{\Delta x} dy – \evalbar{B^1}{\Delta y} dx } dt &=
c \int_V dx dy dt \inv{c \epsilon_0} J^3 \\
\int_{\partial V} \evalbar{E^2}{c \Delta t} dx dz + c \lr{ \evalbar{B^3}{\Delta x} dz – \evalbar{B^1}{\Delta z} dx } dt &=
-c \int_V dx dy dt \inv{c \epsilon_0} J^2 \\
\int_{\partial V} – \evalbar{E^1}{c \Delta t} dy dz + c \lr{ \evalbar{B^3}{\Delta y} dz – \evalbar{B^2}{\Delta z} dy } dt &=
c \int_V dx dy dt \inv{c \epsilon_0} J^1 \\
\int_{\partial V} – \evalbar{E^3}{\Delta z} dy dx – \evalbar{E^2}{\Delta y} dx dz – \evalbar{E^1}{\Delta x} dz dy &=
-\int_V dx dy dz \inv{\epsilon_0} \rho.
\end{aligned}

Observe that if the volume elements are taken to their infinesimal limits, we recover the traditional differential forms of the Ampere-Maxwell and Gauss’s law equations.

# References

[1] A. Macdonald. Vector and Geometric Calculus. CreateSpace Independent Publishing Platform, 2012.

## Maxwell’s equations in tensor form with magnetic sources

Following the principle that one should always relate new formalisms to things previously learned, I’d like to know what Maxwell’s equations look like in tensor form when magnetic sources are included. As a verification that the previous Geometric Algebra form of Maxwell’s equation that includes magnetic sources is correct, I’ll start with the GA form of Maxwell’s equation, find the tensor form, and then verify that the vector form of Maxwell’s equations can be recovered from the tensor form.

### Tensor form

With four-vector potential $$A$$, and bivector electromagnetic field $$F = \grad \wedge A$$, the GA form of Maxwell’s equation is

\label{eqn:gaMagneticSourcesToTensorToVector:20}
\grad F = \frac{J}{\epsilon_0 c} + M I.

The left hand side can be unpacked into vector and trivector terms $$\grad F = \grad \cdot F + \grad \wedge F$$, which happens to also separate the sources nicely as a side effect

\label{eqn:gaMagneticSourcesToTensorToVector:60}
\grad \cdot F = \frac{J}{\epsilon_0 c}

\label{eqn:gaMagneticSourcesToTensorToVector:80}
\grad \wedge F = M I.

The electric source equation can be unpacked into tensor form by dotting with the four vector basis vectors. With the usual definition $$F^{\alpha \beta} = \partial^\alpha A^\beta – \partial^\beta A^\alpha$$, that is

\label{eqn:gaMagneticSourcesToTensorToVector:100}
\begin{aligned}
\gamma^\mu \cdot \lr{ \grad \cdot F }
&=
\gamma^\mu \cdot \lr{ \grad \cdot \lr{ \grad \wedge A } } \\
&=
\gamma^\mu \cdot \lr{ \gamma^\nu \partial_\nu \cdot
\lr{ \gamma_\alpha \partial^\alpha \wedge \gamma_\beta A^\beta } } \\
&=
\gamma^\mu \cdot \lr{ \gamma^\nu \cdot \lr{ \gamma_\alpha \wedge \gamma_\beta
} } \partial_\nu \partial^\alpha A^\beta \\
&=
\inv{2}
\gamma^\mu \cdot \lr{ \gamma^\nu \cdot \lr{ \gamma_\alpha \wedge \gamma_\beta } }
\partial_\nu F^{\alpha \beta} \\
&=
\inv{2} \delta^{\nu \mu}_{[\alpha \beta]} \partial_\nu F^{\alpha \beta} \\
&=
\inv{2} \partial_\nu F^{\nu \mu}

\inv{2} \partial_\nu F^{\mu \nu} \\
&=
\partial_\nu F^{\nu \mu}.
\end{aligned}

So the first tensor equation is

\label{eqn:gaMagneticSourcesToTensorToVector:120}
\boxed{
\partial_\nu F^{\nu \mu} = \inv{c \epsilon_0} J^\mu.
}

To unpack the magnetic source portion of Maxwell’s equation, put it first into dual form, so that it has four vectors on each side

\label{eqn:gaMagneticSourcesToTensorToVector:140}
\begin{aligned}
M
&= – \lr{ \grad \wedge F} I \\
&= -\frac{1}{2} \lr{ \grad F I – F I \grad } \\
&= – \grad \cdot \lr{ F I }.
\end{aligned}

