electric field

Line charge field and potential.

October 26, 2016 math and physics play , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

When computing the most general solution of the electrostatic potential in a plane, Jackson [1] mentions that \( -2 \lambda_0 \ln \rho \) is the well known potential for an infinite line charge (up to the unit specific factor). Checking that statement, since I didn’t recall what that potential was offhand, I encountered some inconsistencies and non-convergent integrals, and thought it was worthwhile to explore those a bit more carefully. This will be done here.

Using Gauss’s law.

For an infinite length line charge, we can find the radial field contribution using Gauss’s law, imagining a cylinder of length \( \Delta l \) of radius \( \rho \) surrounding this charge with the midpoint at the origin. Ignoring any non-radial field contribution, we have

\begin{equation}\label{eqn:lineCharge:20}
\int_{-\Delta l/2}^{\Delta l/2} \ncap \cdot \BE (2 \pi \rho) dl = \frac{\lambda_0}{\epsilon_0} \Delta l,
\end{equation}

or

\begin{equation}\label{eqn:lineCharge:40}
\BE = \frac{\lambda_0}{2 \pi \epsilon_0} \frac{\rhocap}{\rho}.
\end{equation}

Since

\begin{equation}\label{eqn:lineCharge:60}
\frac{\rhocap}{\rho} = \spacegrad \ln \rho,
\end{equation}

this means that the potential is

\begin{equation}\label{eqn:lineCharge:80}
\phi = -\frac{2 \lambda_0}{4 \pi \epsilon_0} \ln \rho.
\end{equation}

Finite line charge potential.

Let’s try both these calculations for a finite charge distribution. Gauss’s law looses its usefulness, but we can evaluate the integrals directly. For the electric field

\begin{equation}\label{eqn:lineCharge:100}
\BE
= \frac{\lambda_0}{4 \pi \epsilon_0} \int \frac{(\Bx – \Bx’)}{\Abs{\Bx – \Bx’}^3} dl’.
\end{equation}

Using cylindrical coordinates with the field point \( \Bx = \rho \rhocap \) for convience, the charge point \( \Bx’ = z’ \zcap \), and a the charge distributed over \( [a,b] \) this is

\begin{equation}\label{eqn:lineCharge:120}
\BE
= \frac{\lambda_0}{4 \pi \epsilon_0} \int_a^b \frac{(\rho \rhocap – z’ \zcap)}{\lr{\rho^2 + (z’)^2}^{3/2}} dz’.
\end{equation}

When the charge is uniformly distributed around the origin \( [a,b] = b[-1,1] \) the \( \zcap \) component of this field is killed because the integrand is odd. This justifies ignoring such contributions in the Gaussing cylinder analysis above. The general solution to this integral is found to be

\begin{equation}\label{eqn:lineCharge:140}
\BE
=
\frac{\lambda_0}{4 \pi \epsilon_0}
\evalrange{
\lr{
\frac{z’ \rhocap }{\rho \sqrt{ \rho^2 + (z’)^2 } }
+\frac{\zcap}{ \sqrt{ \rho^2 + (z’)^2 } }
}
}{a}{b},
\end{equation}

or
\begin{equation}\label{eqn:lineCharge:240}
\boxed{
\BE
=
\frac{\lambda_0}{4 \pi \epsilon_0}
\lr{
\frac{\rhocap }{\rho}
\lr{
\frac{b}{\sqrt{ \rho^2 + b^2 } }
-\frac{a}{\sqrt{ \rho^2 + a^2 } }
}
+ \zcap
\lr{
\frac{1}{ \sqrt{ \rho^2 + b^2 } }
-\frac{1}{ \sqrt{ \rho^2 + a^2 } }
}
}.
}
\end{equation}

When \( b = -a = \Delta l/2 \), this reduces to

\begin{equation}\label{eqn:lineCharge:160}
\BE
=
\frac{\lambda_0}{4 \pi \epsilon_0}
\frac{\rhocap }{\rho}
\frac{\Delta l}{\sqrt{ \rho^2 + (\Delta l/2)^2 } },
\end{equation}

which further reduces to \ref{eqn:lineCharge:40} when \( \Delta l \gg \rho \).

