curl

Gradient, divergence, curl and Laplacian in cylindrical coordinates

November 6, 2016 math and physics play , , , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

In class it was suggested that the identity

\begin{equation}\label{eqn:laplacianCylindrical:20}
\spacegrad^2 \BA =
\spacegrad \lr{ \spacegrad \cdot \BA }
-\spacegrad \cross \lr{ \spacegrad \cross \BA },
\end{equation}

can be used to compute the Laplacian in non-rectangular coordinates. Is that the easiest way to do this?

How about just sequential applications of the gradient on the vector? Let’s start with the vector product of the gradient and the vector. First recall that the cylindrical representation of the gradient is

\begin{equation}\label{eqn:laplacianCylindrical:80}
\spacegrad = \rhocap \partial_\rho + \frac{\phicap}{\rho} \partial_\phi + \zcap \partial_z,
\end{equation}

where
\begin{equation}\label{eqn:laplacianCylindrical:100}
\begin{aligned}
\rhocap &= \Be_1 e^{\Be_1 \Be_2 \phi} \\
\phicap &= \Be_2 e^{\Be_1 \Be_2 \phi} \\
\end{aligned}
\end{equation}

Taking \( \phi \) derivatives of \ref{eqn:laplacianCylindrical:100}, we have

\begin{equation}\label{eqn:laplacianCylindrical:120}
\begin{aligned}
\partial_\phi \rhocap &= \Be_1 \Be_1 \Be_2 e^{\Be_1 \Be_2 \phi} = \Be_2 e^{\Be_1 \Be_2 \phi} = \phicap \\
\partial_\phi \phicap &= \Be_2 \Be_1 \Be_2 e^{\Be_1 \Be_2 \phi} = -\Be_1 e^{\Be_1 \Be_2 \phi} = -\rhocap.
\end{aligned}
\end{equation}

The gradient of a vector \( \BA = \rhocap A_\rho + \phicap A_\phi + \zcap A_z \) is

\begin{equation}\label{eqn:laplacianCylindrical:60}
\begin{aligned}
\spacegrad \BA
&=
\lr{ \rhocap \partial_\rho + \frac{\phicap}{\rho} \partial_\phi + \zcap \partial_z }
\lr{ \rhocap A_\rho + \phicap A_\phi + \zcap A_z } \\
&=
\quad \rhocap \partial_\rho \lr{ \rhocap A_\rho + \phicap A_\phi + \zcap A_z } \\
&\quad + \frac{\phicap}{\rho} \partial_\phi \lr{ \rhocap A_\rho + \phicap A_\phi + \zcap A_z } \\
&\quad + \zcap \partial_z \lr{ \rhocap A_\rho + \phicap A_\phi + \zcap A_z } \\
&=
\quad \rhocap \lr{ \rhocap \partial_\rho A_\rho + \phicap \partial_\rho A_\phi + \zcap \partial_\rho A_z } \\
&\quad + \frac{\phicap}{\rho} \lr{ \partial_\phi(\rhocap A_\rho) + \partial_\phi(\phicap A_\phi) + \zcap \partial_\phi A_z } \\
&\quad + \zcap \lr{ \rhocap \partial_z A_\rho + \phicap \partial_z A_\phi + \zcap \partial_z A_z } \\
&=
\quad \partial_\rho A_\rho + \rhocap \phicap \partial_\rho A_\phi + \rhocap \zcap \partial_\rho A_z \\
&\quad +\frac{1}{\rho} \lr{ A_\rho + \phicap \rhocap \partial_\phi A_\rho – \phicap \rhocap A_\phi + \partial_\phi A_\phi + \phicap \zcap \partial_\phi A_z } \\
&\quad + \zcap \rhocap \partial_z A_\rho + \zcap \phicap \partial_z A_\phi + \partial_z A_z \\
&=
\quad \partial_\rho A_\rho + \frac{1}{\rho} \lr{ A_\rho + \partial_\phi A_\phi } + \partial_z A_z \\
&\quad +
\zcap \rhocap \lr{
\partial_z A_\rho
-\partial_\rho A_z
} \\
&\quad +
\phicap \zcap \lr{
\inv{\rho} \partial_\phi A_z
– \partial_z A_\phi
} \\
&\quad +
\rhocap \phicap \lr{
\partial_\rho A_\phi
– \inv{\rho} \lr{ \partial_\phi A_\rho – A_\phi }
},
\end{aligned}
\end{equation}

As expected, we see that the gradient splits nicely into a dot and curl

\begin{equation}\label{eqn:laplacianCylindrical:160}
\begin{aligned}
\spacegrad \BA
&= \spacegrad \cdot \BA + \spacegrad \wedge \BA \\
&= \spacegrad \cdot \BA + \rhocap \phicap \zcap (\spacegrad \cross \BA ),
\end{aligned}
\end{equation}

where the cylindrical representation of the divergence is seen to be

\begin{equation}\label{eqn:laplacianCylindrical:140}
\spacegrad \cdot \BA
=
\inv{\rho} \partial_\rho (\rho A_\rho) + \frac{1}{\rho} \partial_\phi A_\phi + \partial_z A_z,
\end{equation}

and the cylindrical representation of the curl is

\begin{equation}\label{eqn:laplacianCylindrical:180}
\spacegrad \cross \BA
=
\rhocap
\lr{
\inv{\rho} \partial_\phi A_z
– \partial_z A_\phi
}
+
\phicap
\lr{
\partial_z A_\rho
-\partial_\rho A_z
}
+
\inv{\rho} \zcap \lr{
\partial_\rho ( \rho A_\phi )
– \partial_\phi A_\rho
}.
\end{equation}

Should we want to, it is now possible to evaluate the Laplacian of \( \BA \) using
\ref{eqn:laplacianCylindrical:20}
, which will have the following components

\begin{equation}\label{eqn:laplacianCylindrical:220}
\begin{aligned}
\rhocap \cdot \lr{ \spacegrad^2 \BA }
&=
\partial_\rho
\lr{
\inv{\rho} \partial_\rho (\rho A_\rho) + \frac{1}{\rho} \partial_\phi A_\phi + \partial_z A_z
}

\lr{
\inv{\rho} \partial_\phi \lr{
\inv{\rho} \lr{
\partial_\rho ( \rho A_\phi ) – \partial_\phi A_\rho
}
}
– \partial_z \lr{
\partial_z A_\rho -\partial_\rho A_z
}
} \\
&=
\partial_\rho \lr{ \inv{\rho} \partial_\rho (\rho A_\rho)}
+ \partial_\rho \lr{ \frac{1}{\rho} \partial_\phi A_\phi}
+ \partial_{\rho z} A_z
– \inv{\rho^2}\partial_{\phi \rho} ( \rho A_\phi )
+ \inv{\rho^2}\partial_{\phi\phi} A_\rho
+ \partial_{zz} A_\rho
– \partial_{z\rho} A_z \\
&=
\partial_\rho \lr{ \inv{\rho} \partial_\rho (\rho A_\rho)}
+ \inv{\rho^2}\partial_{\phi\phi} A_\rho
+ \partial_{zz} A_\rho
– \frac{1}{\rho^2} \partial_\phi A_\phi
+ \frac{1}{\rho} \partial_{\rho\phi} A_\phi
– \inv{\rho^2}\partial_{\phi} A_\phi
– \inv{\rho}\partial_{\phi\rho} A_\phi \\
&=
\partial_\rho \lr{ \inv{\rho} \partial_\rho (\rho A_\rho)}
+ \inv{\rho^2}\partial_{\phi\phi} A_\rho
+ \partial_{zz} A_\rho
– \frac{2}{\rho^2} \partial_\phi A_\phi \\
&=
\inv{\rho} \partial_\rho \lr{ \rho \partial_\rho A_\rho}
+ \inv{\rho^2}\partial_{\phi\phi} A_\rho
+ \partial_{zz} A_\rho
– \frac{A_\rho}{\rho^2}
– \frac{2}{\rho^2} \partial_\phi A_\phi,
\end{aligned}
\end{equation}

\begin{equation}\label{eqn:laplacianCylindrical:240}
\begin{aligned}
\phicap \cdot \lr{ \spacegrad^2 \BA }
&=
\inv{\rho} \partial_\phi
\lr{
\inv{\rho} \partial_\rho (\rho A_\rho) + \frac{1}{\rho} \partial_\phi A_\phi + \partial_z A_z
}