Dotting with $$\gamma^\mu$$ gives

\label{eqn:gaMagneticSourcesToTensorToVector:160}
\begin{aligned}
M^\mu
&= \gamma^\mu \cdot \lr{ \grad \cdot \lr{ – F I } } \\
&= \gamma^\mu \cdot \lr{ \gamma^\nu \partial_\nu \cdot \lr{ -\frac{1}{2}
\gamma^\alpha \wedge \gamma^\beta I F_{\alpha \beta} } } \\
&= -\inv{2}
\gamma^\mu \cdot \lr{ \gamma^\nu \cdot \lr{ \gamma^\alpha \wedge \gamma^\beta I } }
}
\partial_\nu F_{\alpha \beta}.
\end{aligned}

This scalar grade selection is a complete antisymmetrization of the indexes

\label{eqn:gaMagneticSourcesToTensorToVector:180}
\begin{aligned}
\gamma^\mu \cdot \lr{ \gamma^\nu \cdot \lr{ \gamma^\alpha \wedge \gamma^\beta I } }
}
&=
\gamma^\mu \cdot \lr{ \gamma^\nu \cdot \lr{
\gamma^\alpha \gamma^\beta
\gamma_0 \gamma_1 \gamma_2 \gamma_3
} }
} \\
&=
\gamma_0 \gamma_1 \gamma_2 \gamma_3
\gamma^\mu \gamma^\nu \gamma^\alpha \gamma^\beta
} \\
&=
\delta^{\mu \nu \alpha \beta}_{3 2 1 0} \\
&=
\epsilon^{\mu \nu \alpha \beta },
\end{aligned}

so the magnetic source portion of Maxwell’s equation, in tensor form, is

\label{eqn:gaMagneticSourcesToTensorToVector:200}
\boxed{
\inv{2} \epsilon^{\nu \alpha \beta \mu}
\partial_\nu F_{\alpha \beta}
=
M^\mu.
}

### Relating the tensor to the fields

The electromagnetic field has been identified with the electric and magnetic fields by

\label{eqn:gaMagneticSourcesToTensorToVector:220}
F = \boldsymbol{\mathcal{E}} + c \mu_0 \boldsymbol{\mathcal{H}} I ,

or in coordinates

\label{eqn:gaMagneticSourcesToTensorToVector:240}
\inv{2} \gamma_\mu \wedge \gamma_\nu F^{\mu \nu}
= E^a \gamma_a \gamma_0 + c \mu_0 H^a \gamma_a \gamma_0 I.

By forming the dot product sequence $$F^{\alpha \beta} = \gamma^\beta \cdot \lr{ \gamma^\alpha \cdot F }$$, the electric and magnetic field components can be related to the tensor components. The electric field components follow by inspection and are

\label{eqn:gaMagneticSourcesToTensorToVector:260}
E^b = \gamma^0 \cdot \lr{ \gamma^b \cdot F } = F^{b 0}.

The magnetic field relation to the tensor components follow from

\label{eqn:gaMagneticSourcesToTensorToVector:280}
\begin{aligned}
F^{r s}
&= F_{r s} \\
&= \gamma_s \cdot \lr{ \gamma_r \cdot \lr{ c \mu_0 H^a \gamma_a \gamma_0 I
} } \\
&=
c \mu_0 H^a \gpgradezero{ \gamma_s \gamma_r \gamma_a \gamma_0 I } \\
&=
c \mu_0 H^a \gpgradezero{ -\gamma^0 \gamma^1 \gamma^2 \gamma^3
\gamma_s \gamma_r \gamma_a \gamma_0 } \\
&=
c \mu_0 H^a \gpgradezero{ -\gamma^1 \gamma^2 \gamma^3
\gamma_s \gamma_r \gamma_a } \\
&=
– c \mu_0 H^a \delta^{[3 2 1]}_{s r a} \\
&=
c \mu_0 H^a \epsilon_{ s r a }.
\end{aligned}

Expanding this for each pair of spacelike coordinates gives

\label{eqn:gaMagneticSourcesToTensorToVector:320}
F^{1 2} = c \mu_0 H^3 \epsilon_{ 2 1 3 } = – c \mu_0 H^3

\label{eqn:gaMagneticSourcesToTensorToVector:340}
F^{2 3} = c \mu_0 H^1 \epsilon_{ 3 2 1 } = – c \mu_0 H^1

\label{eqn:gaMagneticSourcesToTensorToVector:360}
F^{3 1} = c \mu_0 H^2 \epsilon_{ 1 3 2 } = – c \mu_0 H^2,

or

\label{eqn:gaMagneticSourcesToTensorToVector:380}
\boxed{
\begin{aligned}
E^1 &= F^{1 0} \\
E^2 &= F^{2 0} \\
E^3 &= F^{3 0} \\
H^1 &= -\inv{c \mu_0} F^{2 3} \\
H^2 &= -\inv{c \mu_0} F^{3 1} \\
H^3 &= -\inv{c \mu_0} F^{1 2}.
\end{aligned}
}

### Recover the vector equations from the tensor equations

Starting with the non-dual Maxwell tensor equation, expanding the timelike index gives