Finite line charge potential. Wrong but illuminating.

Again, putting the field point at \( z’ = 0 \), we have

\begin{equation}\label{eqn:lineCharge:180}
\phi(\rho)
= \frac{\lambda_0}{4 \pi \epsilon_0} \int_a^b \frac{dz’}{\lr{\rho^2 + (z’)^2}^{1/2}},
\end{equation}

which integrates to
\begin{equation}\label{eqn:lineCharge:260}
\phi(\rho)
= \frac{\lambda_0}{4 \pi \epsilon_0 }
\ln \frac{ b + \sqrt{ \rho^2 + b^2 }}{ a + \sqrt{\rho^2 + a^2}}.
\end{equation}

With \( b = -a = \Delta l/2 \), this approaches

\begin{equation}\label{eqn:lineCharge:200}
\phi
\approx
\frac{\lambda_0}{4 \pi \epsilon_0 }
\ln \frac{ (\Delta l/2) }{ \rho^2/2\Abs{\Delta l/2}}
=
\frac{-2 \lambda_0}{4 \pi \epsilon_0 } \ln \rho
+
\frac{\lambda_0}{4 \pi \epsilon_0 }
\ln \lr{ (\Delta l)^2/2 }.
\end{equation}

Before \( \Delta l \) is allowed to tend to infinity, this is identical (up to a difference in the reference potential) to \ref{eqn:lineCharge:80} found using Gauss’s law. It is, strictly speaking, singular when \( \Delta l \rightarrow \infty \), so it does not seem right to infinity as a reference point for the potential.

There’s another weird thing about this result. Since this has no \( z \) dependence, it is not obvious how we would recover the non-radial portion of the electric field from this potential using \( \BE = -\spacegrad \phi \)? Let’s calculate the elecric field from \ref{eqn:lineCharge:180} explicitly

\begin{equation}\label{eqn:lineCharge:220}
\begin{aligned}
\BE
&=
-\frac{\lambda_0}{4 \pi \epsilon_0}
\spacegrad
\ln \frac{ b + \sqrt{ \rho^2 + b^2 }}{ a + \sqrt{\rho^2 + a^2}} \\
&=
-\frac{\lambda_0 \rhocap}{4 \pi \epsilon_0 }
\PD{\rho}{}
\ln \frac{ b + \sqrt{ \rho^2 + b^2 }}{ a + \sqrt{\rho^2 + a^2}} \\
&=
-\frac{\lambda_0 \rhocap}{4 \pi \epsilon_0}
\lr{
\inv{ b + \sqrt{ \rho^2 + b^2 }} \frac{ \rho }{\sqrt{ \rho^2 + b^2 }}
-\inv{ a + \sqrt{ \rho^2 + a^2 }} \frac{ \rho }{\sqrt{ \rho^2 + a^2 }}
} \\
&=
-\frac{\lambda_0 \rhocap}{4 \pi \epsilon_0 \rho}
\lr{
\frac{ -b + \sqrt{ \rho^2 + b^2 }}{\sqrt{ \rho^2 + b^2 }}
-\frac{ -a + \sqrt{ \rho^2 + a^2 }}{\sqrt{ \rho^2 + a^2 }}
} \\
&=
\frac{\lambda_0 \rhocap}{4 \pi \epsilon_0 \rho}
\lr{
\frac{ b }{\sqrt{ \rho^2 + b^2 }}
-\frac{ a }{\sqrt{ \rho^2 + a^2 }}
}.
\end{aligned}
\end{equation}

This recovers the radial component of the field from \ref{eqn:lineCharge:240}, but where did the \( \zcap \) component go? The required potential appears to be

\begin{equation}\label{eqn:lineCharge:340}
\phi(\rho, z)
=
\frac{\lambda_0}{4 \pi \epsilon_0 }
\ln \frac{ b + \sqrt{ \rho^2 + b^2 }}{ a + \sqrt{\rho^2 + a^2}}

\frac{z \lambda_0}{4 \pi \epsilon_0 }
\lr{ \frac{1}{\sqrt{\rho^2 + b^2}}
-\frac{1}{\sqrt{\rho^2 + a^2}}
}.
\end{equation}

When computing the electric field \( \BE(\rho, \theta, z) \), it was convienent to pick the coordinate system so that \( z = 0 \). Doing this with the potential gives the wrong answers. The reason for this appears to be that this kills the potential term that is linear in \( z \) before taking its gradient, and we need that term to have the \( \zcap \) field component that is expected for a charge distribution that is non-symmetric about the origin on the z-axis!