\lr{
\lr{
\partial_z \lr{
\inv{\rho} \partial_\phi A_z – \partial_z A_\phi
}
-\partial_\rho \lr{
\inv{\rho} \lr{ \partial_\rho ( \rho A_\phi ) – \partial_\phi A_\rho}
}
}
} \\
&=
\inv{\rho^2} \partial_{\phi\rho} (\rho A_\rho)
+ \frac{1}{\rho^2} \partial_{\phi\phi} A_\phi
+ \inv{\rho}\partial_{\phi z} A_z
– \inv{\rho} \partial_{z\phi} A_z
+ \partial_{z z} A_\phi
+\partial_\rho \lr{ \inv{\rho} \partial_\rho ( \rho A_\phi ) }
– \partial_\rho \lr{ \inv{\rho} \partial_\phi A_\rho} \\
&=
\partial_\rho \lr{ \inv{\rho} \partial_\rho ( \rho A_\phi ) }
+ \frac{1}{\rho^2} \partial_{\phi\phi} A_\phi
+ \partial_{z z} A_\phi
+ \inv{\rho^2} \partial_{\phi\rho} (\rho A_\rho)
+ \inv{\rho}\partial_{\phi z} A_z
– \inv{\rho} \partial_{z\phi} A_z
– \partial_\rho \lr{ \inv{\rho} \partial_\phi A_\rho} \\
&=
\partial_\rho \lr{ \inv{\rho} \partial_\rho ( \rho A_\phi ) }
+ \frac{1}{\rho^2} \partial_{\phi\phi} A_\phi
+ \partial_{z z} A_\phi
+ \inv{\rho^2} \partial_{\phi} A_\rho
+ \inv{\rho} \partial_{\phi\rho} A_\rho
+ \inv{\rho^2} \partial_\phi A_\rho
– \inv{\rho} \partial_{\rho\phi} A_\rho \\
&=
\partial_\rho \lr{ \inv{\rho} \partial_\rho ( \rho A_\phi ) }
+ \frac{1}{\rho^2} \partial_{\phi\phi} A_\phi
+ \partial_{z z} A_\phi
+ \frac{2}{\rho^2} \partial_{\phi} A_\rho \\
&=
\inv{\rho} \partial_\rho \lr{ \rho \partial_\rho A_\phi }
+ \frac{1}{\rho^2} \partial_{\phi\phi} A_\phi
+ \partial_{z z} A_\phi
+ \frac{2}{\rho^2} \partial_{\phi} A_\rho
– \frac{A_\phi}{\rho^2},
\end{aligned}
\end{equation}

\begin{equation}\label{eqn:laplacianCylindrical:260}
\begin{aligned}
\zcap \cdot \lr{ \spacegrad^2 \BA }
&=
\partial_z
\lr{
\inv{\rho} \partial_\rho (\rho A_\rho) + \frac{1}{\rho} \partial_\phi A_\phi + \partial_z A_z
}

\inv{\rho} \lr{
\partial_\rho \lr{ \rho \lr{
\partial_z A_\rho -\partial_\rho A_z
}
}
– \partial_\phi \lr{
\inv{\rho} \partial_\phi A_z – \partial_z A_\phi
}
} \\
&=
\inv{\rho} \partial_{z\rho} (\rho A_\rho)
+ \frac{1}{\rho} \partial_{z\phi} A_\phi
+ \partial_{zz} A_z
– \inv{\rho}\partial_\rho \lr{ \rho \partial_z A_\rho }
+ \inv{\rho}\partial_\rho \lr{ \rho \partial_\rho A_z }
+ \inv{\rho^2} \partial_{\phi\phi} A_z
– \inv{\rho} \partial_{\phi z} A_\phi \\
&=
\inv{\rho}\partial_\rho \lr{ \rho \partial_\rho A_z }
+ \inv{\rho^2} \partial_{\phi\phi} A_z
+ \partial_{zz} A_z
+ \inv{\rho} \partial_{z} A_\rho
+\partial_{z\rho} A_\rho
+ \frac{1}{\rho} \partial_{z\phi} A_\phi
– \inv{\rho}\partial_z A_\rho
– \partial_{\rho z} A_\rho
– \inv{\rho} \partial_{\phi z} A_\phi \\
&=
\inv{\rho}\partial_\rho \lr{ \rho \partial_\rho A_z }
+ \inv{\rho^2} \partial_{\phi\phi} A_z
+ \partial_{zz} A_z
\end{aligned}
\end{equation}

Evaluating these was a fairly tedious and mechanical job, and would have been better suited to a computer algebra system than by hand as done here.

Explicit cylindrical Laplacian

Let’s try this a different way. The most obvious potential strategy is to just apply the Laplacian to the vector itself, but we need to include the unit vectors in such an operation

\begin{equation}\label{eqn:laplacianCylindrical:280}
\spacegrad^2 \BA =
\spacegrad^2 \lr{ \rhocap A_\rho + \phicap A_\phi + \zcap A_z }.
\end{equation}

First we need to know the explicit form of the cylindrical Laplacian. From the painful expansion, we can guess that it is

\begin{equation}\label{eqn:laplacianCylindrical:300}
\spacegrad^2 \psi
=
\inv{\rho}\partial_\rho \lr{ \rho \partial_\rho \psi }
+ \inv{\rho^2} \partial_{\phi\phi} \psi
+ \partial_{zz} \psi.
\end{equation}

Let’s check that explicitly. Here I use the vector product where \( \rhocap^2 = \phicap^2 = \zcap^2 = 1 \), and these vectors anticommute when different