\label{eqn:gaMagneticSourcesToTensorToVector:480}
\begin{aligned}
\inv{c \epsilon_0} J^0
&= \inv{\epsilon_0} \rho \\
&=
\partial_\nu F^{\nu 0} \\
&=
\partial_1 F^{1 0}
+\partial_2 F^{2 0}
+\partial_3 F^{3 0}
\end{aligned}

This is Gauss’s law

\label{eqn:gaMagneticSourcesToTensorToVector:500}
\boxed{
=
\rho/\epsilon_0.
}

For a spacelike index, any one is representive. Expanding index 1 gives

\label{eqn:gaMagneticSourcesToTensorToVector:520}
\begin{aligned}
\inv{c \epsilon_0} J^1
&= \partial_\nu F^{\nu 1} \\
&= \inv{c} \partial_t F^{0 1}
+ \partial_2 F^{2 1}
+ \partial_3 F^{3 1} \\
&= -\inv{c} E^1
+ \partial_2 (c \mu_0 H^3)
+ \partial_3 (-c \mu_0 H^2) \\
&=
\lr{ -\inv{c} \PD{t}{\boldsymbol{\mathcal{E}}} + c \mu_0 \spacegrad \cross \boldsymbol{\mathcal{H}} } \cdot \Be_1.
\end{aligned}

Extending this to the other indexes and multiplying through by $$\epsilon_0 c$$ recovers the Ampere-Maxwell equation (assuming linear media)

\label{eqn:gaMagneticSourcesToTensorToVector:540}
\boxed{
\spacegrad \cross \boldsymbol{\mathcal{H}} = \boldsymbol{\mathcal{J}} + \PD{t}{\boldsymbol{\mathcal{D}}}.
}

The expansion of the 0th free (timelike) index of the dual Maxwell tensor equation is

\label{eqn:gaMagneticSourcesToTensorToVector:400}
\begin{aligned}
M^0
&=
\inv{2} \epsilon^{\nu \alpha \beta 0}
\partial_\nu F_{\alpha \beta} \\
&=
-\inv{2} \epsilon^{0 \nu \alpha \beta}
\partial_\nu F_{\alpha \beta} \\
&=
-\inv{2}
\lr{
\partial_1 (F_{2 3} – F_{3 2})
+\partial_2 (F_{3 1} – F_{1 3})
+\partial_3 (F_{1 2} – F_{2 1})
} \\
&=

\lr{
\partial_1 F_{2 3}
+\partial_2 F_{3 1}
+\partial_3 F_{1 2}
} \\
&=

\lr{
\partial_1 (- c \mu_0 H^1 ) +
\partial_2 (- c \mu_0 H^2 ) +
\partial_3 (- c \mu_0 H^3 )
},
\end{aligned}

but $$M^0 = c \rho_m$$, giving us Gauss’s law for magnetism (with magnetic charge density included)

\label{eqn:gaMagneticSourcesToTensorToVector:420}
\boxed{
}

For the spacelike indexes of the dual Maxwell equation, only one need be computed (say 1), and cyclic permutation will provide the rest. That is

\label{eqn:gaMagneticSourcesToTensorToVector:440}
\begin{aligned}
M^1
&= \inv{2} \epsilon^{\nu \alpha \beta 1} \partial_\nu F_{\alpha \beta} \\
&=
\inv{2} \lr{ \partial_2 \lr{F_{3 0} – F_{0 3}} }
+\inv{2} \lr{ \partial_3 \lr{F_{0 2} – F_{0 2}} }
+\inv{2} \lr{ \partial_0 \lr{F_{2 3} – F_{3 2}} } \\
&=
– \partial_2 F^{3 0}
+ \partial_3 F^{2 0}
+ \partial_0 F_{2 3} \\
&=
-\partial_2 E^3 + \partial_3 E^2 + \inv{c} \PD{t}{} \lr{ – c \mu_0 H^1 } \\
&= – \lr{ \spacegrad \cross \boldsymbol{\mathcal{E}} + \mu_0 \PD{t}{\boldsymbol{\mathcal{H}}} } \cdot \Be_1.
\end{aligned}

Extending this to the rest of the coordinates gives the Maxwell-Faraday equation (as extended to include magnetic current density sources)

\label{eqn:gaMagneticSourcesToTensorToVector:460}
\boxed{
\spacegrad \cross \boldsymbol{\mathcal{E}} = -\boldsymbol{\mathcal{M}} – \mu_0 \PD{t}{\boldsymbol{\mathcal{H}}}.
}

This takes things full circle, going from the vector differential Maxwell’s equations, to the Geometric Algebra form of Maxwell’s equation, to Maxwell’s equations in tensor form, and back to the vector form. Not only is the tensor form of Maxwell’s equations with magnetic sources now known, the translation from the tensor and vector formalism has also been verified, and miraculously no signs or factors of 2 were lost or gained in the process.