Finite line charge potential. Take II.

Let the point at which the potential is evaluated be

\begin{equation}\label{eqn:lineCharge:360}
\Bx = \rho \rhocap + z \zcap,
\end{equation}

and the charge point be
\begin{equation}\label{eqn:lineCharge:380}
\Bx’ = z’ \zcap.
\end{equation}

This gives

\begin{equation}\label{eqn:lineCharge:400}
\begin{aligned}
\phi(\rho, z)
&= \frac{\lambda_0}{4\pi \epsilon_0} \int_a^b \frac{dz’}{\Abs{\rho^2 + (z – z’)^2 }} \\
&= \frac{\lambda_0}{4\pi \epsilon_0} \int_{a-z}^{b-z} \frac{du}{ \Abs{\rho^2 + u^2} } \\
&= \frac{\lambda_0}{4\pi \epsilon_0}
\evalrange{\ln \lr{ u + \sqrt{ \rho^2 + u^2 }}}{b-z}{a-z} \\
&=
\frac{\lambda_0}{4\pi \epsilon_0}
\ln \frac
{ b-z + \sqrt{ \rho^2 + (b-z)^2 }}
{ a-z + \sqrt{ \rho^2 + (a-z)^2 }}.
\end{aligned}
\end{equation}

The limit of this potential \( a = -\Delta/2 \rightarrow -\infty, b = \Delta/2 \rightarrow \infty \) doesn’t exist in any strict sense. If we are cavilier about the limits, as in \ref{eqn:lineCharge:200}, this can be evaluated as

\begin{equation}\label{eqn:lineCharge:n}
\phi \approx
\frac{\lambda_0}{4\pi \epsilon_0} \lr{ -2 \ln \rho + \textrm{constant} }.
\end{equation}

however, the constant (\( \ln \Delta^2/2 \)) is infinite, so there isn’t really a good justification for using that constant as the potential reference point directly.

It seems that the “right” way to calculate the potential for the infinite distribution, is to

  • Calculate the field from the potential.
  • Take the PV limit of that field with the charge distribution extending to infinity.
  • Compute the corresponding potential from this limiting value of the field.

Doing that doesn’t blow up. That field calculation, for the finite case, should include a \( \zcap \) component. To verify, let’s take the respective derivatives

\begin{equation}\label{eqn:lineCharge:420}
\begin{aligned}
-\PD{z}{} \phi
&=
-\frac{\lambda_0}{4\pi \epsilon_0}
\lr{
\frac{ -1 + \frac{z – b}{\sqrt{ \rho^2 + (b-z)^2 }} }{
b-z + \sqrt{ \rho^2 + (b-z)^2 }
}

\frac{ -1 + \frac{z – a}{\sqrt{ \rho^2 + (a-z)^2 }} }{
a-z + \sqrt{ \rho^2 + (a-z)^2 }
}
} \\
&=
\frac{\lambda_0}{4\pi \epsilon_0}
\lr{
\frac{ 1 + \frac{b – z}{\sqrt{ \rho^2 + (b-z)^2 }} }{
b-z + \sqrt{ \rho^2 + (b-z)^2 }
}

\frac{ 1 + \frac{a – z}{\sqrt{ \rho^2 + (a-z)^2 }} }{
a-z + \sqrt{ \rho^2 + (a-z)^2 }
}
} \\
&=
\frac{\lambda_0}{4\pi \epsilon_0}
\lr{
\inv{\sqrt{ \rho^2 + (b-z)^2 }}
-\inv{\sqrt{ \rho^2 + (a-z)^2 }}
},
\end{aligned}
\end{equation}

and

\begin{equation}\label{eqn:lineCharge:440}
\begin{aligned}
-\PD{\rho}{} \phi
&=
-\frac{\lambda_0}{4\pi \epsilon_0}
\lr{
\frac{ \frac{\rho}{\sqrt{ \rho^2 + (b-z)^2 }} }{
b-z + \sqrt{ \rho^2 + (b-z)^2 }
}

\frac{ \frac{\rho}{\sqrt{ \rho^2 + (a-z)^2 }} }{
a-z + \sqrt{ \rho^2 + (a-z)^2 }
}
} \\
&=
-\frac{\lambda_0}{4\pi \epsilon_0}
\lr{
\frac{\rho \lr{
-(b-z) + \sqrt{ \rho^2 + (b-z)^2 }
}}{ \rho^2 \sqrt{ \rho^2 + (b-z)^2 } }

\frac{\rho \lr{
-(a-z) + \sqrt{ \rho^2 + (a-z)^2 }
}}{ \rho^2 \sqrt{ \rho^2 + (a-z)^2 } }
} \\
&=
\frac{\lambda_0}{4\pi \epsilon_0 \rho}
\lr{
\frac{b-z}{\sqrt{ \rho^2 + (b-z)^2 }}
-\frac{a-z}{\sqrt{ \rho^2 + (a-z)^2 }}
}
.
\end{aligned}
\end{equation}

Putting the pieces together, the electric field is
\begin{equation}\label{eqn:lineCharge:460}
\BE =
\frac{\lambda_0}{4\pi \epsilon_0}
\lr{
\frac{\rhocap}{\rho} \lr{
\frac{b-z}{\sqrt{ \rho^2 + (b-z)^2 }}
-\frac{a-z}{\sqrt{ \rho^2 + (a-z)^2 }}
}
+
\zcap \lr{
\inv{\sqrt{ \rho^2 + (b-z)^2 }}
-\inv{\sqrt{ \rho^2 + (a-z)^2 }}
}
}.
\end{equation}

For has a PV limit of \ref{eqn:lineCharge:40} at \( z = 0 \), and also for the finite case, has the \( \zcap \) field component that was obtained when the field was obtained by direct integration.

Conclusions

  • We have to evaluate the potential at all points in space, not just on the axis that we evaluate the field on (should we choose to do so).
  • In this case, we found that it was not directly meaningful to take the limit of a potential distribution. We can, however, compute the field from a potential for a finite charge distribution,
    take the limit of that field, and then calculate the corresponding potential for the infinite distribution.

Is there a more robust mechanism that can be used to directly calculate the potential for an infinite charge distribution, instead of calculating the potential from the field of such an infinite distribution?

I think that were things go wrong is that the integral of \ref{eqn:lineCharge:180} does not apply to charge distributions that are not finite on the infinite range \( z \in [-\infty, \infty] \). That solution was obtained by utilizing an all-space Green’s function, and the boundary term in that Green’s analysis was assumed to tend to zero. That isn’t the case when the charge distribution is \( \lambda_0 \delta( z ) \).

References

[1] JD Jackson. Classical Electrodynamics. John Wiley and Sons, 2nd edition, 1975.

Electric and magnetic fields at an interface

October 9, 2016 math and physics play , , ,

[Click here for a PDF of this post with nicer formatting]

As pointed out in [1] the fields at an interface that is not a perfect conductor on either side are related by

\begin{equation}\label{eqn:fieldsAtInterface:20}
\begin{aligned}
\ncap \cdot \lr{ \BD_2 – \BD_1 } &= \rho_{es} \\
\ncap \cross \lr{ \BE_2 – \BE_1 } &= -\BM_s \\
\ncap \cdot \lr{ \BB_2 – \BB_1 } &= \rho_{ms} \\
\ncap \cross \lr{ \BH_2 – \BH_1 } &= \BJ_s.
\end{aligned}
\end{equation}

Given the fields in medium 1, assuming that boths sets of media are linear, we can use these relationships to determine the fields in the other medium.

\begin{equation}\label{eqn:fieldsAtInterface:40}
\begin{aligned}
\ncap \cdot \BE_2 &= \inv{\epsilon_2} \lr{ \epsilon_1 \ncap \cdot \BE_1 + \rho_{es} } \\
\ncap \wedge \BE_2 &= \ncap \wedge \BE_1 -I \BM_s \\
\ncap \cdot \BB_2 &= \ncap \cdot \BB_1 + \rho_{ms} \\
\ncap \wedge \BB_2 &= \mu_2 \lr{ \inv{\mu_1} \ncap \wedge \BB_1 + I \BJ_s}.
\end{aligned}
\end{equation}

Now the fields in interface 2 can be obtained by adding the normal and tangential projections. For the electric field

\begin{equation}\label{eqn:fieldsAtInterface:60}
\begin{aligned}
\BE_2
&=
\ncap (\ncap \cdot \BE_2 )
+ \ncap \cdot (\ncap \wedge \BE_2) \\
&=
\inv{\epsilon_2} \ncap \lr{ \epsilon_1 \ncap \cdot \BE_1 + \rho_{es} }
+
\ncap \cdot (\ncap \wedge \BE_1 -I \BM_s).
\end{aligned}
\end{equation}

Note that this manipulation can also be done without Geometric Algebra by writing \( \BE_2 = \ncap (\ncap \cdot \BE_2 ) – \ncap \cross (\ncap \cross \BE_2) \)).
Expanding \( \ncap \cdot (\ncap \wedge \BE_1) = \BE_1 – \ncap (\ncap \cdot \BE_1) \), and \( \ncap \cdot (I \BM_s) = -\ncap \cross \BM_s \), that is

\begin{equation}\label{eqn:fieldsAtInterface:80}
\boxed{
\BE_2
=
\BE_1
+ \ncap (\ncap \cdot \BE_1) \lr{ \frac{\epsilon_1}{\epsilon_2} – 1 }
+ \frac{\rho_{es}}{\epsilon_2}
+ \ncap \cross \BM_s.
}
\end{equation}

For the magnetic field

\begin{equation}\label{eqn:fieldsAtInterface:100}
\begin{aligned}
\BB_2
&=
\ncap (\ncap \cdot \BB_2 )
+
\ncap \cdot (\ncap \wedge \BB_2) \\
&=
\ncap \lr{ \ncap \cdot \BB_1 + \rho_{ms} }
+
\mu_2 \ncap \cdot \lr{ \lr{ \inv{\mu_1} \ncap \wedge \BB_1 + I \BJ_s} },
\end{aligned}
\end{equation}

which is

\begin{equation}\label{eqn:fieldsAtInterface:120}
\boxed{
\BB_2
=
\frac{\mu_2}{\mu_1} \BB_1
+
\ncap (\ncap \cdot \BB_1) \lr{ 1 – \frac{\mu_2}{\mu_1} }
+ \ncap \rho_{ms}
– \ncap \cross \BJ_s.
}
\end{equation}

These are kind of pretty results, having none of the explicit angle dependence that we see in the Fresnel relationships. In this analysis, it is assumed there is only a transmitted component of the ray in question, and no reflected component. Can we do a purely vectoral treatment of the Fresnel equations along these same lines?

References

[1] Constantine A Balanis. Advanced engineering electromagnetics. Wiley New York, 1989.

Plane wave solution directly from Maxwell’s equations

May 6, 2015 math and physics play , , , ,

[Click here for a PDF of this post with nicer formatting]

Here’s a problem that I thought was fun, an exercise for the reader to show that the plane wave solution to Maxwell’s equations can be found with ease directly from Maxwell’s equations. This is in contrast to the what seems like the usual method of first showing that Maxwell’s equations imply wave equations for the fields, and then solving those wave equations.

Problem. \( \xcap \) oriented plane wave electric field ([1] ex. 4.1)

A uniform plane wave having only an \( x \) component of the electric field is traveling in the \( + z \) direction in an unbounded lossless, source-0free region. Using Maxwell’s equations write expressions for the electric and corresponding magnetic field intensities.

Answer

The phasor form of Maxwell’s equations for a source free region are

\begin{equation}\label{eqn:ExPlaneWave:40}
\spacegrad \cross \BE = -j \omega \BB
\end{equation}
\begin{equation}\label{eqn:ExPlaneWave:60}
\spacegrad \cross \BH = j \omega \BD
\end{equation}
\begin{equation}\label{eqn:ExPlaneWave:80}
\spacegrad \cdot \BD = 0
\end{equation}
\begin{equation}\label{eqn:ExPlaneWave:100}
\spacegrad \cdot \BB = 0.
\end{equation}

Since \( \BE = \xcap E(z) \), the magnetic field follows from \ref{eqn:ExPlaneWave:40}

\begin{equation}\label{eqn:ExPlaneWave:120}
-j \omega \BB
= \spacegrad \cross \BE
=
\begin{vmatrix}
\xcap & \ycap & \zcap \\
\partial_x & \partial_y & \partial_z \\
E & 0 & 0
\end{vmatrix}
=
\ycap \partial_z E(z)
– \zcap \partial_y E(z),
\end{equation}

or

\begin{equation}\label{eqn:ExPlaneWave:140}
\BB =
-\inv{j \omega} \partial_z E.
\end{equation}

This is constrained by \ref{eqn:ExPlaneWave:60}

\begin{equation}\label{eqn:ExPlaneWave:160}
j \omega \epsilon \xcap E
=
\inv{\mu} \spacegrad \cross \BB
=
-\inv{\mu j \omega}
\begin{vmatrix}
\xcap & \ycap & \zcap \\
\partial_x & \partial_y & \partial_z \\
0 & \partial_z E & 0
\end{vmatrix}
=
-\inv{\mu j \omega}
\lr{
-\xcap \partial_{z z} E
+ \zcap \partial_x \partial_z E
}
\end{equation}

Since \( \partial_x \partial_z E = \partial_z \lr{ \partial_x E } = \partial_z \inv{\epsilon} \spacegrad \cdot \BD = \partial_z 0 \), this means

\begin{equation}\label{eqn:ExPlaneWave:180}
\partial_{zz} E = -\omega^2 \epsilon\mu E = -k^2 E.
\end{equation}

This is the usual starting place that we use to show that the plane wave has an exponential form

\begin{equation}\label{eqn:ExPlaneWave:200}
\BE(z) =
\xcap
\lr{
E_{+} e^{-j k z}
+
E_{-} e^{j k z}
}.
\end{equation}

The magnetic field from \ref{eqn:ExPlaneWave:140} is

\begin{equation}\label{eqn:ExPlaneWave:220}
\BB
= \frac{j}{\omega} \lr{ -j k E_{+} e^{-j k z} + j k E_{-} e^{j k z} }
= \inv{c} \lr{ E_{+} e^{-j k z} – E_{-} e^{j k z} },
\end{equation}

or

\begin{equation}\label{eqn:ExPlaneWave:240}
\BH
= \inv{\mu c} \lr{ E_{+} e^{-j k z} – E_{-} e^{j k z} }
= \inv{\eta} \lr{ E_{+} e^{-j k z} – E_{-} e^{j k z} }.
\end{equation}

A solution requires zero divergence for the magnetic field, but that can be seen to be the case by inspection.

References

[1] Constantine A Balanis. Advanced engineering electromagnetics. Wiley New York, 1989.

Coupled wave equation in cylindrical coordinates

May 5, 2015 math and physics play , ,

[Click here for a PDF of this post with nicer formatting]

In [1], for a sourceless configuration, it is noted that the electric field equations \( \spacegrad^2 \BE = -\beta^2 \BE \) have the form

\begin{equation}\label{eqn:cylindricalFieldSolution:20}
\spacegrad^2 E_\rho – \frac{E_\rho}{\rho^2} – \frac{2}{\rho^2} \PD{\phi}{E_\phi} = -\beta^2 E_\rho
\end{equation}
\begin{equation}\label{eqn:cylindricalFieldSolution:60}
\spacegrad^2 E_\phi – \frac{E_\phi}{\rho^2} + \frac{2}{\rho^2} \PD{\phi}{E_\rho} = -\beta^2 E_\phi
\end{equation}
\begin{equation}\label{eqn:cylindricalFieldSolution:80}
\spacegrad^2 E_z = -\beta^2 E_z,
\end{equation}

where

\begin{equation}\label{eqn:cylindricalFieldSolution:100}
\spacegrad^2 \psi =
\inv{\rho} \PD{\rho}{} \lr{ \rho \PD{\rho}{\psi}} + \inv{\rho^2}\PDSq{\phi}{\psi} + \PDSq{z}{\psi}.
\end{equation}

He applies separation of variables to the last equation, ending up with the usual Bessel function solution, but the first two coupled equations are dismissed as coupled and difficult. It looks like separation of variables works for this too, but we have to prep the system slightly by writing \( \psi = E_\rho + j E_\phi \), which gives

\begin{equation}\label{eqn:cylindricalFieldSolution:120}
\spacegrad^2 \psi – \frac{\psi}{\rho^2} + \frac{2 j}{\rho^2} \PD{\phi}{\psi} = -\beta^2 \psi,
\end{equation}

or

\begin{equation}\label{eqn:cylindricalFieldSolution:140}
\inv{\rho} \PD{\rho}{} \lr{ \rho \PD{\rho}{\psi}} + \inv{\rho^2}\PDSq{\phi}{\psi} + \PDSq{z}{\psi}
– \frac{\psi}{\rho^2} + \frac{2 j}{\rho^2} \PD{\phi}{\psi} = -\beta^2 \psi.
\end{equation}

With a separation of variables substitution \( \psi = f(\rho) g(\phi) h(z) \) this gives

\begin{equation}\label{eqn:cylindricalFieldSolution:160}
\inv{\rho f} \PD{\rho}{} \lr{ \rho \PD{\rho}{f}}
+ \inv{\rho^2 g}\PDSq{\phi}{g}
+ \inv{z} \PDSq{z}{h}
– \frac{1}{\rho^2} + \frac{2 j}{\rho^2 g} \PD{\phi}{g} = -\beta^2.
\end{equation}

Assuming a solution for the function \( h \) of

\begin{equation}\label{eqn:cylindricalFieldSolution:180}
\inv{z} \PDSq{z}{h} = -\alpha^2,
\end{equation}

the PDE is reduced to an equation in two functions

\begin{equation}\label{eqn:cylindricalFieldSolution:200}
\inv{\rho f} \PD{\rho}{} \lr{ \rho \PD{\rho}{f}}
+ \inv{\rho^2 g}\PD{\phi}{} \lr{ g + 2 j g}
+ \beta^2 -\alpha^2
– \frac{1}{\rho^2}
= 0,
\end{equation}

or

\begin{equation}\label{eqn:cylindricalFieldSolution:220}
\frac{\rho}{f} \PD{\rho}{} \lr{ \rho \PD{\rho}{f}}
+ \inv{g}\PD{\phi}{} \lr{ g + 2 j g}
+ \lr{ \beta^2 -\alpha^2 }\rho^2
= 1.
\end{equation}

With the term in \( g \) having only \( \phi \) dependence, we can assume

\begin{equation}\label{eqn:cylindricalFieldSolution:240}
\inv{g}\PD{\phi}{} \lr{ g + 2 j g} = 1 – \gamma^2,
\end{equation}

for

\begin{equation}\label{eqn:cylindricalFieldSolution:260}
\frac{\rho}{f} \PD{\rho}{} \lr{ \rho \PD{\rho}{f}}
– \gamma^2
+ \lr{ \beta^2 -\alpha^2 }\rho^2
= 0.
\end{equation}

I’m not sure off hand if these can be solved in known special functions, especially since the constants in the mix are complex.

References

[1] Constantine A Balanis. Advanced engineering electromagnetics, volume 20. Wiley New York, 1989.

Updated notes for ece1229 antenna theory

March 16, 2015 ece1229 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

I’ve now posted a first update of my notes for the antenna theory course that I am taking this term at UofT.

Unlike most of the other classes I have taken, I am not attempting to take comprehensive notes for this class. The class is taught on slides which go by faster than I can easily take notes for (and some of which match the textbook closely). In class I have annotated my copy of textbook with little details instead. This set of notes contains musings of details that were unclear, or in some cases, details that were provided in class, but are not in the text (and too long to pencil into my book), as well as some notes Geometric Algebra formalism for Maxwell’s equations with magnetic sources (something I’ve encountered for the first time in any real detail in this class).

The notes compilation linked above includes all of the following separate notes, some of which have been posted separately on this blog: