commutator

Lagrangian for the Lorentz force equation.

October 24, 2020 math and physics play , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

Motivation.

In my old classical mechanics notes it appears that I did covariant derivations of the Lorentz force equations a number of times, using different trial Lagrangians (relativistic and non-relativistic), and using both geometric algebra and tensor methods. However, none of these appear to have been done concisely, and a number not even coherently.

The following document has been drafted as replacement text for those incoherent classical mechanics notes. I’ll attempt to cover

  • a lighting review of the geometric algebra STA (Space Time Algebra),
  • relations between Dirac matrix algebra and STA,
  • derivation of the relativistic form of the Euler-Lagrange equations from the covariant form of the action,
  • relationship of the STA form of the Euler-Lagrange equations to their tensor equivalents,
  • derivation of the Lorentz force equation from the STA Lorentz force Lagrangian,
  • relationship of the STA Lorentz force equation to its equivalent in the tensor formalism,
  • relationship of the STA Lorentz force equation to the traditional vector form.

Note that some of the prerequisite ideas and auxiliary details are presented as problems with solutions. If the reader has sufficient background to attempt those problems themselves, they are encouraged to do so.

The STA and geometric algebra ideas used here are not complete to learn from in isolation. The reader is referred to [1] for a more complete exposition of both STA and geometric algebra.

Conventions.

Definition 1.1: Index conventions.

Latin indexes \( i, j, k, r, s, t, \cdots \) are used to designate values in the range \( \setlr{ 1,2,3 } \). Greek indexes are \( \alpha, \beta, \mu, \nu, \cdots \) are used for indexes of spacetime quantities \( \setlr{0,1,2,3} \).
The Einstein convention of implied summation for mixed upper and lower Greek indexes will be used, for example
\begin{equation*}
x^\alpha x_\alpha \equiv \sum_{\alpha = 0}^3 x^\alpha x_\alpha.
\end{equation*}

Space Time Algebra (STA.)

In the geometric algebra literature, the Dirac algebra of quantum field theory has been rebranded Space Time Algebra (STA). The differences between STA and the Dirac theory that uses matrices (\( \gamma_\mu \)) are as follows

  • STA completely omits any representation of the Dirac basis vectors \( \gamma_\mu \). In particular, any possible matrix representation is irrelevant.
  • STA provides a rich set of fundamental operations (grade selection, generalized dot and wedge products for multivector elements, rotation and reflection operations, …)
  • Matrix trace, and commutator and anticommutator operations are nowhere to be found in STA, as geometrically grounded equivalents are available instead.
  • The “slashed” quantities from Dirac theory, such as \( \gamma_\mu p^\mu \) are nothing more than vectors in their entirety in STA (where the basis is no longer implicit, as is the case for coordinates.)

Our basis vectors have the following properties.

Definition 1.2: Standard basis.

Let the four-vector standard basis be designated \( \setlr{\gamma_0, \gamma_1, \gamma_2, \gamma_3 } \), where the basis vectors satisfy
\begin{equation}\label{eqn:lorentzForceCovariant:1540}
\begin{aligned}
\gamma_0^2 &= -\gamma_i^2 = 1 \\
\gamma_\alpha \cdot \gamma_\beta &= 0, \forall \alpha \ne \beta.
\end{aligned}
\end{equation}

Problem: Commutator properties of the STA basis.

In Dirac theory, the commutator properties of the Dirac matrices is considered fundamental, namely
\begin{equation*}
\symmetric{\gamma_\mu}{\gamma_\nu} = 2 \eta_{\mu\nu}.
\end{equation*}

Show that this follows from the axiomatic assumptions of geometric algebra, and describe how the dot and wedge products are related to the anticommutator and commutator products of Dirac theory.

Answer

The anticommutator is defined as symmetric sum of products
\begin{equation}\label{eqn:lorentzForceCovariant:1040}
\symmetric{\gamma_\mu}{\gamma_\nu}
\equiv
\gamma_\mu \gamma_\nu
+
\gamma_\nu \gamma_\mu,
\end{equation}
but this is just twice the dot product in its geometric algebra form \( a b = (a b + ba)/2 \). Observe that the properties of the basis vectors defined in \ref{eqn:lorentzForceCovariant:1540} may be summarized as
\begin{equation}\label{eqn:lorentzForceCovariant:1060}
\gamma_\mu \cdot \gamma_\nu = \eta_{\mu\nu},
\end{equation}
where \( \eta_{\mu\nu} = \text{diag}(+,-,-,-)
=
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \\
\end{bmatrix}
\) is the conventional metric tensor. This means
\begin{equation}\label{eqn:lorentzForceCovariant:1080}
\gamma_\mu \cdot \gamma_\nu = \eta_{\mu\nu} = 2 \symmetric{\gamma_\mu}{\gamma_\nu},
\end{equation}
as claimed.

Similarly, observe that the commutator, defined as the antisymmetric sum of products
\begin{equation}\label{eqn:lorentzForceCovariant:1100}
\antisymmetric{\gamma_\mu}{\gamma_\nu} \equiv
\gamma_\mu \gamma_\nu

\gamma_\nu \gamma_\mu,
\end{equation}
is twice the wedge product \( a \wedge b = (a b – b a)/2 \). This provides geometric identifications for the respective anti-commutator and commutator products respectively
\begin{equation}\label{eqn:lorentzForceCovariant:1120}
\begin{aligned}
\symmetric{\gamma_\mu}{\gamma_\nu} &= 2 \gamma_\mu \cdot \gamma_\nu \\
\antisymmetric{\gamma_\mu}{\gamma_\nu} &= 2 \gamma_\mu \wedge \gamma_\nu,
\end{aligned}
\end{equation}

Definition 1.3: Pseudoscalar.

The pseudoscalar for the space is denoted \( I = \gamma_0 \gamma_1 \gamma_2 \gamma_3 \).

Problem: Pseudoscalar.

Show that the STA pseudoscalar \( I \) defined by \ref{eqn:lorentzForceCovariant:1540} satisfies
\begin{equation*}
\tilde{I} = I,
\end{equation*}
where the tilde operator designates reversion. Also show that \( I \) has the properties of an imaginary number
\begin{equation*}
I^2 = -1.
\end{equation*}
Finally, show that, unlike the spatial pseudoscalar that commutes with all grades, \( I \) anticommutes with any vector or trivector, and commutes with any bivector.

Answer

Since \( \gamma_\alpha \gamma_\beta = -\gamma_\beta \gamma_\alpha \) for any \( \alpha \ne \beta \), any permutation of the factors of \( I \) changes the sign once. In particular
\begin{equation}\label{eqn:lorentzForceCovariant:680}
\begin{aligned}
I &=
\gamma_0
\gamma_1
\gamma_2
\gamma_3 \\
&=

\gamma_1
\gamma_2
\gamma_3
\gamma_0 \\
&=

\gamma_2
\gamma_3
\gamma_1
\gamma_0 \\
&=
+
\gamma_3
\gamma_2
\gamma_1
\gamma_0
= \tilde{I}.
\end{aligned}
\end{equation}
Using this, we have
\begin{equation}\label{eqn:lorentzForceCovariant:700}
\begin{aligned}
I^2
&= I \tilde{I} \\
&=
(
\gamma_0
\gamma_1
\gamma_2
\gamma_3
)(
\gamma_3
\gamma_2
\gamma_1
\gamma_0
) \\
&=
\lr{\gamma_0}^2
\lr{\gamma_1}^2
\lr{\gamma_2}^2
\lr{\gamma_3}^2 \\
&=
(+1)
(-1)
(-1)
(-1) \\
&= -1.
\end{aligned}
\end{equation}
To illustrate the anticommutation property with any vector basis element, consider the following two examples:
\begin{equation}\label{eqn:lorentzForceCovariant:720}
\begin{aligned}
I \gamma_0 &=
\gamma_0
\gamma_1
\gamma_2
\gamma_3
\gamma_0 \\
&=

\gamma_0
\gamma_0
\gamma_1
\gamma_2
\gamma_3 \\
&=

\gamma_0 I,
\end{aligned}
\end{equation}
\begin{equation}\label{eqn:lorentzForceCovariant:740}
\begin{aligned}
I \gamma_2
&=
\gamma_0
\gamma_1
\gamma_2
\gamma_3
\gamma_2 \\
&=

\gamma_0
\gamma_1
\gamma_2
\gamma_2
\gamma_3 \\
&=

\gamma_2
\gamma_0
\gamma_1
\gamma_2
\gamma_3 \\
&= -\gamma_2 I.
\end{aligned}
\end{equation}
A total of three sign swaps is required to “percolate” any given \(\gamma_\alpha\) through the factors of \( I \), resulting in an overall sign change of \( -1 \).

For any bivector basis element \( \alpha \ne \beta \)
\begin{equation}\label{eqn:lorentzForceCovariant:760}
\begin{aligned}
I \gamma_\alpha \gamma_\beta
&=
-\gamma_\alpha I \gamma_\beta \\
&=
+\gamma_\alpha \gamma_\beta I.
\end{aligned}
\end{equation}

Similarly for any trivector basis element \( \alpha \ne \beta \ne \sigma \)
\begin{equation}\label{eqn:lorentzForceCovariant:780}
\begin{aligned}
I \gamma_\alpha \gamma_\beta \gamma_\sigma
&=
-\gamma_\alpha I \gamma_\beta \gamma_\sigma \\
&=
+\gamma_\alpha \gamma_\beta I \gamma_\sigma \\
&=
-\gamma_\alpha \gamma_\beta \gamma_\sigma I.
\end{aligned}
\end{equation}

Definition 1.4: Reciprocal basis.

The reciprocal basis \( \setlr{ \gamma^0, \gamma^1, \gamma^2, \gamma^3 } \) is defined , such that the property \( \gamma^\alpha \cdot \gamma_\beta = {\delta^\alpha}_\beta \) holds.

Observe that, \( \gamma^0 = \gamma_0 \) and \( \gamma^i = -\gamma_i \).

Theorem 1.1: Coordinates.

Coordinates are defined in terms of dot products with the standard basis, or reciprocal basis
\begin{equation*}
\begin{aligned}
x^\alpha &= x \cdot \gamma^\alpha \\
x_\alpha &= x \cdot \gamma_\alpha,
\end{aligned}
\end{equation*}

Start proof:

Suppose that a coordinate representation of the following form is assumed
\begin{equation}\label{eqn:lorentzForceCovariant:820}
x = x^\alpha \gamma_\alpha = x_\beta \gamma^\beta.
\end{equation}
We wish to determine the representation of the \( x^\alpha \) or \( x_\beta \) coordinates in terms of \( x\) and the basis elements. Taking the dot product with any standard basis element, we find
\begin{equation}\label{eqn:lorentzForceCovariant:840}
\begin{aligned}
x \cdot \gamma_\mu
&= (x_\beta \gamma^\beta) \cdot \gamma_\mu \\
&= x_\beta {\delta^\beta}_\mu \\
&= x_\mu,
\end{aligned}
\end{equation}
as claimed. Similarly, dotting with a reciprocal frame vector, we find
\begin{equation}\label{eqn:lorentzForceCovariant:860}
\begin{aligned}
x \cdot \gamma^\mu
&= (x^\beta \gamma_\beta) \cdot \gamma^\mu \\
&= x^\beta {\delta_\beta}^\mu \\
&= x^\mu.
\end{aligned}
\end{equation}

End proof.

Observe that raising or lowering the index of a spatial index toggles the sign of a coordinate, but timelike indexes are left unchanged.
\begin{equation}\label{eqn:lorentzForceCovariant:880}
\begin{aligned}
x^0 &= x_0 \\
x^i &= -x_i \\
\end{aligned}
\end{equation}

Definition 1.5: Spacetime gradient.

The spacetime gradient operator is
\begin{equation*}
\grad = \gamma^\mu \partial_\mu = \gamma_\nu \partial^\nu,
\end{equation*}
where
\begin{equation*}
\partial_\mu = \PD{x^\mu}{},
\end{equation*}
and
\begin{equation*}
\partial^\mu = \PD{x_\mu}{}.
\end{equation*}

This definition of gradient is consistent with the Dirac gradient (sometimes denoted as a slashed \(\partial\)).

Definition 1.6: Timelike and spacelike components of a four-vector.

Given a four vector \( x = \gamma_\mu x^\mu \), that would be designated \( x^\mu = \setlr{ x^0, \Bx} \) in conventional special relativity, we write
\begin{equation*}
x^0 = x \cdot \gamma_0,
\end{equation*}
and
\begin{equation*}
\Bx = x \wedge \gamma_0,
\end{equation*}
or
\begin{equation*}
x = (x^0 + \Bx) \gamma_0.
\end{equation*}

The spacetime split of a four-vector \( x \) is relative to the frame. In the relativistic lingo, one would say that it is “observer dependent”, as the same operations with \( {\gamma_0}’ \), the timelike basis vector for a different frame, would yield a different set of coordinates.

While the dot and wedge products above provide an effective mechanism to split a four vector into a set of timelike and spacelike quantities, the spatial component of a vector has a bivector representation in STA. Consider the following coordinate expansion of a spatial vector
\begin{equation}\label{eqn:lorentzForceCovariant:1000}
\Bx =
x \wedge \gamma_0
=
\lr{ x^\mu \gamma_\mu } \wedge \gamma_0
=
\sum_{k = 1}^3 x^k \gamma_k \gamma_0.
\end{equation}

Definition 1.7: Spatial basis.

We designate
\begin{equation}\label{eqn:lorentzForceCovariant:1560}
\Be_i = \gamma_i \gamma_0,
\end{equation}
as the standard basis vectors for \(\mathbb{R}^3\).

In the literature, this bivector representation of the spatial basis may be designated \( \sigma_i = \gamma_i \gamma_0 \), as these bivectors have the properties of the Pauli matrices \( \sigma_i \). Because I intend to expand these notes to include purely non-relativistic applications, I won’t use the Pauli notation here.

Problem: Orthonormality of the spatial basis.

Show that the spatial basis \( \setlr{ \Be_1, \Be_2, \Be_3 } \), defined by \ref{eqn:lorentzForceCovariant:1560}, is orthonormal.

Answer

\begin{equation}\label{eqn:lorentzForceCovariant:620}
\begin{aligned}
\Be_i \cdot \Be_j
&= \gpgradezero{ \gamma_i \gamma_0 \gamma_j \gamma_0 } \\
&= -\gpgradezero{ \gamma_i \gamma_j } \\
&= – \gamma_i \cdot \gamma_j.
\end{aligned}
\end{equation}
This is zero for all \( i \ne j \), and unity for any \( i = j \).

Problem: Spatial pseudoscalar.

Show that the STA pseudoscalar \( I = \gamma_0 \gamma_1 \gamma_2 \gamma_3 \) equals the spatial pseudoscalar \( I = \Be_1 \Be_2 \Be_3 \).

Answer

The spatial pseudoscalar, expanded in terms of the STA basis vectors, is
\begin{equation}\label{eqn:lorentzForceCovariant:1020}
\begin{aligned}
I
&= \Be_1 \Be_2 \Be_3 \\
&= \lr{ \gamma_1 \gamma_0 }
\lr{ \gamma_2 \gamma_0 }
\lr{ \gamma_3 \gamma_0 } \\
&= \lr{ \gamma_1 \gamma_0 } \gamma_2 \lr{ \gamma_0 \gamma_3 } \gamma_0 \\
&= \lr{ -\gamma_0 \gamma_1 } \gamma_2 \lr{ -\gamma_3 \gamma_0 } \gamma_0 \\
&= \gamma_0 \gamma_1 \gamma_2 \gamma_3 \lr{ \gamma_0 \gamma_0 } \\
&= \gamma_0 \gamma_1 \gamma_2 \gamma_3,
\end{aligned}
\end{equation}
as claimed.

Problem: Characteristics of the Pauli matrices.

The Pauli matrices obey the following anticommutation relations:
\begin{equation}\label{eqn:lorentzForceCovariant:660}
\symmetric{ \sigma_a}{\sigma_b } = 2 \delta_{a b},
\end{equation}
and commutation relations:
\begin{equation}\label{eqn:lorentzForceCovariant:640}
\antisymmetric{ \sigma_a}{ \sigma_b } = 2 i \epsilon_{a b c}\,\sigma_c,
\end{equation}
Show how these relate to the geometric algebra dot and wedge products, and determine the geometric algebra representation of the imaginary \( i \) above.

Euler-Lagrange equations.

I’ll start at ground zero, with the derivation of the relativistic form of the Euler-Lagrange equations from the action. A relativistic action for a single particle system has the form
\begin{equation}\label{eqn:lorentzForceCovariant:20}
S = \int d\tau L(x, \dot{x}),
\end{equation}
where \( x \) is the spacetime coordinate, \( \dot{x} = dx/d\tau \) is the four-velocity, and \( \tau \) is proper time.

Theorem 1.2: Relativistic Euler-Lagrange equations.

Let \( x \rightarrow x + \delta x \) be any variation of the Lagrangian four-vector coordinates, where \( \delta x = 0 \) at the boundaries of the action integral. The variation of the action is
\begin{equation}\label{eqn:lorentzForceCovariant:1580}
\delta S = \int d\tau \delta x \cdot \delta L(x, \dot{x}),
\end{equation}
where
\begin{equation}\label{eqn:lorentzForceCovariant:1600}
\delta L = \grad L – \frac{d}{d\tau} (\grad_v L),
\end{equation}
where \( \grad = \gamma^\mu \partial_\mu \), and where we construct a similar velocity-gradient with respect to the proper-time derivatives of the coordinates \( \grad_v = \gamma^\mu \partial/\partial \dot{x}^\mu \).The action is extremized when \( \delta S = 0 \), or when \( \delta L = 0 \). This latter condition is called the Euler-Lagrange equations.

Start proof:

Let \( \epsilon = \delta x \), and expand the Lagrangian in Taylor series to first order
\begin{equation}\label{eqn:lorentzForceCovariant:60}
\begin{aligned}
S &\rightarrow S + \delta S \\
&= \int d\tau L( x + \epsilon, \dot{x} + \dot{\epsilon})
&=
\int d\tau \lr{
L(x, \dot{x}) + \epsilon \cdot \grad L + \dot{\epsilon} \cdot \grad_v L
}.
\end{aligned}
\end{equation}
Subtracting off \( S \) and integrating by parts, leaves
\begin{equation}\label{eqn:lorentzForceCovariant:80}
\delta S =
\int d\tau \epsilon \cdot \lr{
\grad L – \frac{d}{d\tau} \grad_v L
}
+
\int d\tau \frac{d}{d\tau} (\grad_v L ) \cdot \epsilon.
\end{equation}
The boundary integral
\begin{equation}\label{eqn:lorentzForceCovariant:100}
\int d\tau \frac{d}{d\tau} (\grad_v L ) \cdot \epsilon
=
\evalbar{(\grad_v L ) \cdot \epsilon}{\Delta \tau} = 0,
\end{equation}
is zero since the variation \( \epsilon \) is required to vanish on the boundaries. So, if \( \delta S = 0 \), we must have
\begin{equation}\label{eqn:lorentzForceCovariant:120}
0 =
\int d\tau \epsilon \cdot \lr{
\grad L – \frac{d}{d\tau} \grad_v L
},
\end{equation}
for all variations \( \epsilon \). Clearly, this requires that
\begin{equation}\label{eqn:lorentzForceCovariant:140}
\delta L = \grad L – \frac{d}{d\tau} (\grad_v L) = 0,
\end{equation}
or
\begin{equation}\label{eqn:lorentzForceCovariant:145}
\grad L = \frac{d}{d\tau} (\grad_v L),
\end{equation}
which is the coordinate free statement of the Euler-Lagrange equations.

End proof.

Problem: Coordinate form of the Euler-Lagrange equations.

Working in coordinates, use the action argument show that the Euler-Lagrange equations have the form
\begin{equation*}
\PD{x^\mu}{L} = \frac{d}{d\tau} \PD{\dot{x}^\mu}{L}
\end{equation*}
Observe that this is identical to the statement of \ref{eqn:lorentzForceCovariant:1600} after contraction with \( \gamma^\mu \).

Answer

In terms of coordinates, the first order Taylor expansion of the action is
\begin{equation}\label{eqn:lorentzForceCovariant:180}
\begin{aligned}
S &\rightarrow S + \delta S \\
&= \int d\tau L( x^\alpha + \epsilon^\alpha, \dot{x}^\alpha + \dot{\epsilon}^\alpha) \\
&=
\int d\tau \lr{
L(x^\alpha, \dot{x}^\alpha) + \epsilon^\mu \PD{x^\mu}{L} + \dot{\epsilon}^\mu \PD{\dot{x}^\mu}{L}
}.
\end{aligned}
\end{equation}
As before, we integrate by parts to separate out a pure boundary term
\begin{equation}\label{eqn:lorentzForceCovariant:200}
\delta S =
\int d\tau \epsilon^\mu
\lr{
\PD{x^\mu}{L} – \frac{d}{d\tau} \PD{\dot{x}^\mu}{L}
}
+
\int d\tau \frac{d}{d\tau} \lr{
\epsilon^\mu \PD{\dot{x}^\mu}{L}
}.
\end{equation}
The boundary term is killed since \( \epsilon^\mu = 0 \) at the end points of the action integral. We conclude that extremization of the action (\( \delta S = 0 \), for all \( \epsilon^\mu \)) requires
\begin{equation}\label{eqn:lorentzForceCovariant:220}
\PD{x^\mu}{L} – \frac{d}{d\tau} \PD{\dot{x}^\mu}{L} = 0.
\end{equation}

Lorentz force equation.

Theorem 1.3: Lorentz force.

The relativistic Lagrangian for a charged particle is
\begin{equation}\label{eqn:lorentzForceCovariant:1640}
L = \inv{2} m v^2 + q A \cdot v/c.
\end{equation}
Application of the Euler-Lagrange equations to this Lagrangian yields the Lorentz-force equation
\begin{equation}\label{eqn:lorentzForceCovariant:1660}
\frac{dp}{d\tau} = q F \cdot v/c,
\end{equation}
where \( p = m v \) is the proper momentum, \( F \) is the Faraday bivector \( F = \grad \wedge A \), and \( c \) is the speed of light.

Start proof:

To make life easier, let’s take advantage of the linearity of the Lagrangian, and break it into the free particle Lagrangian \( L_0 = (1/2) m v^2 \) and a potential term \( L_1 = q A \cdot v/c \). For the free particle case we have
\begin{equation}\label{eqn:lorentzForceCovariant:240}
\begin{aligned}
\delta L_0
&= \grad L_0 – \frac{d}{d\tau} (\grad_v L_0) \\
&= – \frac{d}{d\tau} (m v) \\
&= – \frac{dp}{d\tau}.
\end{aligned}
\end{equation}
For the potential contribution we have
\begin{equation}\label{eqn:lorentzForceCovariant:260}
\begin{aligned}
\delta L_1
&= \grad L_1 – \frac{d}{d\tau} (\grad_v L_1) \\
&= \frac{q}{c} \lr{ \grad (A \cdot v) – \frac{d}{d\tau} \lr{ \grad_v (A \cdot v)} } \\
&= \frac{q}{c} \lr{ \grad (A \cdot v) – \frac{dA}{d\tau} }.
\end{aligned}
\end{equation}
The proper time derivative can be evaluated using the chain rule
\begin{equation}\label{eqn:lorentzForceCovariant:280}
\frac{dA}{d\tau}
=
\frac{\partial x^\mu}{\partial \tau} \partial_\mu A
= (v \cdot \grad) A.
\end{equation}
Putting all the pieces back together we have
\begin{equation}\label{eqn:lorentzForceCovariant:300}
\begin{aligned}
0
&= \delta L \\
&=
-\frac{dp}{d\tau} + \frac{q}{c} \lr{ \grad (A \cdot v) – (v \cdot \grad) A } \\
&=
-\frac{dp}{d\tau} + \frac{q}{c} \lr{ \grad \wedge A } \cdot v.
\end{aligned}
\end{equation}

End proof.

Problem: Gradient of a squared position vector.

Show that
\begin{equation*}
\grad (a \cdot x) = a,
\end{equation*}
and
\begin{equation*}
\grad x^2 = 2 x.
\end{equation*}
It should be clear that the same ideas can be used for the velocity gradient, where we obtain \( \grad_v (v^2) = 2 v \), and \( \grad_v (A \cdot v) = A \), as used in the derivation above.

Answer

The first identity follows easily by expansion in coordinates
\begin{equation}\label{eqn:lorentzForceCovariant:320}
\begin{aligned}
\grad (a \cdot x)
&=
\gamma^\mu \partial_\mu a_\alpha x^\alpha \\
&=
\gamma^\mu a_\alpha \delta_\mu^\alpha \\
&=
\gamma^\mu a_\mu \\
&=
a.
\end{aligned}
\end{equation}
The second identity follows by linearity of the gradient
\begin{equation}\label{eqn:lorentzForceCovariant:340}
\begin{aligned}
\grad x^2
&=
\grad (x \cdot x) \\
&=
\evalbar{\lr{\grad (x \cdot a)}}{a = x}
+
\evalbar{\lr{\grad (b \cdot x)}}{b = x} \\
&=
\evalbar{a}{a = x}
+
\evalbar{b}{b = x} \\
&=
2x.
\end{aligned}
\end{equation}

It is desirable to put this relativistic Lorentz force equation into the usual vector and tensor forms for comparison.

Theorem 1.4: Tensor form of the Lorentz force equation.

The tensor form of the Lorentz force equation is
\begin{equation}\label{eqn:lorentzForceCovariant:1620}
\frac{dp^\mu}{d\tau} = \frac{q}{c} F^{\mu\nu} v_\nu,
\end{equation}
where the antisymmetric Faraday tensor is defined as \( F^{\mu\nu} = \partial^\mu A^\nu – \partial^\nu A^\mu \).

Start proof:

We have only to dot both sides with \( \gamma^\mu \). On the left we have
\begin{equation}\label{eqn:lorentzForceCovariant:380}
\gamma^\mu \cdot \frac{dp}{d\tau}
=
\frac{dp^\mu}{d\tau}.
\end{equation}
On the right, we have
\begin{equation}\label{eqn:lorentzForceCovariant:400}
\begin{aligned}
\gamma^\mu \cdot \lr{ \frac{q}{c} F \cdot v }
&=
\frac{q}{c} (( \grad \wedge A ) \cdot v ) \cdot \gamma^\mu \\
&=
\frac{q}{c} ( \grad ( A \cdot v ) – (v \cdot \grad) A ) \cdot \gamma^\mu \\
&=
\frac{q}{c} \lr{ (\partial^\mu A^\nu) v_\nu – v_\nu \partial^\nu A^\mu } \\
&=
\frac{q}{c} F^{\mu\nu} v_\nu.
\end{aligned}
\end{equation}

End proof.

Problem: Tensor expansion of \(F\).

An alternate way to demonstrate \ref{eqn:lorentzForceCovariant:1620} is to first expand \( F = \grad \wedge A \) in terms of coordinates, an expansion that can be expressed in terms of a second rank tensor antisymmetric tensor \( F^{\mu\nu} \). Find that expansion, and re-evaluate the dot products of \ref{eqn:lorentzForceCovariant:400} using that.

Answer

\begin{equation}\label{eqn:lorentzForceCovariant:900}
\begin{aligned}
F &=
\grad \wedge A \\
&=
\lr{ \gamma_\mu \partial^\mu } \wedge \lr{ \gamma_\nu A^\nu } \\
&=
\lr{ \gamma_\mu \wedge \gamma_\nu } \partial^\mu A^\nu.
\end{aligned}
\end{equation}
To this we can use the usual tensor trick (add self to self, change indexes, and divide by two), to give
\begin{equation}\label{eqn:lorentzForceCovariant:920}
\begin{aligned}
F &=
\inv{2} \lr{
\lr{ \gamma_\mu \wedge \gamma_\nu } \partial^\mu A^\nu
+
\lr{ \gamma_\nu \wedge \gamma_\mu } \partial^\nu A^\mu
} \\
&=
\inv{2}
\lr{ \gamma_\mu \wedge \gamma_\nu } \lr{
\partial^\mu A^\nu

\partial^\nu A^\mu
},
\end{aligned}
\end{equation}
which is just
\begin{equation}\label{eqn:lorentzForceCovariant:940}
F =
\inv{2} \lr{ \gamma_\mu \wedge \gamma_\nu } F^{\mu\nu}.
\end{equation}
Now, let’s expand \( (F \cdot v) \cdot \gamma^\mu \) to compare to the earlier expansion in terms of \( \grad \) and \( A \).
\begin{equation}\label{eqn:lorentzForceCovariant:960}
\begin{aligned}
(F \cdot v) \cdot \gamma^\mu
&=
\inv{2}
F^{\alpha\nu}
\lr{ \lr{ \gamma_\alpha \wedge \gamma_\nu } \cdot \lr{ \gamma^\beta v_\beta } } \cdot \gamma^\mu \\
&=
\inv{2}
F^{\alpha\nu} v_\beta
\lr{
{\delta_\nu}^\beta {\gamma_\alpha}^\mu

{\delta_\alpha}^\beta {\gamma_\nu}^\mu
} \\
&=
\inv{2}
\lr{
F^{\mu\beta} v_\beta

F^{\beta\mu} v_\beta
} \\
&=
F^{\mu\nu} v_\nu.
\end{aligned}
\end{equation}
This alternate expansion illustrates some of the connectivity between the geometric algebra approach and the traditional tensor formalism.

Problem: Lorentz force direct tensor derivation.

Instead of using the geometric algebra form of the Lorentz force equation as a stepping stone, we may derive the tensor form from the Lagrangian directly, provided the Lagrangian is put into tensor form
\begin{equation*}
L = \inv{2} m v^\mu v_\mu + q A^\mu v_\mu /c.
\end{equation*}
Evaluate the Euler-Lagrange equations in coordinate form and compare to \ref{eqn:lorentzForceCovariant:1620}.

Answer

Let \( \delta_\mu L = \gamma_\mu \cdot \delta L \), so that we can write the Euler-Lagrange equations as
\begin{equation}\label{eqn:lorentzForceCovariant:460}
0 = \delta_\mu L = \PD{x^\mu}{L} – \frac{d}{d\tau} \PD{\dot{x}^\mu}{L}.
\end{equation}
Operating on the kinetic term of the Lagrangian, we have
\begin{equation}\label{eqn:lorentzForceCovariant:480}
\delta_\mu L_0 = – \frac{d}{d\tau} m v_\mu.
\end{equation}
For the potential term
\begin{equation}\label{eqn:lorentzForceCovariant:500}
\begin{aligned}
\delta_\mu L_1
&=
\frac{q}{c} \lr{
v_\nu \PD{x^\mu}{A^\nu} – \frac{d}{d\tau} A_\mu
} \\
&=
\frac{q}{c} \lr{
v_\nu \PD{x^\mu}{A^\nu} – \frac{dx_\alpha}{d\tau} \PD{x_\alpha}{ A_\mu }
} \\
&=
\frac{q}{c} v^\nu \lr{
\partial_\mu A_\nu – \partial_\nu A_\mu
} \\
&=
\frac{q}{c} v^\nu F_{\mu\nu}.
\end{aligned}
\end{equation}
Putting the pieces together gives
\begin{equation}\label{eqn:lorentzForceCovariant:520}
\frac{d}{d\tau} (m v_\mu) = \frac{q}{c} v^\nu F_{\mu\nu},
\end{equation}
which is identical\footnote{Some minor index raising and lowering gymnastics are required.} to the tensor form that we found by expanding the geometric algebra form of Maxwell’s equation in coordinates.

Theorem 1.5: Vector Lorentz force equation.

Relative to a fixed observer’s frame, the Lorentz force equation of \ref{eqn:lorentzForceCovariant:1660} splits into a spatial rate of change of momentum, and (timelike component) rate of change of energy, as follows
\begin{equation}\label{eqn:lorentzForceCovariant:1680}
\begin{aligned}
\ddt{(\gamma m \Bv)} &= q \lr{ \BE + \Bv \cross \BB } \\
\ddt{(\gamma m c^2)} &= q \Bv \cdot \BE,
\end{aligned}
\end{equation}
where \( F = \BE + I c \BB \), \( \gamma = 1/\sqrt{1 – \Bv^2/c^2 }\).

Start proof:

The first step is to eliminate the proper time dependencies in the Lorentz force equation. Consider first the coordinate representation of an arbitrary position four-vector \( x \)
\begin{equation}\label{eqn:lorentzForceCovariant:1140}
x = c t \gamma_0 + x^k \gamma_k.
\end{equation}
The corresponding four-vector velocity is
\begin{equation}\label{eqn:lorentzForceCovariant:1160}
v = \ddtau{x} = c \ddtau{t} \gamma_0 + \ddtau{t} \ddt{x^k} \gamma_k.
\end{equation}
By construction, \( v^2 = c^2 \) is a Lorentz invariant quantity (this is one of the relativistic postulates), so the LHS of \ref{eqn:lorentzForceCovariant:1160} must have the same square. That is
\begin{equation}\label{eqn:lorentzForceCovariant:1240}
c^2 = \lr{ \ddtau{t} }^2 \lr{ c^2 – \Bv^2 },
\end{equation}
where \( \Bv = v \wedge \gamma_0 \). This shows that we may make the identification
\begin{equation}\label{eqn:lorentzForceCovariant:1260}
\gamma = \ddtau{t} = \inv{1 – \Bv^2/c^2 },
\end{equation}
and
\begin{equation}\label{eqn:lorentzForceCovariant:1280}
\ddtau{} = \ddtau{t} \ddt{} = \gamma \ddt{}.
\end{equation}
We may now factor the four-velocity \( v \) into its spacetime split
\begin{equation}\label{eqn:lorentzForceCovariant:1300}
v = \gamma \lr{ c + \Bv } \gamma_0.
\end{equation}
In particular the LHS of the Lorentz force equation can be rewritten as
\begin{equation}\label{eqn:lorentzForceCovariant:1320}
\ddtau{p} = \gamma \ddt{}\lr{ \gamma \lr{ c + \Bv } } \gamma_0,
\end{equation}
and the RHS of the Lorentz force equation can be rewritten as
\begin{equation}\label{eqn:lorentzForceCovariant:1340}
\frac{q}{c} F \cdot v
=
\frac{\gamma q}{c} F \cdot \lr{ (c + \Bv) \gamma_0 }.
\end{equation}
Equating timelike and spacelike components leaves us
\begin{equation}\label{eqn:lorentzForceCovariant:1380}
\ddt{ (m \gamma c) } = \frac{q}{c} \lr{ F \cdot \lr{ (c + \Bv) \gamma_0 } } \cdot \gamma_0,
\end{equation}
\begin{equation}\label{eqn:lorentzForceCovariant:1400}
\ddt{ (m \gamma \Bv) } = \frac{q}{c} \lr{ F \cdot \lr{ (c + \Bv) \gamma_0 } } \wedge \gamma_0,
\end{equation}
Evaluating these products requires some care, but is an essentially manual process. The reader is encouraged to do so once, but the end result may also be obtained easily using software (see lorentzForce.nb in [2]). One finds
\begin{equation}\label{eqn:lorentzForceCovariant:1440}
F = \BE + I c \BB
=
E^1 \gamma_{10} +
+ E^2 \gamma_{20} +
+ E^3 \gamma_{30} +
– c B^1 \gamma_{23} +
– c B^2 \gamma_{31} +
– c B^3 \gamma_{12},
\end{equation}
\begin{equation}\label{eqn:lorentzForceCovariant:1460}
\frac{q}{c} \lr{ F \cdot \lr{ (c + \Bv) \gamma_0 } } \cdot \gamma_0
= \frac{q}{c} \BE \cdot \Bv,
\end{equation}
\begin{equation}\label{eqn:lorentzForceCovariant:1480}
\frac{q}{c} \lr{ F \cdot \lr{ (c + \Bv) \gamma_0 } } \wedge \gamma_0
= q \lr{ \BE + \Bv \cross \BB }.
\end{equation}

End proof.

Problem: Algebraic spacetime split of the Lorentz force equation.

Derive the results of \ref{eqn:lorentzForceCovariant:1440} through \ref{eqn:lorentzForceCovariant:1480} algebraically.

Problem: Spacetime split of the Lorentz force tensor equation.

Show that \ref{eqn:lorentzForceCovariant:1680} also follows from the tensor form of the Lorentz force equation (\ref{eqn:lorentzForceCovariant:1620}) provided we identify
\begin{equation}\label{eqn:lorentzForceCovariant:1500}
F^{k0} = E^k,
\end{equation}
and
\begin{equation}\label{eqn:lorentzForceCovariant:1520}
F^{rs} = -\epsilon^{rst} B^t.
\end{equation}

Also verify that the identifications of \ref{eqn:lorentzForceCovariant:1500} and \ref{eqn:lorentzForceCovariant:1520} is consistent with the geometric algebra Faraday bivector \( F = \BE + I c \BB \), and the associated coordinate expansion of the field \( F = (1/2) (\gamma_\mu \wedge \gamma_\nu) F^{\mu\nu} \).

References

[1] C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University Press New York, Cambridge, UK, 1st edition, 2003.

[2] Peeter Joot. Mathematica modules for Geometric Algebra’s GA(2,0), GA(3,0), and GA(1,3), 2017. URL https://github.com/peeterjoot/gapauli. [Online; accessed 24-Oct-2020].

PHY2403H Quantum Field Theory. Lecture 4: Scalar action, least action principle, Euler-Lagrange equations for a field, canonical quantization. Taught by Prof. Erich Poppitz

September 23, 2018 phy2403 , , , , , , , , , , , , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

DISCLAIMER: Very rough notes from class. May have some additional side notes, but otherwise probably barely edited.

These are notes for the UofT course PHY2403H, Quantum Field Theory I, taught by Prof. Erich Poppitz fall 2018.

Principles (cont.)

  • Lorentz (Poincar\’e : Lorentz and spacetime translations)
  • locality
  • dimensional analysis
  • gauge invariance

These are the requirements for an action. We postulated an action that had the form
\begin{equation}\label{eqn:qftLecture4:20}
\int d^d x \partial_\mu \phi \partial^\mu \phi,
\end{equation}
called the “Kinetic term”, which mimics \( \int dt \dot{q}^2 \) that we’d see in quantum or classical mechanics. In principle there exists an infinite number of local Poincar\’e invariant terms that we can write. Examples:

  • \( \partial_\mu \phi \partial^\mu \phi \)
  • \( \partial_\mu \phi \partial_\nu \partial^\nu \partial^\mu \phi \)
  • \( \lr{\partial_\mu \phi \partial^\mu \phi}^2 \)
  • \( f(\phi) \partial_\mu \phi \partial^\mu \phi \)
  • \( f(\phi, \partial_\mu \phi \partial^\mu \phi) \)
  • \( V(\phi) \)

It turns out that nature (i.e. three spatial dimensions and one time dimension) is described by a finite number of terms. We will now utilize dimensional analysis to determine some of the allowed forms of the action for scalar field theories in \( d = 2, 3, 4, 5 \) dimensions. Even though the real world is only \( d = 4 \), some of the \( d < 4 \) theories are relevant in condensed matter studies, and \( d = 5 \) is just for fun (but also applies to string theories.)

With \( [x] \sim \inv{M} \) in natural units, we must define \([\phi]\) such that the kinetic term is dimensionless in d spacetime dimensions

\begin{equation}\label{eqn:qftLecture4:40}
\begin{aligned}
[d^d x] &\sim \inv{M^d} \\
[\partial_\mu] &\sim M
\end{aligned}
\end{equation}

so it must be that
\begin{equation}\label{eqn:qftLecture4:60}
[\phi] = M^{(d-2)/2}
\end{equation}

It will be easier to characterize the dimensionality of any given term by the power of the mass units, that is

\begin{equation}\label{eqn:qftLecture4:80}
\begin{aligned}
[\text{mass}] &= 1 \\
[d^d x] &= -d \\
[\partial_\mu] &= 1 \\
[\phi] &= (d-2)/2 \\
[S] &= 0.
\end{aligned}
\end{equation}
Since the action is
\begin{equation}\label{eqn:qftLecture4:100}
S = \int d^d x \lr{ \LL(\phi, \partial_\mu \phi) },
\end{equation}
and because action had dimensions of \( \Hbar \), so in natural units, it must be dimensionless, the Lagrangian density dimensions must be \( [d] \). We will abuse language in QFT and call the Lagrangian density the Lagrangian.

\( d = 2 \)

Because \( [\partial_\mu \phi \partial^\mu \phi ] = 2 \), the scalar field must be dimension zero, or in symbols
\begin{equation}\label{eqn:qftLecture4:120}
[\phi] = 0.
\end{equation}
This means that introducing any function \( f(\phi) = 1 + a \phi + b\phi^2 + c \phi^3 + \cdots \) is also dimensionless, and
\begin{equation}\label{eqn:qftLecture4:140}
[f(\phi) \partial_\mu \phi \partial^\mu \phi ] = 2,
\end{equation}
for any \( f(\phi) \). Another implication of this is that the a potential term in the Lagrangian \( [V(\phi)] = 0 \) needs a coupling constant of dimension 2. Letting \( \mu \) have mass dimensions, our Lagrangian must have the form
\begin{equation}\label{eqn:qftLecture4:160}
f(\phi) \partial_\mu \phi \partial^\mu \phi + \mu^2 V(\phi).
\end{equation}
An infinite number of coupling constants of positive mass dimensions for \( V(\phi) \) are also allowed. If we have higher order derivative terms, then we need to compensate for the negative mass dimensions. Example (still for \( d = 2 \)).
\begin{equation}\label{eqn:qftLecture4:180}
\LL =
f(\phi) \partial_\mu \phi \partial^\mu \phi + \mu^2 V(\phi) + \inv{{\mu’}^2}\partial_\mu \phi \partial_\nu \partial^\nu \partial^\mu \phi + \lr{ \partial_\mu \phi \partial^\mu \phi }^2 \inv{\tilde{\mu}^2}.
\end{equation}
The last two terms, called \underline{couplings} (i.e. any non-kinetic term), are examples of terms with negative mass dimension. There is an infinite number of those in any theory in any dimension.

Definitions

  • Couplings that are dimensionless are called (classically) marginal.
  • Couplings that have positive mass dimension are called (classically) relevant.
  • Couplings that have negative mass dimension are called (classically) irrelevant.

In QFT we are generally interested in the couplings that are measurable at long distances for some given energy. Classically irrelevant theories are generally not interesting in \( d > 2 \), so we are very lucky that we don’t live in three dimensional space. This means that we can get away with a finite number of classically marginal and relevant couplings in 3 or 4 dimensions. This was mentioned in the Wilczek’s article referenced in the class forum [1]\footnote{There’s currently more in that article that I don’t understand than I do, so it is hard to find it terribly illuminating.}

Long distance physics in any dimension is described by the marginal and relevant couplings. The irrelevant couplings die off at low energy. In two dimensions, a priori, an infinite number of marginal and relevant couplings are possible. 2D is a bad place to live!

\( d = 3 \)

Now we have
\begin{equation}\label{eqn:qftLecture4:200}
[\phi] = \inv{2}
\end{equation}
so that
\begin{equation}\label{eqn:qftLecture4:220}
[\partial_\mu \phi \partial^\mu \phi] = 3.
\end{equation}

A 3D Lagrangian could have local terms such as
\begin{equation}\label{eqn:qftLecture4:240}
\LL = \partial_\mu \phi \partial^\mu \phi + m^2 \phi^2 + \mu^{3/2} \phi^3 + \mu’ \phi^4
+ \lr{\mu”}{1/2} \phi^5
+ \lambda \phi^6.
\end{equation}
where \( m, \mu, \mu” \) all have mass dimensions, and \( \lambda \) is dimensionless. i.e. \( m, \mu, \mu” \) are relevant, and \( \lambda \) marginal. We stop at the sixth power, since any power after that will be irrelevant.

\( d = 4 \)

Now we have
\begin{equation}\label{eqn:qftLecture4:260}
[\phi] = 1
\end{equation}
so that
\begin{equation}\label{eqn:qftLecture4:280}
[\partial_\mu \phi \partial^\mu \phi] = 4.
\end{equation}

In this number of dimensions \( \phi^k \partial_\mu \phi \partial^\mu \) is an irrelevant coupling.

A 4D Lagrangian could have local terms such as
\begin{equation}\label{eqn:qftLecture4:300}
\LL = \partial_\mu \phi \partial^\mu \phi + m^2 \phi^2 + \mu \phi^3 + \lambda \phi^4.
\end{equation}
where \( m, \mu \) have mass dimensions, and \( \lambda \) is dimensionless. i.e. \( m, \mu \) are relevant, and \( \lambda \) is marginal.

\( d = 5 \)

Now we have
\begin{equation}\label{eqn:qftLecture4:320}
[\phi] = \frac{3}{2},
\end{equation}
so that
\begin{equation}\label{eqn:qftLecture4:340}
[\partial_\mu \phi \partial^\mu \phi] = 5.
\end{equation}

A 5D Lagrangian could have local terms such as
\begin{equation}\label{eqn:qftLecture4:360}
\LL = \partial_\mu \phi \partial^\mu \phi + m^2 \phi^2 + \sqrt{\mu} \phi^3 + \inv{\mu’} \phi^4.
\end{equation}
where \( m, \mu, \mu’ \) all have mass dimensions. In 5D there are no marginal couplings. Dimension 4 is the last dimension where marginal couplings exist. In condensed matter physics 4D is called the “upper critical dimension”.

From the point of view of particle physics, all the terms in the Lagrangian must be the ones that are relevant at long distances.

Least action principle (classical field theory).

Now we want to study 4D scalar theories. We have some action
\begin{equation}\label{eqn:qftLecture4:380}
S[\phi] = \int d^4 x \LL(\phi, \partial_\mu \phi).
\end{equation}

Let’s keep an example such as the following in mind
\begin{equation}\label{eqn:qftLecture4:400}
\LL = \underbrace{\inv{2} \partial_\mu \phi \partial^\mu \phi}_{\text{Kinetic term}} – \underbrace{m^2 \phi – \lambda \phi^4}_{\text{all relevant and marginal couplings}}.
\end{equation}
The even powers can be justified by assuming there is some symmetry that kills the odd powered terms.

fig. 1. Cylindrical spacetime boundary.

We will be integrating over a space time region such as that depicted in fig. 1, where a cylindrical spatial cross section is depicted that we allow to tend towards infinity. We demand that the field is fixed on the infinite spatial boundaries. The easiest way to demand that the field dies off on the spatial boundaries, that is
\begin{equation}\label{eqn:qftLecture4:420}
\lim_{\Abs{\Bx} \rightarrow \infty} \phi(\Bx) \rightarrow 0.
\end{equation}
The functional \( \phi(\Bx, t) \) that obeys the boundary condition as stated extremizes \( S[\phi] \).

Extremizing the action means that we seek \( \phi(\Bx, t) \)
\begin{equation}\label{eqn:qftLecture4:440}
\delta S[\phi] = 0 = S[\phi + \delta \phi] – S[\phi].
\end{equation}

How do we compute the variation?
\begin{equation}\label{eqn:qftLecture4:460}
\begin{aligned}
\delta S
&= \int d^d x \lr{ \LL(\phi + \delta \phi, \partial_\mu \phi + \partial_\mu \delta \phi) – \LL(\phi, \partial_\mu \phi) } \\
&= \int d^d x \lr{ \PD{\phi}{\LL} \delta \phi + \PD{(\partial_mu \phi)}{\LL} (\partial_\mu \delta \phi) } \\
&= \int d^d x \lr{ \PD{\phi}{\LL} \delta \phi
+ \partial_\mu \lr{ \PD{(\partial_mu \phi)}{\LL} \delta \phi}
– \lr{ \partial_\mu \PD{(\partial_mu \phi)}{\LL} } \delta \phi
} \\
&=
\int d^d x
\delta \phi
\lr{ \PD{\phi}{\LL}
– \partial_\mu \PD{(\partial_mu \phi)}{\LL} }
+ \int d^3 \sigma_\mu \lr{ \PD{(\partial_\mu \phi)}{\LL} \delta \phi }
\end{aligned}
\end{equation}

If we are explicit about the boundary term, we write it as
\begin{equation}\label{eqn:qftLecture4:480}
\int dt d^3 \Bx \partial_t \lr{ \PD{(\partial_t \phi)}{\LL} \delta \phi }
– \spacegrad \cdot \lr{ \PD{(\spacegrad \phi)}{\LL} \delta \phi }
=
\int d^3 \Bx \evalrange{ \PD{(\partial_t \phi)}{\LL} \delta \phi }{t = -T}{t = T}
– \int dt d^2 \BS \cdot \lr{ \PD{(\spacegrad \phi)}{\LL} \delta \phi }.
\end{equation}
but \( \delta \phi = 0 \) at \( t = \pm T \) and also at the spatial boundaries of the integration region.

This leaves
\begin{equation}\label{eqn:qftLecture4:500}
\delta S[\phi] = \int d^d x \delta \phi
\lr{ \PD{\phi}{\LL} – \partial_\mu \PD{(\partial_mu \phi)}{\LL} } = 0 \forall \delta \phi.
\end{equation}
That is

\begin{equation}\label{eqn:qftLecture4:540}
\boxed{
\PD{\phi}{\LL} – \partial_\mu \PD{(\partial_mu \phi)}{\LL} = 0.
}
\end{equation}

This are the Euler-Lagrange equations for a single scalar field.

Returning to our sample scalar Lagrangian
\begin{equation}\label{eqn:qftLecture4:560}
\LL = \inv{2} \partial_\mu \phi \partial^\mu \phi – \inv{2} m^2 \phi^2 – \frac{\lambda}{4} \phi^4.
\end{equation}
This example is related to the Ising model which has a \( \phi \rightarrow -\phi \) symmetry. Applying the Euler-Lagrange equations, we have
\begin{equation}\label{eqn:qftLecture4:580}
\PD{\phi}{\LL} = -m^2 \phi – \lambda \phi^3,
\end{equation}
and
\begin{equation}\label{eqn:qftLecture4:600}
\begin{aligned}
\PD{(\partial_\mu \phi)}{\LL}
&=
\PD{(\partial_\mu \phi)}{} \lr{
\inv{2} \partial_\nu \phi \partial^\nu \phi } \\
&=
\inv{2} \partial^\nu \phi
\PD{(\partial_\mu \phi)}{}
\partial_\nu \phi
+
\inv{2} \partial_\nu \phi
\PD{(\partial_\mu \phi)}{}
\partial_\alpha \phi g^{\nu\alpha} \\
&=
\inv{2} \partial^\mu \phi
+
\inv{2} \partial_\nu \phi g^{\nu\mu} \\
&=
\partial^\mu \phi
\end{aligned}
\end{equation}
so we have
\begin{equation}\label{eqn:qftLecture4:620}
\begin{aligned}
0
&=
\PD{\phi}{\LL} -\partial_\mu
\PD{(\partial_\mu \phi)}{\LL} \\
&=
-m^2 \phi – \lambda \phi^3 – \partial_\mu \partial^\mu \phi.
\end{aligned}
\end{equation}

For \( \lambda = 0 \), the free field theory limit, this is just
\begin{equation}\label{eqn:qftLecture4:640}
\partial_\mu \partial^\mu \phi + m^2 \phi = 0.
\end{equation}
Written out from the observer frame, this is
\begin{equation}\label{eqn:qftLecture4:660}
(\partial_t)^2 \phi – \spacegrad^2 \phi + m^2 \phi = 0.
\end{equation}

With a non-zero mass term
\begin{equation}\label{eqn:qftLecture4:680}
\lr{ \partial_t^2 – \spacegrad^2 + m^2 } \phi = 0,
\end{equation}
is called the Klein-Gordan equation.

If we also had \( m = 0 \) we’d have
\begin{equation}\label{eqn:qftLecture4:700}
\lr{ \partial_t^2 – \spacegrad^2 } \phi = 0,
\end{equation}
which is the wave equation (for a massless free field). This is also called the D’Alembert equation, which is familiar from electromagnetism where we have
\begin{equation}\label{eqn:qftLecture4:720}
\begin{aligned}
\lr{ \partial_t^2 – \spacegrad^2 } \BE &= 0 \\
\lr{ \partial_t^2 – \spacegrad^2 } \BB &= 0,
\end{aligned}
\end{equation}
in a source free region.

Canonical quantization.

\begin{equation}\label{eqn:qftLecture4:740}
\LL = \inv{2} \dot{q} – \frac{\omega^2}{2} q^2
\end{equation}
This has solution \(\ddot{q} = – \omega^2 q\).

Let
\begin{equation}\label{eqn:qftLecture4:760}
p = \PD{\dot{q}}{\LL} = \dot{q}
\end{equation}
\begin{equation}\label{eqn:qftLecture4:780}
H(p,q) = \evalbar{p \dot{q} – \LL}{\dot{q}(p, q)}
= p p – \inv{2} p^2 + \frac{\omega^2}{2} q^2 = \frac{p^2}{2} + \frac{\omega^2}{2} q^2
\end{equation}

In QM we quantize by mapping Poisson brackets to commutators.
\begin{equation}\label{eqn:qftLecture4:800}
\antisymmetric{\hatp}{\hat{q}} = -i
\end{equation}
One way to represent is to say that states are \( \Psi(\hat{q}) \), a wave function, \( \hat{q} \) acts by \( q \)
\begin{equation}\label{eqn:qftLecture4:820}
\hat{q} \Psi = q \Psi(q)
\end{equation}
With
\begin{equation}\label{eqn:qftLecture4:840}
\hatp = -i \PD{q}{},
\end{equation}
so
\begin{equation}\label{eqn:qftLecture4:860}
\antisymmetric{ -i \PD{q}{} } { q} = -i
\end{equation}

Let’s introduce an explicit space time split. We’ll write
\begin{equation}\label{eqn:qftLecture4:880}
L = \int d^3 x \lr{
\inv{2} (\partial_0 \phi(\Bx, t))^2 – \inv{2} \lr{ \spacegrad \phi(\Bx, t) }^2 – \frac{m^2}{2} \phi
},
\end{equation}
so that the action is
\begin{equation}\label{eqn:qftLecture4:900}
S = \int dt L.
\end{equation}
The dynamical variables are \( \phi(\Bx) \). We define
\begin{equation}\label{eqn:qftLecture4:920}
\begin{aligned}
\pi(\Bx, t) = \frac{\delta L}{\delta (\partial_0 \phi(\Bx, t))}
&=
\partial_0 \phi(\Bx, t) \\
&=
\dot{\phi}(\Bx, t),
\end{aligned}
\end{equation}
called the canonical momentum, or the momentum conjugate to \( \phi(\Bx, t) \). Why \( \delta \)? Has to do with an implicit Dirac function to eliminate the integral?

\begin{equation}\label{eqn:qftLecture4:940}
\begin{aligned}
H
&= \int d^3 x \evalbar{\lr{ \pi(\bar{\Bx}, t) \dot{\phi}(\bar{\Bx}, t) – L }}{\dot{\phi}(\bar{\Bx}, t) = \pi(x, t) } \\
&= \int d^3 x \lr{ (\pi(\Bx, t))^2 – \inv{2} (\pi(\Bx, t))^2 + \inv{2} (\spacegrad \phi)^2 + \frac{m}{2} \phi^2 },
\end{aligned}
\end{equation}
or
\begin{equation}\label{eqn:qftLecture4:960}
H
= \int d^3 x \lr{ \inv{2} (\pi(\Bx, t))^2 + \inv{2} (\spacegrad \phi(\Bx, t))^2 + \frac{m}{2} (\phi(\Bx, t))^2 }
\end{equation}

In analogy to the momentum, position commutator in QM
\begin{equation}\label{eqn:qftLecture4:1000}
\antisymmetric{\hat{p}_i}{\hat{q}_j} = -i \delta_{ij},
\end{equation}
we “quantize” the scalar field theory by promoting \( \pi, \phi \) to operators and insisting that they also obey a commutator relationship
\begin{equation}\label{eqn:qftLecture4:980}
\antisymmetric{\pi(\Bx, t)}{\phi(\By, t)} = -i \delta^3(\Bx – \By).
\end{equation}

References

[1] Frank Wilczek. Fundamental constants. arXiv preprint arXiv:0708.4361, 2007. URL https://arxiv.org/abs/0708.4361.

The many faces of Maxwell’s equations

March 5, 2018 math and physics play , , , , , , , , , , , , , , , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting (including equation numbering and references)]

The following is a possible introduction for a report for a UofT ECE2500 project associated with writing a small book: “Geometric Algebra for Electrical Engineers”. Given the space constraints for the report I may have to drop much of this, but some of the history of Maxwell’s equations may be of interest, so I thought I’d share before the knife hits the latex.

Goals of the project.

This project had a few goals

  1. Perform a literature review of applications of geometric algebra to the study of electromagnetism. Geometric algebra will be defined precisely later, along with bivector, trivector, multivector and other geometric algebra generalizations of the vector.
  2. Identify the subset of the literature that had direct relevance to electrical engineering.
  3. Create a complete, and as compact as possible, introduction of the prerequisites required
    for a graduate or advanced undergraduate electrical engineering student to be able to apply
    geometric algebra to problems in electromagnetism.

The many faces of electromagnetism.

There is a long history of attempts to find more elegant, compact and powerful ways of encoding and working with Maxwell’s equations.

Maxwell’s formulation.

Maxwell [12] employs some differential operators, including the gradient \( \spacegrad \) and Laplacian \( \spacegrad^2 \), but the divergence and gradient are always written out in full using coordinates, usually in integral form. Reading the original Treatise highlights how important notation can be, as most modern engineering or physics practitioners would find his original work incomprehensible. A nice translation from Maxwell’s notation to the modern Heaviside-Gibbs notation can be found in [16].

Quaterion representation.

In his second volume [11] the equations of electromagnetism are stated using quaterions (an extension of complex numbers to three dimensions), but quaternions are not used in the work. The modern form of Maxwell’s equations in quaternion form is
\begin{equation}\label{eqn:ece2500report:220}
\begin{aligned}
\inv{2} \antisymmetric{ \frac{d}{dr} }{ \BH } – \inv{2} \symmetric{ \frac{d}{dr} } { c \BD } &= c \rho + \BJ \\
\inv{2} \antisymmetric{ \frac{d}{dr} }{ \BE } + \inv{2} \symmetric{ \frac{d}{dr} }{ c \BB } &= 0,
\end{aligned}
\end{equation}
where \( \ifrac{d}{dr} = (1/c) \PDi{t}{} + \Bi \PDi{x}{} + \Bj \PDi{y}{} + \Bk \PDi{z}{} \) [7] acts bidirectionally, and vectors are expressed in terms of the quaternion basis \( \setlr{ \Bi, \Bj, \Bk } \), subject to the relations \(
\Bi^2 = \Bj^2 = \Bk^2 = -1, \quad
\Bi \Bj = \Bk = -\Bj \Bi, \quad
\Bj \Bk = \Bi = -\Bk \Bj, \quad
\Bk \Bi = \Bj = -\Bi \Bk \).
There is clearly more structure to these equations than the traditional Heaviside-Gibbs representation that we are used to, which says something for the quaternion model. However, this structure requires notation that is arguably non-intuitive. The fact that the quaterion representation was abandoned long ago by most electromagnetism researchers and engineers supports such an argument.

Minkowski tensor representation.

Minkowski introduced the concept of a complex time coordinate \( x_4 = i c t \) for special relativity [3]. Such a four-vector representation can be used for many of the relativistic four-vector pairs of electromagnetism, such as the current \((c\rho, \BJ)\), and the energy-momentum Lorentz force relations, and can also be applied to Maxwell’s equations
\begin{equation}\label{eqn:ece2500report:140}
\sum_{\mu= 1}^4 \PD{x_\mu}{F_{\mu\nu}} = – 4 \pi j_\nu.
\qquad
\sum_{\lambda\rho\mu=1}^4
\epsilon_{\mu\nu\lambda\rho}
\PD{x_\mu}{F_{\lambda\rho}} = 0,
\end{equation}
where
\begin{equation}\label{eqn:ece2500report:160}
F
=
\begin{bmatrix}
0 & B_z & -B_y & -i E_x \\
-B_z & 0 & B_x & -i E_y \\
B_y & -B_x & 0 & -i E_z \\
i E_x & i E_y & i E_z & 0
\end{bmatrix}.
\end{equation}
A rank-2 complex (Hermitian) tensor contains all six of the field components. Transformation of coordinates for this representation of the field may be performed exactly like the transformation for any other four-vector. This formalism is described nicely in [13], where the structure used is motivated by transformational requirements. One of the costs of this tensor representation is that we loose the clear separation of the electric and magnetic fields that we are so comfortable with. Another cost is that we loose the distinction between space and time, as separate space and time coordinates have to be projected out of a larger four vector. Both of these costs have theoretical benefits in some applications, particularly for high energy problems where relativity is important, but for the low velocity problems near and dear to electrical engineers who can freely treat space and time independently, the advantages are not clear.

Modern tensor formalism.

The Minkowski representation fell out of favour in theoretical physics, which settled on a real tensor representation that utilizes an explicit metric tensor \( g_{\mu\nu} = \pm \textrm{diag}(1, -1, -1, -1) \) to represent the complex inner products of special relativity. In this tensor formalism, Maxwell’s equations are also reduced to a set of two tensor relationships ([10], [8], [5]).
\begin{equation}\label{eqn:ece2500report:40}
\begin{aligned}
\partial_\mu F^{\mu \nu} &= \mu_0 J^\nu \\
\epsilon^{\alpha \beta \mu \nu} \partial_\beta F_{\mu \nu} &= 0,
\end{aligned}
\end{equation}
where \( F^{\mu\nu} \) is a \textit{real} rank-2 antisymmetric tensor that contains all six electric and magnetic field components, and \( J^\nu \) is a four-vector current containing both charge density and current density components. \Cref{eqn:ece2500report:40} provides a unified and simpler theoretical framework for electromagnetism, and is used extensively in physics but not engineering.

Differential forms.

It has been argued that a differential forms treatment of electromagnetism provides some of the same theoretical advantages as the tensor formalism, without the disadvantages of introducing a hellish mess of index manipulation into the mix. With differential forms it is also possible to express Maxwell’s equations as two equations. The free-space differential forms equivalent [4] to the tensor equations is
\begin{equation}\label{eqn:ece2500report:60}
\begin{aligned}
d \alpha &= 0 \\
d *\alpha &= 0,
\end{aligned}
\end{equation}
where
\begin{equation}\label{eqn:ece2500report:180}
\alpha = \lr{ E_1 dx^1 + E_2 dx^2 + E_3 dx^3 }(c dt) + H_1 dx^2 dx^3 + H_2 dx^3 dx^1 + H_3 dx^1 dx^2.
\end{equation}
One of the advantages of this representation is that it is valid even for curvilinear coordinate representations, which are handled naturally in differential forms. However, this formalism also comes with a number of costs. One cost (or benefit), like that of the tensor formalism, is that this is implicitly a relativistic approach subject to non-Euclidean orthonormality conditions \( (dx^i, dx^j) = \delta^{ij}, (dx^i, c dt) = 0, (c dt, c dt) = -1 \). Most grievous of the costs is the requirement to use differentials \( dx^1, dx^2, dx^3, c dt \), instead of a more familar set of basis vectors, even for non-curvilinear coordinates. This requirement is easily viewed as unnatural, and likely one of the reasons that electromagnetism with differential forms has never become popular.

Vector formalism.

Euclidean vector algebra, in particular the vector algebra and calculus of \( R^3 \), is the de-facto language of electrical engineering for electromagnetism. Maxwell’s equations in the Heaviside-Gibbs vector formalism are
\begin{equation}\label{eqn:ece2500report:20}
\begin{aligned}
\spacegrad \cross \BE &= – \PD{t}{\BB} \\
\spacegrad \cross \BH &= \BJ + \PD{t}{\BD} \\
\spacegrad \cdot \BD &= \rho \\
\spacegrad \cdot \BB &= 0.
\end{aligned}
\end{equation}
We are all intimately familiar with these equations, with the dot and the cross products, and with gradient, divergence and curl operations that are used to express them.
Given how comfortable we are with this mathematical formalism, there has to be a really good reason to switch to something else.

Space time algebra (geometric algebra).

An alternative to any of the electrodynamics formalisms described above is STA, the Space Time Algebra. STA is a relativistic geometric algebra that allows Maxwell’s equations to be combined into one equation ([2], [6])
\begin{equation}\label{eqn:ece2500report:80}
\grad F = J,
\end{equation}
where
\begin{equation}\label{eqn:ece2500report:200}
F = \BE + I c \BB \qquad (= \BE + I \eta \BH)
\end{equation}
is a bivector field containing both the electric and magnetic field “vectors”, \( \grad = \gamma^\mu \partial_\mu \) is the spacetime gradient, \( J \) is a four vector containing electric charge and current components, and \( I = \gamma_0 \gamma_1 \gamma_2 \gamma_3 \) is the spacetime pseudoscalar, the ordered product of the basis vectors \( \setlr{ \gamma_\mu } \). The STA representation is explicitly relativistic with a non-Euclidean relationships between the basis vectors \( \gamma_0 \cdot \gamma_0 = 1 = -\gamma_k \cdot \gamma_k, \forall k > 0 \). In this formalism “spatial” vectors \( \Bx = \sum_{k>0} \gamma_k \gamma_0 x^k \) are represented as spacetime bivectors, requiring a small slight of hand when switching between STA notation and conventional vector representation. Uncoincidentally \( F \) has exactly the same structure as the 2-form \(\alpha\) above, provided the differential 1-forms \( dx^\mu \) are replaced by the basis vectors \( \gamma_\mu \). However, there is a simple complex structure inherent in the STA form that is not obvious in the 2-form equivalent. The bivector representation of the field \( F \) directly encodes the antisymmetric nature of \( F^{\mu\nu} \) from the tensor formalism, and the tensor equivalents of most STA results can be calcualted easily.

Having a single PDE for all of Maxwell’s equations allows for direct Green’s function solution of the field, and has a number of other advantages. There is extensive literature exploring selected applications of STA to electrodynamics. Many theoretical results have been derived using this formalism that require significantly more complex approaches using conventional vector or tensor analysis. Unfortunately, much of the STA literature is inaccessible to the engineering student, practising engineers, or engineering instructors. To even start reading the literature, one must learn geometric algebra, aspects of special relativity and non-Euclidean geometry, generalized integration theory, and even some tensor analysis.

Paravector formalism (geometric algebra).

In the geometric algebra literature, there are a few authors who have endorsed the use of Euclidean geometric algebras for relativistic applications ([1], [14])
These authors use an Euclidean basis “vector” \( \Be_0 = 1 \) for the timelike direction, along with a standard Euclidean basis \( \setlr{ \Be_i } \) for the spatial directions. A hybrid scalar plus vector representation of four vectors, called paravectors is employed. Maxwell’s equation is written as a multivector equation
\begin{equation}\label{eqn:ece2500report:120}
\lr{ \spacegrad + \inv{c} \PD{t}{} } F = J,
\end{equation}
where \( J \) is a multivector source containing both the electric charge and currents, and \( c \) is the group velocity for the medium (assumed uniform and isometric). \( J \) may optionally include the (fictitious) magnetic charge and currents useful in antenna theory. The paravector formalism uses a the hybrid electromagnetic field representation of STA above, however, \( I = \Be_1 \Be_2 \Be_3 \) is interpreted as the \( R^3 \) pseudoscalar, the ordered product of the basis vectors \( \setlr{ \Be_i } \), and \( F \) represents a multivector with vector and bivector components. Unlike STA where \( \BE \) and \( \BB \) (or \( \BH \)) are interpretted as spacetime bivectors, here they are plain old Euclidian vectors in \( R^3 \), entirely consistent with conventional Heaviyside-Gibbs notation. Like the STA Maxwell’s equation, the paravector form is directly invertible using Green’s function techniques, without requiring the solution of equivalent second order potential problems, nor any requirement to take the derivatives of those potentials to determine the fields.

Lorentz transformation and manipulation of paravectors requires a variety of conjugation, real and imaginary operators, unlike STA where such operations have the same complex exponential structure as any 3D rotation expressed in geometric algebra. The advocates of the paravector representation argue that this provides an effective pedagogical bridge from Euclidean geometry to the Minkowski geometry of special relativity. This author agrees that this form of Maxwell’s equations is the natural choice for an introduction to electromagnetism using geometric algebra, but for relativistic operations, STA is a much more natural and less confusing choice.

Results.

The end product of this project was a fairly small self contained book, titled “Geometric Algebra for Electrical Engineers”. This book includes an introduction to Euclidean geometric algebra focused on \( R^2 \) and \( R^3 \) (64 pages), an introduction to geometric calculus and multivector Green’s functions (64 pages), and applications to electromagnetism (75 pages). This report summarizes results from this book, omitting most derivations, and attempts to provide an overview that may be used as a road map for the book for further exploration. Many of the fundamental results of electromagnetism are derived directly from the geometric algebra form of Maxwell’s equation in a streamlined and compact fashion. This includes some new results, and many of the existing non-relativistic results from the geometric algebra STA and paravector literature. It will be clear to the reader that it is often simpler to have the electric and magnetic on equal footing, and demonstrates this by deriving most results in terms of the total electromagnetic field \( F \). Many examples of how to extract the conventional electric and magnetic fields from the geometric algebra results expressed in terms of \( F \) are given as a bridge between the multivector and vector representations.

The aim of this work was to remove some of the prerequisite conceptual roadblocks that make electromagnetism using geometric algebra inaccessbile. In particular, this project explored non-relativistic applications of geometric algebra to electromagnetism. After derivation from the conventional Heaviside-Gibbs representation of Maxwell’s equations, the paravector representation of Maxwell’s equation is used as the starting point for of all subsequent analysis. However, the paravector literature includes a confusing set of conjugation and real and imaginary selection operations that are tailored for relativisitic applications. These are not neccessary for low velocity applications, and have been avoided completely with the aim of making the subject more accessibility to the engineer.

In the book an attempt has been made to avoid introducing as little new notation as possible. For example, some authors use special notation for the bivector valued magnetic field \( I \BB \), such as \( \boldsymbol{\mathcal{b}} \) or \( \Bcap \). Given the inconsistencies in the literature, \( I \BB \) (or \( I \BH \)) will be used explicitly for the bivector (magnetic) components of the total electromagnetic field \( F \). In the geometric algebra literature, there are conflicting conventions for the operator \( \spacegrad + (1/c) \PDi{t}{} \) which we will call the spacetime gradient after the STA equivalent. For examples of different notations for the spacetime gradient, see [9], [1], and [15]. In the book the spacetime gradient is always written out in full to avoid picking from or explaining some of the subtlties of the competing notations.

Some researchers will find it distasteful that STA and relativity have been avoided completely in this book. Maxwell’s equations are inherently relativistic, and STA expresses the relativistic aspects of electromagnetism in an exceptional and beautiful fashion. However, a student of this book will have learned the geometric algebra and calculus prerequisites of STA. This makes the STA literature much more accessible, especially since most of the results in the book can be trivially translated into STA notation.

References

[1] William Baylis. Electrodynamics: a modern geometric approach, volume 17. Springer Science \& Business Media, 2004.

[2] C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University Press New York, Cambridge, UK, 1st edition, 2003.

[3] Albert Einstein. Relativity: The special and the general theory, chapter Minkowski’s Four-Dimensional Space. Princeton University Press, 2015. URL http://www.gutenberg.org/ebooks/5001.

[4] H. Flanders. Differential Forms With Applications to the Physical Sciences. Courier Dover Publications, 1989.

[5] David Jeffrey Griffiths and Reed College. Introduction to electrodynamics. Prentice hall Upper Saddle River, NJ, 3rd edition, 1999.

[6] David Hestenes. Space-time algebra, volume 1. Springer, 1966.

[7] Peter Michael Jack. Physical space as a quaternion structure, i: Maxwell equations. a brief note. arXiv preprint math-ph/0307038, 2003. URL https://arxiv.org/abs/math-ph/0307038.

[8] JD Jackson. Classical Electrodynamics. John Wiley and Sons, 2nd edition, 1975.

[9] Bernard Jancewicz. Multivectors and Clifford algebra in electrodynamics. World Scientific, 1988.

[10] L.D. Landau and E.M. Lifshitz. The classical theory of fields. Butterworth-Heinemann, 1980. ISBN 0750627689.

[11] James Clerk Maxwell. A treatise on electricity and magnetism, volume II. Merchant Books, 1881.

[12] James Clerk Maxwell. A treatise on electricity and magnetism, third edition, volume I. Dover publications, 1891.

[13] M. Schwartz. Principles of Electrodynamics. Dover Publications, 1987.

[14] Chappell et al. A simplified approach to electromagnetism using geometric algebra. arXiv preprint arXiv:1010.4947, 2010.

[15] Chappell et al. Geometric algebra for electrical and electronic engineers. 2014.

[16] Chappell et al. Geometric Algebra for Electrical and Electronic Engineers, 2014

A derivation of the quaternion Maxwell’s equations using geometric algebra.

March 5, 2018 math and physics play , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

Motivation.

The quaternion form of Maxwell’s equations as stated in [2] is nearly indecipherable. The modern quaternionic form of these equations can be found in [1]. Looking for this representation was driven by the question of whether or not the compact geometric algebra representations of Maxwell’s equations \( \grad F = J \), was possible using a quaternion representation of the fields.

As quaternions may be viewed as the even subalgebra of GA(3,0), it is possible to the quaternion representation of Maxwell’s equations using only geometric algebra, including source terms and independent of the heat considerations discussed in [1]. Such a derivation will be performed here. Examination of the results appears to answer the question about the compact representation in the negative.

Quaternions as multivectors.

Quaternions are vector plus scalar sums, where the vector basis \( \setlr{ \Bi, \Bj, \Bk } \) are subject to the complex like multiplication rules
\begin{equation}\label{eqn:complex:240}
\begin{aligned}
\Bi^2 &= \Bj^2 = \Bk^2 = -1 \\
\Bi \Bj &= \Bk = -\Bj \Bi \\
\Bj \Bk &= \Bi = -\Bk \Bj \\
\Bk \Bi &= \Bj = -\Bi \Bk.
\end{aligned}
\end{equation}

We can represent these basis vectors in terms of the \(\mathbb{R}^{3}\) unit bivectors
\begin{equation}\label{eqn:quaternion2maxwellWithGA:260}
\begin{aligned}
\Bi &= \Be_{3} \Be_{2} = -I \Be_1 \\
\Bj &= \Be_{1} \Be_{3} = -I \Be_2 \\
\Bk &= \Be_{2} \Be_{1} = -I \Be_3,
\end{aligned}
\end{equation}
where \( I = \Be_1 \Be_2 \Be_3 \) is the ordered product of the \(\mathbb{R}^{3}\) basis elements. Within geometric algebra, the quaternion basis “vectors” are more properly viewed as a bivector space basis that happens to have dimension three.

Similar to [1] (which used \(d/dr\), whereas \(d/dX\) is used here to invoke the connection to a relativistic four vector \(X = (c t, \mathbf{x})\)), we may introduce a quaternionic spacetime gradient, and express that in terms of geometric algebra
\begin{equation}\label{eqn:quaternion2maxwellWithGA:280}
\frac{d}{dX} = \inv{c} \PD{t}{}
+ \Bi \PD{x}{}
+ \Bj \PD{y}{}
+ \Bk \PD{z}{}
=
\inv{c}\PD{t}{} -I \spacegrad.
\end{equation}

Of particular interest is how do we write the curl, divergence and time partials in terms of the quaternionic spacetime gradient or its components. Like [1], we will use modern commutator notation for an antisymmetric difference of products
\begin{equation}\label{eqn:quaternion2maxwellWithGA:600}
\antisymmetric{a}{b} = a b – b a,
\end{equation}
and anticommutator notation for a symmetric difference of products
\begin{equation}\label{eqn:quaternion2maxwellWithGA:620}
\symmetric{a}{b} = a b + b a.
\end{equation}
The curl of a vector \( \Bf \) in terms of vector products with the gradient is
\begin{equation}\label{eqn:quaternion2maxwellWithGA:300}
\begin{aligned}
\spacegrad \cross \Bf
&= -I(\spacegrad \wedge \Bf) \\
&= -\frac{I}{2} \lr{ \spacegrad \Bf – \Bf \spacegrad } \\
&= \frac{1}{2} \lr{ (-I \spacegrad) \Bf – \Bf (-I\spacegrad) } \\
&= \inv{2} \antisymmetric{ -I \spacegrad }{ \Bf } \\
&= \inv{2} \antisymmetric{ \frac{d}{dX} }{ \Bf },
\end{aligned}
\end{equation}
where the last step takes advantage of the fact that the timelike contribution of the spacetime gradient commutes with any vector \( \Bf \) due to its scalar nature, so cancels out of the commutator. In a similar fashion, the dot product may be written as an anticommutator
\begin{equation}\label{eqn:quaternion2maxwellWithGA:480}
\spacegrad \cdot \Bf
=
\inv{2} \lr{ \spacegrad \Bf + \Bf \spacegrad }
=
\inv{2} \symmetric{ \spacegrad}{ \Bf },
\end{equation}
as can the scalar time derivative
\begin{equation}\label{eqn:quaternion2maxwellWithGA:500}
\PD{t}{\Bf}
= \inv{2} \symmetric{ \inv{c} \PD{t}{} } { c \Bf }.
\end{equation}

Quaternionic form of Maxwell’s equations.

Using geometric algebra as an intermediate transformation, let’s see directly how to express Maxwell’s equations in terms of this quaternionic operator. Our starting point is Maxwell’s equations in their standard macroscopic form

\begin{equation}\label{eqn:ece2500report:20}
\spacegrad \cross \BH = \BJ + \PD{t}{\BD}
\end{equation}
\begin{equation}\label{eqn:quaternion2maxwellWithGA:340}
\spacegrad \cdot \BD = \rho
\end{equation}
\begin{equation}\label{eqn:quaternion2maxwellWithGA:360}
\spacegrad \cross \BE = – \PD{t}{\BB}
\end{equation}
\begin{equation}\label{eqn:quaternion2maxwellWithGA:380}
\spacegrad \cdot \BB = 0.
\end{equation}

Inserting these into Maxwell-Faraday and into Gauss’s law for magnetism we have
\begin{equation}\label{eqn:quaternion2maxwellWithGA:400}
\begin{aligned}
\inv{2} \antisymmetric{ \frac{d}{dX} }{ \BE } &= – \symmetric{ \inv{c}\PD{t}{} }{ c \BB } \\
\inv{2} \symmetric{ \spacegrad }{ c \BB } &= 0,
\end{aligned}
\end{equation}
or
\begin{equation}\label{eqn:quaternion2maxwellWithGA:420}
\begin{aligned}
\inv{2} \antisymmetric{ \frac{d}{dX} }{ -I \BE } + \symmetric{ \inv{c}\PD{t}{} }{ -I c \BB } &= 0 \\
\inv{2} \symmetric{ -I \spacegrad }{ -I c \BB } &= 0
\end{aligned}
\end{equation}
We can introduce quaternionic electric and magnetic field “vectors” (really bivectors)
\begin{equation}\label{eqn:quaternion2maxwellWithGA:440}
\begin{aligned}
\boldsymbol{\mathcal{E}} &= -I \BE = \Bi E_x + \Bj E_y + \Bk E_z \\
\boldsymbol{\mathcal{B}} &= -I \BB = \Bi B_x + \Bj B_y + \Bk B_z,
\end{aligned}
\end{equation}
and substitute these and sum to find the quaternionic representation of the two source free Maxwell’s equations
\begin{equation}\label{eqn:quaternion2maxwellWithGA:460}
\boxed{
\inv{2} \antisymmetric{ \frac{d}{dX} }{ \boldsymbol{\mathcal{E}} } + \inv{2} \symmetric{ \frac{d}{dX} }{ c \boldsymbol{\mathcal{B}} } = 0.
}
\end{equation}

Inserting the quaternion curl, div and time derivative representations into Ampere-Maxwell’s law and Gauss’s law, gives
\begin{equation}\label{eqn:quaternion2maxwellWithGA:520}
\begin{aligned}
\inv{2} \antisymmetric{ \frac{d}{dX} }{ \BH } &= \BJ + \inv{2} \symmetric{ \inv{c} \PD{t}{} } { c \BD } \\
\inv{2} \symmetric{ \spacegrad }{ c \BD } &= c \rho,
\end{aligned}
\end{equation}
\begin{equation}\label{eqn:quaternion2maxwellWithGA:540}
\begin{aligned}
\inv{2} \antisymmetric{ \frac{d}{dX} }{ -I \BH } – \inv{2} \symmetric{ \inv{c} \PD{t}{} } { -I c \BD } &= -I \BJ \\
-\inv{2} \symmetric{ -I \spacegrad }{ -I c \BD } &= c \rho.
\end{aligned}
\end{equation}
With quaternionic displacement vector and magnetization, and current densities
\begin{equation}\label{eqn:quaternion2maxwellWithGA:580}
\begin{aligned}
\boldsymbol{\mathcal{D}} &= -I \BD = \Bi D_x + \Bj D_y + \Bk D_z \\
\boldsymbol{\mathcal{H}} &= -I \BH = \Bi H_x + \Bj H_y + \Bk H_z \\
\boldsymbol{\mathcal{J}} &= -I \BJ = \Bi J_x + \Bj J_y + \Bk J_z,
\end{aligned}
\end{equation}
and summing yields the two remaining two Maxwell equations in their quaternionic form
\begin{equation}\label{eqn:quaternion2maxwellWithGA:560}
\boxed{
\inv{2} \antisymmetric{ \frac{d}{dX} }{ \boldsymbol{\mathcal{H}} } – \inv{2} \symmetric{ \frac{d}{dX} } { c \boldsymbol{\mathcal{D}} } = c \rho + \boldsymbol{\mathcal{J}}.
}
\end{equation}

Conclusions.

Maxwell’s equations in the quaternion representation have a structure that is not apparent in the Heaviside-Gibbs notation. There is some elegance to this result, but comes with the cost of having to use commutator and anticommutator operators, which are arguably non-intuitive. The compact geometric algebra representation of Maxwell’s equation does not appear possible with a quaternion representation, as an additional complex degree of freedom would be required (biquaternions?) Such a degree of freedom may also allow a quaternion representation of the (fictitious) magnetic sources that are useful in antenna theory with a quaternion model. Magnetic sources are easily incorporated into the current multivector in geometric algebra, but if done so in the derivation above, yield an odd grade multivector source which has no quaternion representation.

References

[1] Peter Michael Jack. Physical space as a quaternion structure, i: Maxwell equations. a brief note. arXiv preprint math-ph/0307038, 2003. URL https://arxiv.org/abs/math-ph/0307038.

[2] James Clerk Maxwell. A treatise on electricity and magnetism, volume II. Merchant Books, 1881.

Commutators for some symmetry operators

December 16, 2015 phy1520 , , ,

[Click here for a PDF of this post with nicer formatting]

Q: [1] pr 4.2

If \( \mathcal{T}_\Bd \), \( \mathcal{D}(\ncap, \phi) \), and \( \pi \) denote the translation, rotation, and parity operators respectively. Which of the following commute and why

  • (a) \( \mathcal{T}_\Bd \) and \( \mathcal{T}_{\Bd’} \), translations in different directions.
  • (b) \( \mathcal{D}(\ncap, \phi) \) and \( \mathcal{D}(\ncap’, \phi’) \), rotations in different directions.
  • (c) \( \mathcal{T}_\Bd \) and \( \pi \).
  • (d) \( \mathcal{D}(\ncap,\phi)\) and \( \pi \).

A: (a)

Consider
\begin{equation}\label{eqn:symmetryOperatorCommutators:20}
\begin{aligned}
\mathcal{T}_\Bd \mathcal{T}_{\Bd’} \ket{\Bx}
&=
\mathcal{T}_\Bd \ket{\Bx + \Bd’} \\
&=
\ket{\Bx + \Bd’ + \Bd},
\end{aligned}
\end{equation}

and the reverse application of the translation operators
\begin{equation}\label{eqn:symmetryOperatorCommutators:40}
\begin{aligned}
\mathcal{T}_{\Bd’} \mathcal{T}_{\Bd} \ket{\Bx}
&=
\mathcal{T}_{\Bd’} \ket{\Bx + \Bd} \\
&=
\ket{\Bx + \Bd + \Bd’} \\
&=
\ket{\Bx + \Bd’ + \Bd}.
\end{aligned}
\end{equation}

so we see that

\begin{equation}\label{eqn:symmetryOperatorCommutators:60}
\antisymmetric{\mathcal{T}_\Bd}{\mathcal{T}_{\Bd’}} \ket{\Bx} = 0,
\end{equation}

for any position state \( \ket{\Bx} \), and therefore in general they commute.

A: (b)

That rotations do not commute when they are in different directions (like any two orthogonal directions) need not be belaboured.

A: (c)

We have
\begin{equation}\label{eqn:symmetryOperatorCommutators:80}
\begin{aligned}
\mathcal{T}_\Bd \pi \ket{\Bx}
&=
\mathcal{T}_\Bd \ket{-\Bx} \\
&=
\ket{-\Bx + \Bd},
\end{aligned}
\end{equation}

yet
\begin{equation}\label{eqn:symmetryOperatorCommutators:100}
\begin{aligned}
\pi \mathcal{T}_\Bd \ket{\Bx}
&=
\pi \ket{\Bx + \Bd} \\
&=
\ket{-\Bx – \Bd} \\
&\ne
\ket{-\Bx + \Bd}.
\end{aligned}
\end{equation}

so, in general \( \antisymmetric{\mathcal{T}_\Bd}{\pi} \ne 0 \).

A: (d)

We have

\begin{equation}\label{eqn:symmetryOperatorCommutators:120}
\begin{aligned}
\pi \mathcal{D}(\ncap, \phi) \ket{\Bx}
&=
\pi \mathcal{D}(\ncap, \phi) \pi^\dagger \pi \ket{\Bx} \\
&=
\pi \mathcal{D}(\ncap, \phi) \pi^\dagger \pi \ket{\Bx} \\
&=
\pi \lr{ \sum_{k=0}^\infty \frac{(-i \BJ \cdot \ncap)^k}{k!} } \pi^\dagger \pi \ket{\Bx} \\
&=
\sum_{k=0}^\infty \frac{(-i (\pi \BJ \pi^\dagger) \cdot (\pi \ncap \pi^\dagger) )^k}{k!} \pi \ket{\Bx} \\
&=
\sum_{k=0}^\infty \frac{(-i \BJ \cdot \ncap)^k}{k!} \pi \ket{\Bx} \\
&=
\mathcal{D}(\ncap, \phi) \pi \ket{\Bx},
\end{aligned}
\end{equation}

so \( \antisymmetric{\mathcal{D}(\ncap, \phi)}{\pi} \ket{\Bx} = 0 \), for any position state \( \ket{\Bx} \), and therefore these operators commute in general.

References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.