\begin{equation}\label{eqn:laplacianCylindrical:320}
\begin{aligned}
\spacegrad^2 \psi
&=
\lr{ \rhocap \partial_\rho + \frac{\phicap}{\rho} \partial_\phi + \zcap \partial_z }
\lr{ \rhocap \partial_\rho \psi + \frac{\phicap}{\rho} \partial_\phi \psi + \zcap \partial_z \psi } \\
&=
\rhocap \partial_\rho
\lr{ \rhocap \partial_\rho \psi + \frac{\phicap}{\rho} \partial_\phi \psi + \zcap \partial_z \psi }
+ \frac{\phicap}{\rho} \partial_\phi
\lr{ \rhocap \partial_\rho \psi + \frac{\phicap}{\rho} \partial_\phi \psi + \zcap \partial_z \psi }
+ \zcap \partial_z
\lr{ \rhocap \partial_\rho \psi + \frac{\phicap}{\rho} \partial_\phi \psi + \zcap \partial_z \psi } \\
&=
\partial_{\rho\rho} \psi
+ \rhocap \phicap \partial_\rho \lr{ \frac{1}{\rho} \partial_\phi \psi}
+ \rhocap \zcap \partial_{\rho z} \psi
+ \frac{\phicap}{\rho} \partial_\phi \lr{ \rhocap \partial_\rho \psi }
+ \frac{\phicap}{\rho} \partial_\phi \lr{ \frac{\phicap}{\rho} \partial_\phi \psi }
+ \frac{\phicap \zcap }{\rho} \partial_{\phi z} \psi
+ \zcap \rhocap \partial_{z\rho} \psi
+ \frac{\zcap \phicap}{\rho} \partial_{z\phi} \psi
+ \partial_{zz} \psi \\
&=
\partial_{\rho\rho} \psi
+ \inv{\rho} \partial_\rho \psi
+ \frac{1}{\rho^2} \partial_{\phi \phi} \psi
+ \partial_{zz} \psi
+ \rhocap \phicap
\lr{
-\frac{1}{\rho^2} \partial_\phi \psi
+\frac{1}{\rho} \partial_{\rho \phi} \psi
-\inv{\rho} \partial_{\phi \rho} \psi
+ \frac{1}{\rho^2} \partial_\phi \psi
}
+ \zcap \rhocap \lr{
-\partial_{\rho z} \psi
+ \partial_{z\rho} \psi
}
+ \phicap \zcap \lr{
\inv{\rho} \partial_{\phi z} \psi
– \inv{\rho} \partial_{z\phi} \psi
} \\
&=
\partial_{\rho\rho} \psi
+ \inv{\rho} \partial_\rho \psi
+ \frac{1}{\rho^2} \partial_{\phi \phi} \psi
+ \partial_{zz} \psi,
\end{aligned}
\end{equation}

so the Laplacian operator is

\begin{equation}\label{eqn:laplacianCylindrical:340}
\boxed{
\spacegrad^2
=
\inv{\rho} \PD{\rho}{} \lr{ \rho \PD{\rho}{} }
+ \frac{1}{\rho^2} \PDSq{\phi}{}
+ \PDSq{z}{}.
}
\end{equation}

All the bivector grades of the Laplacian operator are seen to explicitly cancel, regardless of the grade of \( \psi \), just as if we had expanded the scalar Laplacian as a dot product
\( \spacegrad^2 \psi = \spacegrad \cdot \lr{ \spacegrad \psi} \).
Unlike such a scalar expansion, this derivation is seen to be valid for any grade \( \psi \). We know now that we can trust this result when \( \psi \) is a scalar, a vector, a bivector, a trivector, or even a multivector.

Vector Laplacian

Now that we trust that the typical scalar form of the Laplacian applies equally well to multivectors as it does to scalars, that cylindrical coordinate operator can now be applied to a
vector. Consider the projections onto each of the directions in turn

\begin{equation}\label{eqn:laplacianCylindrical:360}
\spacegrad^2 \lr{ \rhocap A_\rho }
=
\rhocap \inv{\rho} \partial_\rho \lr{ \rho \partial_\rho A_\rho }
+ \frac{1}{\rho^2} \partial_{\phi\phi} \lr{\rhocap A_\rho}
+ \rhocap \partial_{zz} A_\rho
\end{equation}

\begin{equation}\label{eqn:laplacianCylindrical:380}
\begin{aligned}
\partial_{\phi\phi} \lr{\rhocap A_\rho}
&=
\partial_\phi \lr{ \phicap A_\rho + \rhocap \partial_\phi A_\rho } \\
&=
-\rhocap A_\rho
+\phicap \partial_\phi A_\rho
+ \phicap \partial_\phi A_\rho
+ \rhocap \partial_{\phi\phi} A_\rho \\
&=
\rhocap \lr{ \partial_{\phi\phi} A_\rho -A_\rho }
+ 2 \phicap \partial_\phi A_\rho
\end{aligned}
\end{equation}

so this component of the vector Laplacian is

\begin{equation}\label{eqn:laplacianCylindrical:400}
\begin{aligned}
\spacegrad^2 \lr{ \rhocap A_\rho }
&=
\rhocap
\lr{
\inv{\rho} \partial_\rho \lr{ \rho \partial_\rho A_\rho }
+ \inv{\rho^2} \partial_{\phi\phi} A_\rho
– \inv{\rho^2} A_\rho
+ \partial_{zz} A_\rho
}
+
\phicap
\lr{
2 \inv{\rho^2} \partial_\phi A_\rho
} \\
&=
\rhocap \lr{
\spacegrad^2 A_\rho
– \inv{\rho^2} A_\rho
}
+
\phicap
\frac{2}{\rho^2} \partial_\phi A_\rho
.
\end{aligned}
\end{equation}

The Laplacian for the projection of the vector onto the \( \phicap \) direction is

\begin{equation}\label{eqn:laplacianCylindrical:420}
\spacegrad^2 \lr{ \phicap A_\phi }
=
\phicap \inv{\rho} \partial_\rho \lr{ \rho \partial_\rho A_\phi }
+ \frac{1}{\rho^2} \partial_{\phi\phi} \lr{\phicap A_\phi}
+ \phicap \partial_{zz} A_\phi,
\end{equation}

Again, since the unit vectors are \( \phi \) dependent, the \( \phi \) derivatives have to be treated carefully

\begin{equation}\label{eqn:laplacianCylindrical:440}
\begin{aligned}
\partial_{\phi\phi} \lr{\phicap A_\phi}
&=
\partial_{\phi} \lr{-\rhocap A_\phi + \phicap \partial_\phi A_\phi} \\
&=
-\phicap A_\phi
-\rhocap \partial_\phi A_\phi
– \rhocap \partial_\phi A_\phi
+ \phicap \partial_{\phi \phi} A_\phi \\
&=
– 2 \rhocap \partial_\phi A_\phi
+
\phicap
\lr{
\partial_{\phi \phi} A_\phi
– A_\phi
},
\end{aligned}
\end{equation}

so the Laplacian of this projection is
\begin{equation}\label{eqn:laplacianCylindrical:460}
\begin{aligned}
\spacegrad^2 \lr{ \phicap A_\phi }
&=
\phicap
\lr{
\inv{\rho} \partial_\rho \lr{ \rho \partial_\rho A_\phi }
+ \phicap \partial_{zz} A_\phi,
\inv{\rho^2} \partial_{\phi \phi} A_\phi
– \frac{A_\phi }{\rho^2}
}
– \rhocap \frac{2}{\rho^2} \partial_\phi A_\phi \\
&=
\phicap \lr{
\spacegrad^2 A_\phi
– \frac{A_\phi}{\rho^2}
}
– \rhocap \frac{2}{\rho^2} \partial_\phi A_\phi.
\end{aligned}
\end{equation}

Since \( \zcap \) is fixed we have

\begin{equation}\label{eqn:laplacianCylindrical:480}
\spacegrad^2 \zcap A_z
=
\zcap \spacegrad^2 A_z.
\end{equation}

Putting all the pieces together we have
\begin{equation}\label{eqn:laplacianCylindrical:500}
\boxed{
\spacegrad^2 \BA
=
\rhocap \lr{
\spacegrad^2 A_\rho
– \inv{\rho^2} A_\rho
– \frac{2}{\rho^2} \partial_\phi A_\phi
}
+\phicap \lr{
\spacegrad^2 A_\phi
– \frac{A_\phi}{\rho^2}
+ \frac{2}{\rho^2} \partial_\phi A_\rho
}
+
\zcap \spacegrad^2 A_z.
}
\end{equation}

This matches the results of \ref{eqn:laplacianCylindrical:220}, …, from the painful expansion of
\( \spacegrad \lr{ \spacegrad \cdot \BA } – \spacegrad \cross \lr{ \spacegrad \cross \BA } \).

Magnetic moment for a localized magnetostatic current

October 13, 2016 math and physics play , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

Motivation.

I was once again reading my Jackson [2]. This time I found that his presentation of magnetic moment didn’t really make sense to me. Here’s my own pass through it, filling in a number of details. As I did last time, I’ll also translate into SI units as I go.

Vector potential.

The Biot-Savart expression for the magnetic field can be factored into a curl expression using the usual tricks

\begin{equation}\label{eqn:magneticMomentJackson:20}
\begin{aligned}
\BB
&= \frac{\mu_0}{4\pi} \int \frac{\BJ(\Bx’) \cross (\Bx – \Bx’)}{\Abs{\Bx – \Bx’}^3} d^3 x’ \\
&= -\frac{\mu_0}{4\pi} \int \BJ(\Bx’) \cross \spacegrad \inv{\Abs{\Bx – \Bx’}} d^3 x’ \\
&= \frac{\mu_0}{4\pi} \spacegrad \cross \int \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’,
\end{aligned}
\end{equation}

so the vector potential, through its curl, defines the magnetic field \( \BB = \spacegrad \cross \BA \) is given by

\begin{equation}\label{eqn:magneticMomentJackson:40}
\BA(\Bx) = \frac{\mu_0}{4 \pi} \int \frac{J(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’.
\end{equation}

If the current source is localized (zero outside of some finite region), then there will always be a region for which \( \Abs{\Bx} \gg \Abs{\Bx’} \), so the denominator yields to Taylor expansion

\begin{equation}\label{eqn:magneticMomentJackson:60}
\begin{aligned}
\inv{\Abs{\Bx – \Bx’}}
&=
\inv{\Abs{\Bx}} \lr{1 + \frac{\Abs{\Bx’}^2}{\Abs{\Bx}^2} – 2 \frac{\Bx \cdot \Bx’}{\Abs{\Bx}^2} }^{-1/2} \\
&\approx
\inv{\Abs{\Bx}} \lr{ 1 + \frac{\Bx \cdot \Bx’}{\Abs{\Bx}^2} } \\
&=
\inv{\Abs{\Bx}} + \frac{\Bx \cdot \Bx’}{\Abs{\Bx}^3}.
\end{aligned}
\end{equation}

so the vector potential, far enough away from the current source is
\begin{equation}\label{eqn:magneticMomentJackson:80}
\BA(\Bx)
=
\frac{\mu_0}{4 \pi} \int \frac{J(\Bx’)}{\Abs{\Bx}} d^3 x’
+\frac{\mu_0}{4 \pi} \int \frac{(\Bx \cdot \Bx’)J(\Bx’)}{\Abs{\Bx}^3} d^3 x’.
\end{equation}

Jackson uses a sneaky trick to show that the first integral is killed for a localized source. That trick appears to be based on evaluating the following divergence

\begin{equation}\label{eqn:magneticMomentJackson:100}
\begin{aligned}
\spacegrad \cdot (\BJ(\Bx) x_i)
&=
(\spacegrad \cdot \BJ) x_i
+
(\spacegrad x_i) \cdot \BJ \\
&=
(\Be_k \partial_k x_i) \cdot\BJ \\
&=
\delta_{ki} J_k \\
&=
J_i.
\end{aligned}
\end{equation}

Note that this made use of the fact that \( \spacegrad \cdot \BJ = 0 \) for magnetostatics. This provides a way to rewrite the current density as a divergence

\begin{equation}\label{eqn:magneticMomentJackson:120}
\begin{aligned}
\int \frac{J(\Bx’)}{\Abs{\Bx}} d^3 x’
&=
\Be_i \int \frac{\spacegrad’ \cdot (x_i’ \BJ(\Bx’))}{\Abs{\Bx}} d^3 x’ \\
&=
\frac{\Be_i}{\Abs{\Bx}} \int \spacegrad’ \cdot (x_i’ \BJ(\Bx’)) d^3 x’ \\
&=
\frac{1}{\Abs{\Bx}} \oint \Bx’ (d\Ba \cdot \BJ(\Bx’)).
\end{aligned}
\end{equation}

When \( \BJ \) is localized, this is zero provided we pick the integration surface for the volume outside of that localization region.

It is now desired to rewrite \( \int \Bx \cdot \Bx’ \BJ \) as a triple cross product since the dot product of such a triple cross product has exactly this term in it

\begin{equation}\label{eqn:magneticMomentJackson:140}
\begin{aligned}
– \Bx \cross \int \Bx’ \cross \BJ
&=
\int (\Bx \cdot \Bx’) \BJ

\int (\Bx \cdot \BJ) \Bx’ \\
&=
\int (\Bx \cdot \Bx’) \BJ

\Be_k x_i \int J_i x_k’,
\end{aligned}
\end{equation}

so
\begin{equation}\label{eqn:magneticMomentJackson:160}
\int (\Bx \cdot \Bx’) \BJ
=
– \Bx \cross \int \Bx’ \cross \BJ
+
\Be_k x_i \int J_i x_k’.
\end{equation}

To get of this second term, the next sneaky trick is to consider the following divergence

\begin{equation}\label{eqn:magneticMomentJackson:180}
\begin{aligned}
\oint d\Ba’ \cdot (\BJ(\Bx’) x_i’ x_j’)
&=
\int dV’ \spacegrad’ \cdot (\BJ(\Bx’) x_i’ x_j’) \\
&=
\int dV’ (\spacegrad’ \cdot \BJ)
+
\int dV’ \BJ \cdot \spacegrad’ (x_i’ x_j’) \\
&=
\int dV’ J_k \cdot \lr{ x_i’ \partial_k x_j’ + x_j’ \partial_k x_i’ } \\
&=
\int dV’ \lr{J_k x_i’ \delta_{kj} + J_k x_j’ \delta_{ki}} \\
&=
\int dV’ \lr{J_j x_i’ + J_i x_j’}.
\end{aligned}
\end{equation}

The surface integral is once again zero, which means that we have an antisymmetric relationship in integrals of the form

\begin{equation}\label{eqn:magneticMomentJackson:200}
\int J_j x_i’ = -\int J_i x_j’.
\end{equation}

Now we can use the tensor algebra trick of writing \( y = (y + y)/2 \),

\begin{equation}\label{eqn:magneticMomentJackson:220}
\begin{aligned}
\int (\Bx \cdot \Bx’) \BJ
&=
– \Bx \cross \int \Bx’ \cross \BJ
+
\Be_k x_i \int J_i x_k’ \\
&=
– \Bx \cross \int \Bx’ \cross \BJ
+
\inv{2} \Be_k x_i \int \lr{ J_i x_k’ + J_i x_k’ } \\
&=
– \Bx \cross \int \Bx’ \cross \BJ
+
\inv{2} \Be_k x_i \int \lr{ J_i x_k’ – J_k x_i’ } \\
&=
– \Bx \cross \int \Bx’ \cross \BJ
+
\inv{2} \Be_k x_i \int (\BJ \cross \Bx’)_j \epsilon_{ikj} \\
&=
– \Bx \cross \int \Bx’ \cross \BJ

\inv{2} \epsilon_{kij} \Be_k x_i \int (\BJ \cross \Bx’)_j \\
&=
– \Bx \cross \int \Bx’ \cross \BJ

\inv{2} \Bx \cross \int \BJ \cross \Bx’ \\
&=
– \Bx \cross \int \Bx’ \cross \BJ
+
\inv{2} \Bx \cross \int \Bx’ \cross \BJ \\
&=
-\inv{2} \Bx \cross \int \Bx’ \cross \BJ,
\end{aligned}
\end{equation}

so

\begin{equation}\label{eqn:magneticMomentJackson:240}
\BA(\Bx) \approx \frac{\mu_0}{4 \pi \Abs{\Bx}^3} \lr{ -\frac{\Bx}{2} } \int \Bx’ \cross \BJ(\Bx’) d^3 x’.
\end{equation}

Letting

\begin{equation}\label{eqn:magneticMomentJackson:260}
\boxed{
\Bm = \inv{2} \int \Bx’ \cross \BJ(\Bx’) d^3 x’,
}
\end{equation}

the far field approximation of the vector potential is
\begin{equation}\label{eqn:magneticMomentJackson:280}
\boxed{
\BA(\Bx) = \frac{\mu_0}{4 \pi} \frac{\Bm \cross \Bx}{\Abs{\Bx}^3}.
}
\end{equation}

Note that when the current is restricted to an infintisimally thin loop, the magnetic moment reduces to

\begin{equation}\label{eqn:magneticMomentJackson:300}
\Bm(\Bx) = \frac{I}{2} \int \Bx \cross d\Bl’.
\end{equation}

Refering to [1] (pr. 1.60), this can be seen to be \( I \) times the “vector-area” integral.

References

[1] David Jeffrey Griffiths and Reed College. Introduction to electrodynamics. Prentice hall Upper Saddle River, NJ, 3rd edition, 1999.

[2] JD Jackson. Classical Electrodynamics. John Wiley and Sons, 2nd edition, 1975.

Corollaries to Stokes and Divergence theorems

October 12, 2016 math and physics play , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

In [1] a few problems are set to prove some variations of Stokes theorem. He gives some cool tricks to prove each one using just the classic 3D Stokes and divergence theorems. We can also do them directly from the more general Stokes theorem \( \int d^k \Bx \cdot (\spacegrad \wedge F) = \oint d^{k-1} \Bx \cdot F \).

Question: Stokes theorem on scalar function. ([1] pr. 1.60a)

Prove
\begin{equation}\label{eqn:stokesCorollariesGriffiths:20}
\int \spacegrad T dV = \oint T d\Ba.
\end{equation}

Answer

The direct way to prove this is to apply Stokes theorem

\begin{equation}\label{eqn:stokesCorollariesGriffiths:80}
\int d^3 \Bx \cdot (\spacegrad \wedge T) = \oint d^2 \Bx \cdot T
\end{equation}

Here \( d^3 \Bx = d\Bx_1 \wedge d\Bx_2 \wedge d\Bx_3 \), a pseudoscalar (trivector) volume element, and the wedge and dot products take their most general meanings. For \(k\)-blade \( F \), and \(k’\)-blade \( F’ \), that is

\begin{equation}\label{eqn:stokesCorollariesGriffiths:100}
\begin{aligned}
F \wedge F’ &= \gpgrade{F F’}{k+k’} \\
F \cdot F’ &= \gpgrade{F F’}{\Abs{k-k’}}
\end{aligned}
\end{equation}

With \( d^3\Bx = I dV \), and \( d^2 \Bx = I \ncap dA = I d\Ba \), we have

\begin{equation}\label{eqn:stokesCorollariesGriffiths:120}
\int I dV \spacegrad T = \oint I d\Ba T.
\end{equation}

Cancelling the factors of \( I \) proves the result.

Griffith’s trick to do this was to let \( \Bv = \Bc T \), where \( \Bc \) is a constant. For this, the divergence theorem integral is

\begin{equation}\label{eqn:stokesCorollariesGriffiths:160}
\begin{aligned}
\int dV \spacegrad \cdot (\Bc T)
&=
\int dV \Bc \cdot \spacegrad T \\
&=
\Bc \cdot \int dV \spacegrad T \\
&=
\oint d\Ba \cdot (\Bc T) \\
&=
\Bc \cdot \oint d\Ba T.
\end{aligned}
\end{equation}

This is true for any constant \( \Bc \), so is also true for the unit vectors. This allows for summing projections in each of the unit directions

\begin{equation}\label{eqn:stokesCorollariesGriffiths:180}
\begin{aligned}
\int dV \spacegrad T
&=
\sum \Be_k \lr{ \Be_k \cdot \int dV \spacegrad T } \\
&=
\sum \Be_k \lr{ \Be_k \cdot \oint d\Ba T } \\
&=
\oint d\Ba T.
\end{aligned}
\end{equation}

Question: ([1] pr. 1.60b)

Prove
\begin{equation}\label{eqn:stokesCorollariesGriffiths:40}
\int \spacegrad \cross \Bv dV = -\oint \Bv \cross d\Ba.
\end{equation}

Answer

This also follows directly from the general Stokes theorem

\begin{equation}\label{eqn:stokesCorollariesGriffiths:200}
\int d^3 \Bx \cdot \lr{ \spacegrad \wedge \Bv } = \oint d^2 \Bx \cdot \Bv
\end{equation}

The volume integrand is

\begin{equation}\label{eqn:stokesCorollariesGriffiths:220}
\begin{aligned}
d^3 \Bx \cdot \lr{ \spacegrad \wedge \Bv }
&=
\gpgradeone{ I dV I \spacegrad \cross \Bv } \\
&=
-dV \spacegrad \cross \Bv,
\end{aligned}
\end{equation}

and the surface integrand is
\begin{equation}\label{eqn:stokesCorollariesGriffiths:240}
\begin{aligned}
d^2 \Bx \cdot \Bv
&=
\gpgradeone{ I d\Ba \Bv } \\
&=
\gpgradeone{ I (d\Ba \wedge \Bv) } \\
&=
I^2 (d\Ba \cross \Bv) \\
&=
-d\Ba \cross \Bv \\
&=
\Bv \cross d\Ba.
\end{aligned}
\end{equation}

Plugging these into \ref{eqn:stokesCorollariesGriffiths:200} proves the result.

Griffiths trick for the same is to apply the divergence theorem to \( \Bv \cross \Bc \). Such a volume integral is

\begin{equation}\label{eqn:stokesCorollariesGriffiths:260}
\begin{aligned}
\int dV \spacegrad \cdot (\Bv \cross \Bc)
&=
\int dV \Bc \cdot (\spacegrad \cross \Bv) \\
&=
\Bc \cdot \int dV \spacegrad \cross \Bv.
\end{aligned}
\end{equation}

This must equal
\begin{equation}\label{eqn:stokesCorollariesGriffiths:280}
\begin{aligned}
\oint d\Ba \cdot (\Bv \cross \Bc)
&=
\Bc \cdot \oint d\Ba \cross \Bv \\
&=
-\Bc \cdot \oint \Bv \cross d\Ba
\end{aligned}
\end{equation}

Again, assembling projections, we have
\begin{equation}\label{eqn:stokesCorollariesGriffiths:300}
\begin{aligned}
\int dV \spacegrad \cross \Bv
&=
\sum \Be_k \lr{ \Be_k \cdot \int dV \spacegrad \cross \Bv } \\
&=
-\sum \Be_k \lr{ \Be_k \cdot \oint \Bv \cross d\Ba } \\
&=
-\oint \Bv \cross d\Ba.
\end{aligned}
\end{equation}

Question: ([1] pr. 1.60e)

Prove
\begin{equation}\label{eqn:stokesCorollariesGriffiths:60}
\int \spacegrad T \cross d\Ba = -\oint T d\Bl.
\end{equation}

Answer

This one follows from
\begin{equation}\label{eqn:stokesCorollariesGriffiths:320}
\int d^2 \Bx \cdot \lr{ \spacegrad \wedge T } = \oint d^1 \Bx \cdot T.
\end{equation}

The surface integrand can be written
\begin{equation}\label{eqn:stokesCorollariesGriffiths:340}
\begin{aligned}
d^2 \Bx \cdot \lr{ \spacegrad \wedge T }
&=
\gpgradeone{ I d\Ba \spacegrad T } \\
&=
I (d\Ba \wedge \spacegrad T ) \\
&=
I^2 ( d\Ba \cross \spacegrad T ) \\
&=
-d\Ba \cross \spacegrad T.
\end{aligned}
\end{equation}

The line integrand is

\begin{equation}\label{eqn:stokesCorollariesGriffiths:360}
d^1 \Bx \cdot T = d^1 \Bx T.
\end{equation}

Given a two parameter representation of the surface area element \( d^2 \Bx = d\Bx_1 \wedge d\Bx_2 \), the line element representation is
\begin{equation}\label{eqn:stokesCorollariesGriffiths:380}
\begin{aligned}
d^1 \Bx
&= (\Bx_1 \wedge d\Bx_2) \cdot \Bx^1 + (d\Bx_1 \wedge \Bx_2) \cdot \Bx^2 \\
&= -d\Bx_2 + d\Bx_1,
\end{aligned}
\end{equation}

giving

\begin{equation}\label{eqn:stokesCorollariesGriffiths:400}
\begin{aligned}
-\int d\Ba \cross \spacegrad T
&=
\int
-\evalbar{\lr{ \PD{u_2}{\Bx} T }}{\Delta u_1} du_2
+\evalbar{\lr{ \PD{u_1}{\Bx} T }}{\Delta u_2} du_1 \\
&=
-\oint d\Bl T,
\end{aligned}
\end{equation}

or
\begin{equation}\label{eqn:stokesCorollariesGriffiths:420}
\int \spacegrad T \cross d\Ba
=
-\oint d\Bl T.
\end{equation}

Griffiths trick for the same is to use \( \Bv = \Bc T \) for constant \( \Bc \) in (the usual 3D) Stokes’ theorem. That is

\begin{equation}\label{eqn:stokesCorollariesGriffiths:440}
\begin{aligned}
\int d\Ba \cdot (\spacegrad \cross (\Bc T))
&=
\Bc \cdot \int d\Ba \cross \spacegrad T \\
&=
-\Bc \cdot \int \spacegrad T \cross d\Ba \\
&=
\oint d\Bl \cdot (\Bc T) \\
&=
\Bc \cdot \oint d\Bl T.
\end{aligned}
\end{equation}

Again assembling projections we have
\begin{equation}\label{eqn:stokesCorollariesGriffiths:460}
\begin{aligned}
\int \spacegrad T \cross d\Ba
&=
\sum \Be_k \lr{ \Be_k \cdot \int \spacegrad T \cross d\Ba} \\
&=
-\sum \Be_k \lr{ \Be_k \cdot \oint d\Bl T } \\
&=
-\oint d\Bl T.
\end{aligned}
\end{equation}

References

[1] David Jeffrey Griffiths and Reed College. Introduction to electrodynamics. Prentice hall Upper Saddle River, NJ, 3rd edition, 1999.

Helmholtz theorem

October 1, 2016 math and physics play , , , , , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

This is a problem from ece1228. I attempted solutions in a number of ways. One using Geometric Algebra, one devoid of that algebra, and then this method, which combined aspects of both. Of the three methods I tried to obtain this result, this is the most compact and elegant. It does however, require a fair bit of Geometric Algebra knowledge, including the Fundamental Theorem of Geometric Calculus, as detailed in [1], [3] and [2].

Question: Helmholtz theorem

Prove the first Helmholtz’s theorem, i.e. if vector \(\BM\) is defined by its divergence

\begin{equation}\label{eqn:helmholtzDerviationMultivector:20}
\spacegrad \cdot \BM = s
\end{equation}

and its curl
\begin{equation}\label{eqn:helmholtzDerviationMultivector:40}
\spacegrad \cross \BM = \BC
\end{equation}

within a region and its normal component \( \BM_{\textrm{n}} \) over the boundary, then \( \BM \) is
uniquely specified.

Answer

The gradient of the vector \( \BM \) can be written as a single even grade multivector

\begin{equation}\label{eqn:helmholtzDerviationMultivector:60}
\spacegrad \BM
= \spacegrad \cdot \BM + I \spacegrad \cross \BM
= s + I \BC.
\end{equation}

We will use this to attempt to discover the relation between the vector \( \BM \) and its divergence and curl. We can express \( \BM \) at the point of interest as a convolution with the delta function at all other points in space

\begin{equation}\label{eqn:helmholtzDerviationMultivector:80}
\BM(\Bx) = \int_V dV’ \delta(\Bx – \Bx’) \BM(\Bx’).
\end{equation}

The Laplacian representation of the delta function in \R{3} is

\begin{equation}\label{eqn:helmholtzDerviationMultivector:100}
\delta(\Bx – \Bx’) = -\inv{4\pi} \spacegrad^2 \inv{\Abs{\Bx – \Bx’}},
\end{equation}

so \( \BM \) can be represented as the following convolution

\begin{equation}\label{eqn:helmholtzDerviationMultivector:120}
\BM(\Bx) = -\inv{4\pi} \int_V dV’ \spacegrad^2 \inv{\Abs{\Bx – \Bx’}} \BM(\Bx’).
\end{equation}

Using this relation and proceeding with a few applications of the chain rule, plus the fact that \( \spacegrad 1/\Abs{\Bx – \Bx’} = -\spacegrad’ 1/\Abs{\Bx – \Bx’} \), we find

\begin{equation}\label{eqn:helmholtzDerviationMultivector:720}
\begin{aligned}
-4 \pi \BM(\Bx)
&= \int_V dV’ \spacegrad^2 \inv{\Abs{\Bx – \Bx’}} \BM(\Bx’) \\
&= \gpgradeone{\int_V dV’ \spacegrad^2 \inv{\Abs{\Bx – \Bx’}} \BM(\Bx’)} \\
&= -\gpgradeone{\int_V dV’ \spacegrad \lr{ \spacegrad’ \inv{\Abs{\Bx – \Bx’}}} \BM(\Bx’)} \\
&= -\gpgradeone{\spacegrad \int_V dV’ \lr{
\spacegrad’ \frac{\BM(\Bx’)}{\Abs{\Bx – \Bx’}}
-\frac{\spacegrad’ \BM(\Bx’)}{\Abs{\Bx – \Bx’}}
} } \\
&=
-\gpgradeone{\spacegrad \int_{\partial V} dA’
\ncap \frac{\BM(\Bx’)}{\Abs{\Bx – \Bx’}}
}
+\gpgradeone{\spacegrad \int_V dV’
\frac{s(\Bx’) + I\BC(\Bx’)}{\Abs{\Bx – \Bx’}}
} \\
&=
-\gpgradeone{\spacegrad \int_{\partial V} dA’
\ncap \frac{\BM(\Bx’)}{\Abs{\Bx – \Bx’}}
}
+\spacegrad \int_V dV’
\frac{s(\Bx’)}{\Abs{\Bx – \Bx’}}
+\spacegrad \cdot \int_V dV’
\frac{I\BC(\Bx’)}{\Abs{\Bx – \Bx’}}.
\end{aligned}
\end{equation}

By inserting a no-op grade selection operation in the second step, the trivector terms that would show up in subsequent steps are automatically filtered out. This leaves us with a boundary term dependent on the surface and the normal and tangential components of \( \BM \). Added to that is a pair of volume integrals that provide the unique dependence of \( \BM \) on its divergence and curl. When the surface is taken to infinity, which requires \( \Abs{\BM}/\Abs{\Bx – \Bx’} \rightarrow 0 \), then the dependence of \( \BM \) on its divergence and curl is unique.

In order to express final result in traditional vector algebra form, a couple transformations are required. The first is that

\begin{equation}\label{eqn:helmholtzDerviationMultivector:800}
\gpgradeone{ \Ba I \Bb } = I^2 \Ba \cross \Bb = -\Ba \cross \Bb.
\end{equation}

For the grade selection in the boundary integral, note that

\begin{equation}\label{eqn:helmholtzDerviationMultivector:740}
\begin{aligned}
\gpgradeone{ \spacegrad \ncap \BX }
&=
\gpgradeone{ \spacegrad (\ncap \cdot \BX) }
+
\gpgradeone{ \spacegrad (\ncap \wedge \BX) } \\
&=
\spacegrad (\ncap \cdot \BX)
+
\gpgradeone{ \spacegrad I (\ncap \cross \BX) } \\
&=
\spacegrad (\ncap \cdot \BX)

\spacegrad \cross (\ncap \cross \BX).
\end{aligned}
\end{equation}

These give

\begin{equation}\label{eqn:helmholtzDerviationMultivector:721}
\boxed{
\begin{aligned}
\BM(\Bx)
&=
\spacegrad \inv{4\pi} \int_{\partial V} dA’ \ncap \cdot \frac{\BM(\Bx’)}{\Abs{\Bx – \Bx’}}

\spacegrad \cross \inv{4\pi} \int_{\partial V} dA’ \ncap \cross \frac{\BM(\Bx’)}{\Abs{\Bx – \Bx’}} \\
&-\spacegrad \inv{4\pi} \int_V dV’
\frac{s(\Bx’)}{\Abs{\Bx – \Bx’}}
+\spacegrad \cross \inv{4\pi} \int_V dV’
\frac{\BC(\Bx’)}{\Abs{\Bx – \Bx’}}.
\end{aligned}
}
\end{equation}

References

[1] C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University Press New York, Cambridge, UK, 1st edition, 2003.

[2] A. Macdonald. Vector and Geometric Calculus. CreateSpace Independent Publishing Platform, 2012.

[3] Garret Sobczyk and Omar Le’on S’anchez. Fundamental theorem of calculus. Advances in Applied Clifford Algebras, 21:221–231, 2011. URL https://arxiv.org/abs/0809.4526.

Does the divergence and curl uniquely determine the vector?

September 30, 2016 math and physics play , , , , , , , , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

A problem posed in the ece1228 problem set was the following

Helmholtz theorem.

Prove the first Helmholtz’s theorem, i.e. if vector \(\BM\) is defined by its divergence

\begin{equation}\label{eqn:emtProblemSet1Problem5:20}
\spacegrad \cdot \BM = s
\end{equation}

and its curl
\begin{equation}\label{eqn:emtProblemSet1Problem5:40}
\spacegrad \cross \BM = \BC
\end{equation}

within a region and its normal component \( \BM_{\textrm{n}} \) over the boundary, then \( \BM \) is uniquely specified.

Solution.

This problem screams for an attempt using Geometric Algebra techniques, since
the gradient of this vector can be written as a single even grade multivector

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:60}
\begin{aligned}
\spacegrad \BM
&= \spacegrad \cdot \BM + I \spacegrad \cross \BM \\
&= s + I \BC.
\end{aligned}
\end{equation}

Observe that the Laplacian of \( \BM \) is vector valued

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:400}
\spacegrad^2 \BM
= \spacegrad s + I \spacegrad \BC.
\end{equation}

This means that \( \spacegrad \BC \) must be a bivector \( \spacegrad \BC = \spacegrad \wedge \BC \), or that \( \BC \) has zero divergence

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:420}
\spacegrad \cdot \BC = 0.
\end{equation}

This required constraint on \( \BC \) will show up in subsequent analysis. An equivalent problem to the one posed
is to show that the even grade multivector equation \( \spacegrad \BM = s + I \BC \) has an inverse given the constraint
specified by \ref{eqn:emtProblemSet1Problem5AppendixGA:420}.

Inverting the gradient equation.

The Green’s function for the gradient can be found in [1], where it is used to generalize the Cauchy integral equations to higher dimensions.

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:80}
\begin{aligned}
G(\Bx ; \Bx’) &= \inv{4 \pi} \frac{ \Bx – \Bx’ }{\Abs{\Bx – \Bx’}^3} \\
\spacegrad \BG(\Bx, \Bx’) &= \spacegrad \cdot \BG(\Bx, \Bx’) = \delta(\Bx – \Bx’) = -\spacegrad’ \BG(\Bx, \Bx’).
\end{aligned}
\end{equation}

The inversion equation is an application of the Fundamental Theorem of (Geometric) Calculus, with the gradient operating bidirectionally on the Green’s function and the vector function

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:100}
\begin{aligned}
\oint_{\partial V} G(\Bx, \Bx’) d^2 \Bx’ \BM(\Bx’)
&=
\int_V G(\Bx, \Bx’) d^3 \Bx \lrspacegrad’ \BM(\Bx’) \\
&=
\int_V d^3 \Bx (G(\Bx, \Bx’) \lspacegrad’) \BM(\Bx’)
+
\int_V d^3 \Bx G(\Bx, \Bx’) (\spacegrad’ \BM(\Bx’)) \\
&=
-\int_V d^3 \Bx \delta(\Bx – \By) \BM(\Bx’)
+
\int_V d^3 \Bx G(\Bx, \Bx’) \lr{ s(\Bx’) + I \BC(\Bx’) } \\
&=
-I \BM(\Bx)
+
\inv{4 \pi} \int_V d^3 \Bx \frac{ \Bx – \Bx’}{ \Abs{\Bx – \Bx’}^3 } \lr{ s(\Bx’) + I \BC(\Bx’) }.
\end{aligned}
\end{equation}

The integrals are in terms of the primed coordinates so that the end result is a function of \( \Bx \). To rearrange for \( \BM \), let \( d^3 \Bx’ = I dV’ \), and \( d^2 \Bx’ \ncap(\Bx’) = I dA’ \), then right multiply with the pseudoscalar \( I \), noting that in \R{3} the pseudoscalar commutes with any grades

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:440}
\begin{aligned}
\BM(\Bx)
&=
I \oint_{\partial V} G(\Bx, \Bx’) I dA’ \ncap \BM(\Bx’)

I \inv{4 \pi} \int_V I dV’ \frac{ \Bx – \Bx’}{ \Abs{\Bx – \Bx’}^3 } \lr{ s(\Bx’) + I \BC(\Bx’) } \\
&=
-\oint_{\partial V} dA’ G(\Bx, \Bx’) \ncap \BM(\Bx’)
+
\inv{4 \pi} \int_V dV’ \frac{ \Bx – \Bx’}{ \Abs{\Bx – \Bx’}^3 } \lr{ s(\Bx’) + I \BC(\Bx’) }.
\end{aligned}
\end{equation}

This can be decomposed into a vector and a trivector equation. Let \( \Br = \Bx – \Bx’ = r \rcap \), and note that

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:500}
\begin{aligned}
\gpgradeone{ \rcap I \BC }
&=
\gpgradeone{ I \rcap \BC } \\
&=
I \rcap \wedge \BC \\
&=
-\rcap \cross \BC,
\end{aligned}
\end{equation}

so this pair of equations can be written as

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:520}
\begin{aligned}
\BM(\Bx)
&=
-\inv{4 \pi} \oint_{\partial V} dA’ \frac{\gpgradeone{ \rcap \ncap \BM(\Bx’) }}{r^2}
+
\inv{4 \pi} \int_V dV’ \lr{
\frac{\rcap}{r^2} s(\Bx’) –
\frac{\rcap}{r^2} \cross \BC(\Bx’) } \\
0
&=
-\inv{4 \pi} \oint_{\partial V} dA’ \frac{\rcap}{r^2} \wedge \ncap \wedge \BM(\Bx’)
+
\frac{I}{4 \pi} \int_V dV’ \frac{ \rcap \cdot \BC(\Bx’) }{r^2}.
\end{aligned}
\end{equation}

Trivector grades.

Consider the last integral in the pseudoscalar equation above. Since we expect no pseudoscalar components, this must be zero, or cancel perfectly. It’s not obvious that this is the case, but a transformation to a surface integral shows the constraints required for that to be the case. To do so note

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:540}
\begin{aligned}
\spacegrad \inv{\Bx – \Bx’}
&= -\spacegrad’ \inv{\Bx – \Bx’} \\
&=
-\frac{\Bx – \Bx’}{\Abs{\Bx – \Bx’}^3} \\
&= -\frac{\rcap}{r^2}.
\end{aligned}
\end{equation}

Using this and the chain rule we have

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:560}
\begin{aligned}
\frac{I}{4 \pi} \int_V dV’ \frac{ \rcap \cdot \BC(\Bx’) }{r^2}
&=
\frac{I}{4 \pi} \int_V dV’ \lr{ \spacegrad’ \inv{ r } } \cdot \BC(\Bx’) \\
&=
\frac{I}{4 \pi} \int_V dV’ \spacegrad’ \cdot \frac{\BC(\Bx’)}{r}

\frac{I}{4 \pi} \int_V dV’ \frac{ \spacegrad’ \cdot \BC(\Bx’) }{r} \\
&=
\frac{I}{4 \pi} \int_V dV’ \spacegrad’ \cdot \frac{\BC(\Bx’)}{r} \\
&=
\frac{I}{4 \pi} \int_{\partial V} dA’ \ncap(\Bx’) \cdot \frac{\BC(\Bx’)}{r}.
\end{aligned}
\end{equation}

The divergence of \( \BC \) above was killed by recalling the constraint \ref{eqn:emtProblemSet1Problem5AppendixGA:420}. This means that we can rewrite entirely as surface integral and eventually reduced to a single triple product

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:580}
\begin{aligned}
0
&=
-\frac{I}{4 \pi} \oint_{\partial V} dA’ \lr{
\frac{\rcap}{r^2} \cdot (\ncap \cross \BM(\Bx’))
-\ncap \cdot \frac{\BC(\Bx’)}{r}
} \\
&=
\frac{I}{4 \pi} \oint_{\partial V} dA’ \ncap \cdot \lr{
\frac{\rcap}{r^2} \cross \BM(\Bx’)
+ \frac{\BC(\Bx’)}{r}
} \\
&=
\frac{I}{4 \pi} \oint_{\partial V} dA’ \ncap \cdot \lr{
\lr{ \spacegrad’ \inv{r}} \cross \BM(\Bx’)
+ \frac{\BC(\Bx’)}{r}
} \\
&=
\frac{I}{4 \pi} \oint_{\partial V} dA’ \ncap \cdot \lr{
\spacegrad’ \cross \frac{\BM(\Bx’)}{r}
} \\
&=
\frac{I}{4 \pi} \oint_{\partial V} dA’
\spacegrad’ \cdot
\frac{\BM(\Bx’) \cross \ncap}{r}
&=
\frac{I}{4 \pi} \oint_{\partial V} dA’
\spacegrad’ \cdot
\frac{\BM(\Bx’) \cross \ncap}{r}.
\end{aligned}
\end{equation}

Final results.

Assembling things back into a single multivector equation, the complete inversion integral for \( \BM \) is

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:600}
\BM(\Bx)
=
\inv{4 \pi} \oint_{\partial V} dA’
\lr{
\spacegrad’ \wedge
\frac{\BM(\Bx’) \wedge \ncap}{r}
-\frac{\gpgradeone{ \rcap \ncap \BM(\Bx’) }}{r^2}
}
+
\inv{4 \pi} \int_V dV’ \lr{
\frac{\rcap}{r^2} s(\Bx’) –
\frac{\rcap}{r^2} \cross \BC(\Bx’) }.
\end{equation}

This shows that vector \( \BM \) can be recovered uniquely from \( s, \BC \) when \( \Abs{\BM}/r^2 \) vanishes on an infinite surface. If we restrict attention to a finite surface, we have to add to the fixed solution a specific solution that depends on the value of \( \BM \) on that surface. The vector portion of that surface integrand contains

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:640}
\begin{aligned}
\gpgradeone{ \rcap \ncap \BM }
&=
\rcap (\ncap \cdot \BM )
+
\rcap \cdot (\ncap \wedge \BM ) \\
&=
\rcap (\ncap \cdot \BM )
+
(\rcap \cdot \ncap) \BM

(\rcap \cdot \BM ) \ncap.
\end{aligned}
\end{equation}

The constraints required by a zero triple product \( \spacegrad’ \cdot (\BM(\Bx’) \cross \ncap(\Bx’)) \) are complicated on a such a general finite surface. Consider instead, for simplicity, the case of a spherical surface, which can be analyzed more easily. In that case the outward normal of the surface centred on the test charge point \( \Bx \) is \( \ncap = -\rcap \). The pseudoscalar integrand is not generally killed unless the divergence of its tangential component on this surface is zero. One way that this can occur is for \( \BM \cross \ncap = 0 \), so that \( -\gpgradeone{ \rcap \ncap \BM } = \BM = (\BM \cdot \ncap) \ncap = \BM_{\textrm{n}} \).

This gives

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:620}
\BM(\Bx)
=
\inv{4 \pi} \oint_{\Abs{\Bx – \Bx’} = r} dA’ \frac{\BM_{\textrm{n}}(\Bx’)}{r^2}
+
\inv{4 \pi} \int_V dV’ \lr{
\frac{\rcap}{r^2} s(\Bx’) +
\BC(\Bx’) \cross \frac{\rcap}{r^2} },
\end{equation}

or, in terms of potential functions, which is arguably tidier

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:300}
\boxed{
\BM(\Bx)
=
\inv{4 \pi} \oint_{\Abs{\Bx – \Bx’} = r} dA’ \frac{\BM_{\textrm{n}}(\Bx’)}{r^2}
-\spacegrad \int_V dV’ \frac{ s(\Bx’)}{ 4 \pi r }
+\spacegrad \cross \int_V dV’ \frac{ \BC(\Bx’) }{ 4 \pi r }.
}
\end{equation}

Commentary

I attempted this problem in three different ways. My first approach (above) assembled the divergence and curl relations above into a single (Geometric Algebra) multivector gradient equation and applied the vector valued Green’s function for the gradient to invert that equation. That approach logically led from the differential equation for \( \BM \) to the solution for \( \BM \) in terms of \( s \) and \( \BC \). However, this strategy introduced some complexities that make me doubt the correctness of the associated boundary analysis.

Even if the details of the boundary handling in my multivector approach is not correct, I thought that approach was interesting enough to share.

References

[1] C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University Press New York, Cambridge, UK, 1st edition, 2003.

%d bloggers like this: