four potential

Maxwell’s equation Lagrangian (geometric algebra and tensor formalism)

November 1, 2020 math and physics play 1 comment , , , , , , , , , , , , , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

Maxwell’s equation using geometric algebra Lagrangian.

Motivation.

In my classical mechanics notes, I’ve got computations of Maxwell’s equation (singular in it’s geometric algebra form) from a Lagrangian in various ways (using a tensor, scalar and multivector Lagrangians), but all of these seem more convoluted than they should be.
Here we do this from scratch, starting with the action principle for field variables, covering:

  • Derivation of the relativistic form of the Euler-Lagrange field equations from the covariant form of the action,
  • Derivation of Maxwell’s equation (in it’s STA form) from the Maxwell Lagrangian,
  • Relationship of the STA Maxwell Lagrangian to the tensor equivalent,
  • Relationship of the STA form of Maxwell’s equation to it’s tensor equivalents,
  • Relationship of the STA Maxwell’s equation to it’s conventional Gibbs form.
  • Show that we may use a multivector valued Lagrangian with all of \( F^2 \), not just the scalar part.

It is assumed that the reader is thoroughly familiar with the STA formalism, and if that is not the case, there is no better reference than [1].

Field action.

Theorem 1.1: Relativistic Euler-Lagrange field equations.

Let \( \phi \rightarrow \phi + \delta \phi \) be any variation of the field, such that the variation
\( \delta \phi = 0 \) vanishes at the boundaries of the action integral
\begin{equation}\label{eqn:maxwells:2120}
S = \int d^4 x \LL(\phi, \partial_\nu \phi).
\end{equation}
The extreme value of the action is found when the Euler-Lagrange equations
\begin{equation}\label{eqn:maxwells:2140}
0 = \PD{\phi}{\LL} – \partial_\nu \PD{(\partial_\nu \phi)}{\LL},
\end{equation}
are satisfied. For a Lagrangian with multiple field variables, there will be one such equation for each field.

Start proof:

To ease the visual burden, designate the variation of the field by \( \delta \phi = \epsilon \), and perform a first order expansion of the varied Lagrangian
\begin{equation}\label{eqn:maxwells:20}
\begin{aligned}
\LL
&\rightarrow
\LL(\phi + \epsilon, \partial_\nu (\phi + \epsilon)) \\
&=
\LL(\phi, \partial_\nu \phi)
+
\PD{\phi}{\LL} \epsilon +
\PD{(\partial_\nu \phi)}{\LL} \partial_\nu \epsilon.
\end{aligned}
\end{equation}
The variation of the Lagrangian is
\begin{equation}\label{eqn:maxwells:40}
\begin{aligned}
\delta \LL
&=
\PD{\phi}{\LL} \epsilon +
\PD{(\partial_\nu \phi)}{\LL} \partial_\nu \epsilon \\
&=
\PD{\phi}{\LL} \epsilon +
\partial_\nu \lr{ \PD{(\partial_\nu \phi)}{\LL} \epsilon }

\epsilon \partial_\nu \PD{(\partial_\nu \phi)}{\LL},
\end{aligned}
\end{equation}
which we may plug into the action integral to find
\begin{equation}\label{eqn:maxwells:60}
\delta S
=
\int d^4 x \epsilon \lr{
\PD{\phi}{\LL}

\partial_\nu \PD{(\partial_\nu \phi)}{\LL}
}
+
\int d^4 x
\partial_\nu \lr{ \PD{(\partial_\nu \phi)}{\LL} \epsilon }.
\end{equation}
The last integral can be evaluated along the \( dx^\nu \) direction, leaving
\begin{equation}\label{eqn:maxwells:80}
\int d^3 x
\evalbar{ \PD{(\partial_\nu \phi)}{\LL} \epsilon }{\Delta x^\nu},
\end{equation}
where \( d^3 x = dx^\alpha dx^\beta dx^\gamma \) is the product of differentials that does not include \( dx^\nu \). By construction, \( \epsilon \) vanishes on the boundary of the action integral so \ref{eqn:maxwells:80} is zero. The action takes its extreme value when
\begin{equation}\label{eqn:maxwells:100}
0 = \delta S
=
\int d^4 x \epsilon \lr{
\PD{\phi}{\LL}

\partial_\nu \PD{(\partial_\nu \phi)}{\LL}
}.
\end{equation}
The proof is complete after noting that this must hold for all variations of the field \( \epsilon \), which means that we must have
\begin{equation}\label{eqn:maxwells:120}
0 =
\PD{\phi}{\LL}

\partial_\nu \PD{(\partial_\nu \phi)}{\LL}.
\end{equation}

End proof.

Armed with the Euler-Lagrange equations, we can apply them to the Maxwell’s equation Lagrangian, which we will claim has the following form.

Theorem 1.2: Maxwell’s equation Lagrangian.

Application of the Euler-Lagrange equations to the Lagrangian
\begin{equation}\label{eqn:maxwells:2160}
\LL = – \frac{\epsilon_0 c}{2} F \cdot F + J \cdot A,
\end{equation}
where \( F = \grad \wedge A \), yields the vector portion of Maxwell’s equation
\begin{equation}\label{eqn:maxwells:2180}
\grad \cdot F = \inv{\epsilon_0 c} J,
\end{equation}
which implies
\begin{equation}\label{eqn:maxwells:2200}
\grad F = \inv{\epsilon_0 c} J.
\end{equation}
This is Maxwell’s equation.

Start proof:

We wish to apply all of the Euler-Lagrange equations simultaneously (i.e. once for each of the four \(A_\mu\) components of the potential), and cast it into four-vector form
\begin{equation}\label{eqn:maxwells:140}
0 = \gamma_\nu \lr{ \PD{A_\nu}{} – \partial_\mu \PD{(\partial_\mu A_\nu)}{} } \LL.
\end{equation}
Since our Lagrangian splits nicely into kinetic and interaction terms, this gives us
\begin{equation}\label{eqn:maxwells:160}
0 = \gamma_\nu \lr{ \PD{A_\nu}{(A \cdot J)} + \frac{\epsilon_0 c}{2} \partial_\mu \PD{(\partial_\mu A_\nu)}{ (F \cdot F)} }.
\end{equation}
The interaction term above is just
\begin{equation}\label{eqn:maxwells:180}
\gamma_\nu \PD{A_\nu}{(A \cdot J)}
=
\gamma_\nu \PD{A_\nu}{(A_\mu J^\mu)}
=
\gamma_\nu J^\nu
=
J,
\end{equation}
but the kinetic term takes a bit more work. Let’s start with evaluating
\begin{equation}\label{eqn:maxwells:200}
\begin{aligned}
\PD{(\partial_\mu A_\nu)}{ (F \cdot F)}
&=
\PD{(\partial_\mu A_\nu)}{ F } \cdot F
+
F \cdot \PD{(\partial_\mu A_\nu)}{ F } \\
&=
2 \PD{(\partial_\mu A_\nu)}{ F } \cdot F \\
&=
2 \PD{(\partial_\mu A_\nu)}{ (\partial_\alpha A_\beta) } \lr{ \gamma^\alpha \wedge \gamma^\beta } \cdot F \\
&=
2 \lr{ \gamma^\mu \wedge \gamma^\nu } \cdot F.
\end{aligned}
\end{equation}
We hit this with the \(\mu\)-partial and expand as a scalar selection to find
\begin{equation}\label{eqn:maxwells:220}
\begin{aligned}
\partial_\mu \PD{(\partial_\mu A_\nu)}{ (F \cdot F)}
&=
2 \lr{ \partial_\mu \gamma^\mu \wedge \gamma^\nu } \cdot F \\
&=
– 2 (\gamma^\nu \wedge \grad) \cdot F \\
&=
– 2 \gpgradezero{ (\gamma^\nu \wedge \grad) F } \\
&=
– 2 \gpgradezero{ \gamma^\nu \grad F – \gamma^\nu \cdot \grad F } \\
&=
– 2 \gamma^\nu \cdot \lr{ \grad \cdot F }.
\end{aligned}
\end{equation}
Putting all the pieces together yields
\begin{equation}\label{eqn:maxwells:240}
0
= J – \epsilon_0 c \gamma_\nu \lr{ \gamma^\nu \cdot \lr{ \grad \cdot F } }
= J – \epsilon_0 c \lr{ \grad \cdot F },
\end{equation}
but
\begin{equation}\label{eqn:maxwells:260}
\begin{aligned}
\grad \cdot F
&=
\grad F – \grad \wedge F \\
&=
\grad F – \grad \wedge (\grad \wedge A) \\
&=
\grad F,
\end{aligned}
\end{equation}
so the multivector field equations for this Lagrangian are
\begin{equation}\label{eqn:maxwells:280}
\grad F = \inv{\epsilon_0 c} J,
\end{equation}
as claimed.

End proof.

Problem: Correspondence with tensor formalism.

Cast the Lagrangian of \ref{eqn:maxwells:2160} into the conventional tensor form
\begin{equation}\label{eqn:maxwells:300}
\LL = \frac{\epsilon_0 c}{4} F_{\mu\nu} F^{\mu\nu} + A^\mu J_\mu.
\end{equation}
Also show that the four-vector component of Maxwell’s equation \( \grad \cdot F = J/(\epsilon_0 c) \) is equivalent to the conventional tensor form of the Gauss-Ampere law
\begin{equation}\label{eqn:maxwells:320}
\partial_\mu F^{\mu\nu} = \inv{\epsilon_0 c} J^\nu,
\end{equation}
where \( F^{\mu\nu} = \partial^\mu A^\nu – \partial^\nu A^\mu \) as usual. Also show that the trivector component of Maxwell’s equation \( \grad \wedge F = 0 \) is equivalent to the tensor form of the Gauss-Faraday law
\begin{equation}\label{eqn:maxwells:340}
\partial_\alpha \lr{ \epsilon^{\alpha \beta \mu \nu} F_{\mu\nu} } = 0.
\end{equation}

Answer

To show the Lagrangian correspondence we must expand \( F \cdot F \) in coordinates
\begin{equation}\label{eqn:maxwells:360}
\begin{aligned}
F \cdot F
&=
( \grad \wedge A ) \cdot
( \grad \wedge A ) \\
&=
\lr{ (\gamma^\mu \partial_\mu) \wedge (\gamma^\nu A_\nu) }
\cdot
\lr{ (\gamma^\alpha \partial_\alpha) \wedge (\gamma^\beta A_\beta) } \\
&=
\lr{ \gamma^\mu \wedge \gamma^\nu } \cdot \lr{ \gamma_\alpha \wedge \gamma_\beta }
(\partial_\mu A_\nu )
(\partial^\alpha A^\beta ) \\
&=
\lr{
{\delta^\mu}_\beta
{\delta^\nu}_\alpha

{\delta^\mu}_\alpha
{\delta^\nu}_\beta
}
(\partial_\mu A_\nu )
(\partial^\alpha A^\beta ) \\
&=
– \partial_\mu A_\nu \lr{
\partial^\mu A^\nu

\partial^\nu A^\mu
} \\
&=
– \partial_\mu A_\nu F^{\mu\nu} \\
&=
– \inv{2} \lr{
\partial_\mu A_\nu F^{\mu\nu}
+
\partial_\nu A_\mu F^{\nu\mu}
} \\
&=
– \inv{2} \lr{
\partial_\mu A_\nu

\partial_\nu A_\mu
}
F^{\mu\nu} \\
&=

\inv{2}
F_{\mu\nu}
F^{\mu\nu}.
\end{aligned}
\end{equation}
With a substitution of this and \( A \cdot J = A_\mu J^\mu \) back into the Lagrangian, we recover the tensor form of the Lagrangian.

To recover the tensor form of Maxwell’s equation, we first split it into vector and trivector parts
\begin{equation}\label{eqn:maxwells:1580}
\grad \cdot F + \grad \wedge F = \inv{\epsilon_0 c} J.
\end{equation}
Now the vector component may be expanded in coordinates by dotting both sides with \( \gamma^\nu \) to find
\begin{equation}\label{eqn:maxwells:1600}
\inv{\epsilon_0 c} \gamma^\nu \cdot J = J^\nu,
\end{equation}
and
\begin{equation}\label{eqn:maxwells:1620}
\begin{aligned}
\gamma^\nu \cdot
\lr{ \grad \cdot F }
&=
\partial_\mu \gamma^\nu \cdot \lr{ \gamma^\mu \cdot \lr{ \gamma_\alpha \wedge \gamma_\beta } \partial^\alpha A^\beta } \\
&=
\lr{
{\delta^\mu}_\alpha
{\delta^\nu}_\beta

{\delta^\nu}_\alpha
{\delta^\mu}_\beta
}
\partial_\mu
\partial^\alpha A^\beta \\
&=
\partial_\mu
\lr{
\partial^\mu A^\nu

\partial^\nu A^\mu
} \\
&=
\partial_\mu F^{\mu\nu}.
\end{aligned}
\end{equation}
Equating \ref{eqn:maxwells:1600} and \ref{eqn:maxwells:1620} finishes the first part of the job. For the trivector component, we have
\begin{equation}\label{eqn:maxwells:1640}
0
= \grad \wedge F
= (\gamma^\mu \partial_\mu) \wedge \lr{ \gamma^\alpha \wedge \gamma^\beta } \partial_\alpha A_\beta
= \inv{2} (\gamma^\mu \partial_\mu) \wedge \lr{ \gamma^\alpha \wedge \gamma^\beta } F_{\alpha \beta}.
\end{equation}
Wedging with \( \gamma^\tau \) and then multiplying by \( -2 I \) we find
\begin{equation}\label{eqn:maxwells:1660}
0 = – \lr{ \gamma^\mu \wedge \gamma^\alpha \wedge \gamma^\beta \wedge \gamma^\tau } I \partial_\mu F_{\alpha \beta},
\end{equation}
but
\begin{equation}\label{eqn:maxwells:1680}
\gamma^\mu \wedge \gamma^\alpha \wedge \gamma^\beta \wedge \gamma^\tau = -I \epsilon^{\mu \alpha \beta \tau},
\end{equation}
which leaves us with
\begin{equation}\label{eqn:maxwells:1700}
\epsilon^{\mu \alpha \beta \tau} \partial_\mu F_{\alpha \beta} = 0,
\end{equation}
as expected.

Problem: Correspondence of tensor and Gibbs forms of Maxwell’s equations.

Given the identifications

\begin{equation}\label{eqn:lorentzForceCovariant:1500}
F^{k0} = E^k,
\end{equation}
and
\begin{equation}\label{eqn:lorentzForceCovariant:1520}
F^{rs} = -\epsilon^{rst} B^t,
\end{equation}
and
\begin{equation}\label{eqn:maxwells:1560}
J^\mu = \lr{ c \rho, \BJ },
\end{equation}
the reader should satisfy themselves that the traditional Gibbs form of Maxwell’s equations can be recovered from \ref{eqn:maxwells:320}.

Answer

The reader is referred to Exercise 3.4 “Electrodynamics, variational principle.” from [2].

Problem: Correspondence with grad and curl form of Maxwell’s equations.

With \( J = c \rho \gamma_0 + J^k \gamma_k \) and \( F = \BE + I c \BB \) show that Maxwell’s equation, as stated in \ref{eqn:maxwells:2200} expand to the conventional div and curl expressions for Maxwell’s equations.

Answer

To obtain Maxwell’s equations in their traditional vector forms, we pre-multiply both sides with \( \gamma_0 \)
\begin{equation}\label{eqn:maxwells:1720}
\gamma_0 \grad F = \inv{\epsilon_0 c} \gamma_0 J,
\end{equation}
and then select each grade separately. First observe that the RHS above has scalar and bivector components, as
\begin{equation}\label{eqn:maxwells:1740}
\gamma_0 J
=
c \rho + J^k \gamma_0 \gamma_k.
\end{equation}
In terms of the spatial bivector basis \( \Be_k = \gamma_k \gamma_0 \), the RHS of \ref{eqn:maxwells:1720} is
\begin{equation}\label{eqn:maxwells:1760}
\gamma_0 \frac{J}{\epsilon_0 c} = \frac{\rho}{\epsilon_0} – \mu_0 c \BJ.
\end{equation}
For the LHS, first note that
\begin{equation}\label{eqn:maxwells:1780}
\begin{aligned}
\gamma_0 \grad
&=
\gamma_0
\lr{
\gamma_0 \partial^0 +
\gamma_k \partial^k
} \\
&=
\partial_0 – \gamma_0 \gamma_k \partial_k \\
&=
\inv{c} \PD{t}{} + \spacegrad.
\end{aligned}
\end{equation}
We can express all the the LHS of \ref{eqn:maxwells:1720} in the bivector spatial basis, so that Maxwell’s equation in multivector form is
\begin{equation}\label{eqn:maxwells:1800}
\lr{ \inv{c} \PD{t}{} + \spacegrad } \lr{ \BE + I c \BB } = \frac{\rho}{\epsilon_0} – \mu_0 c \BJ.
\end{equation}
Selecting the scalar, vector, bivector, and trivector grades of both sides (in the spatial basis) gives the following set of respective equations
\begin{equation}\label{eqn:maxwells:1840}
\spacegrad \cdot \BE = \frac{\rho}{\epsilon_0}
\end{equation}
\begin{equation}\label{eqn:maxwells:1860}
\inv{c} \partial_t \BE + I c \spacegrad \wedge \BB = – \mu_0 c \BJ
\end{equation}
\begin{equation}\label{eqn:maxwells:1880}
\spacegrad \wedge \BE + I \partial_t \BB = 0
\end{equation}
\begin{equation}\label{eqn:maxwells:1900}
I c \spacegrad \cdot B = 0,
\end{equation}
which we can rewrite after some duality transformations (and noting that \( \mu_0 \epsilon_0 c^2 = 1 \)), we have
\begin{equation}\label{eqn:maxwells:1940}
\spacegrad \cdot \BE = \frac{\rho}{\epsilon_0}
\end{equation}
\begin{equation}\label{eqn:maxwells:1960}
\spacegrad \cross \BB – \mu_0 \epsilon_0 \PD{t}{\BE} = \mu_0 \BJ
\end{equation}
\begin{equation}\label{eqn:maxwells:1980}
\spacegrad \cross \BE + \PD{t}{\BB} = 0
\end{equation}
\begin{equation}\label{eqn:maxwells:2000}
\spacegrad \cdot B = 0,
\end{equation}
which are Maxwell’s equations in their traditional form.

Problem: Alternative multivector Lagrangian.

Show that a scalar+pseudoscalar Lagrangian of the following form
\begin{equation}\label{eqn:maxwells:2220}
\LL = – \frac{\epsilon_0 c}{2} F^2 + J \cdot A,
\end{equation}
which omits the scalar selection of the Lagrangian in \ref{eqn:maxwells:2160}, also represents Maxwell’s equation. Discuss the scalar and pseudoscalar components of \( F^2 \), and show why the pseudoscalar inclusion is irrelevant.

Answer

The quantity \( F^2 = F \cdot F + F \wedge F \) has both scalar and pseudoscalar
components. Note that unlike vectors, a bivector wedge in 4D with itself need not be zero (example: \( \gamma_0 \gamma_1 + \gamma_2 \gamma_3 \) wedged with itself).
We can see this multivector nature nicely by expansion in terms of the electric and magnetic fields
\begin{equation}\label{eqn:maxwells:2020}
\begin{aligned}
F^2
&= \lr{ \BE + I c \BB }^2 \\
&= \BE^2 – c^2 \BB^2 + I c \lr{ \BE \BB + \BB \BE } \\
&= \BE^2 – c^2 \BB^2 + 2 I c \BE \cdot \BB.
\end{aligned}
\end{equation}
Both the scalar and pseudoscalar parts of \( F^2 \) are Lorentz invariant, a requirement of our Lagrangian, but most Maxwell equation Lagrangians only include the scalar \( \BE^2 – c^2 \BB^2 \) component of the field square. If we allow the Lagrangian to be multivector valued, and evaluate the Euler-Lagrange equations, we quickly find the same results
\begin{equation}\label{eqn:maxwells:2040}
\begin{aligned}
0
&= \gamma_\nu \lr{ \PD{A_\nu}{} – \partial_\mu \PD{(\partial_\mu A_\nu)}{} } \LL \\
&= \gamma_\nu \lr{ J^\nu + \frac{\epsilon_0 c}{2} \partial_\mu
\lr{
(\gamma^\mu \wedge \gamma^\nu) F
+
F (\gamma^\mu \wedge \gamma^\nu)
}
}.
\end{aligned}
\end{equation}
Here some steps are skipped, building on our previous scalar Euler-Lagrange evaluation experience. We have a symmetric product of two bivectors, which we can express as a 0,4 grade selection, since
\begin{equation}\label{eqn:maxwells:2060}
\gpgrade{ X F }{0,4} = \inv{2} \lr{ X F + F X },
\end{equation}
for any two bivectors \( X, F \). This leaves
\begin{equation}\label{eqn:maxwells:2080}
\begin{aligned}
0
&= J + \epsilon_0 c \gamma_\nu \gpgrade{ (\grad \wedge \gamma^\nu) F }{0,4} \\
&= J + \epsilon_0 c \gamma_\nu \gpgrade{ -\gamma^\nu \grad F + (\gamma^\nu \cdot \grad) F }{0,4} \\
&= J + \epsilon_0 c \gamma_\nu \gpgrade{ -\gamma^\nu \grad F }{0,4} \\
&= J – \epsilon_0 c \gamma_\nu
\lr{
\gamma^\nu \cdot \lr{ \grad \cdot F } + \gamma^\nu \wedge \grad \wedge F
}.
\end{aligned}
\end{equation}
However, since \( \grad \wedge F = \grad \wedge \grad \wedge A = 0 \), we see that there is no contribution from the \( F \wedge F \) pseudoscalar component of the Lagrangian, and we are left with
\begin{equation}\label{eqn:maxwells:2100}
\begin{aligned}
0
&= J – \epsilon_0 c (\grad \cdot F) \\
&= J – \epsilon_0 c \grad F,
\end{aligned}
\end{equation}
which is Maxwell’s equation, as before.

References

[1] C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University Press New York, Cambridge, UK, 1st edition, 2003.

[2] Peeter Joot. Quantum field theory. Kindle Direct Publishing, 2018.

Updated notes for ece1229 antenna theory

March 16, 2015 ece1229 No comments , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

I’ve now posted a first update of my notes for the antenna theory course that I am taking this term at UofT.

Unlike most of the other classes I have taken, I am not attempting to take comprehensive notes for this class. The class is taught on slides which go by faster than I can easily take notes for (and some of which match the textbook closely). In class I have annotated my copy of textbook with little details instead. This set of notes contains musings of details that were unclear, or in some cases, details that were provided in class, but are not in the text (and too long to pencil into my book), as well as some notes Geometric Algebra formalism for Maxwell’s equations with magnetic sources (something I’ve encountered for the first time in any real detail in this class).

The notes compilation linked above includes all of the following separate notes, some of which have been posted separately on this blog:

Notes for ece1229 antenna theory

February 4, 2015 ece1229 No comments , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

I’ve now posted a first set of notes for the antenna theory course that I am taking this term at UofT.

Unlike most of the other classes I have taken, I am not attempting to take comprehensive notes for this class. The class is taught on slides that match the textbook so closely, there is little value to me taking notes that just replicate the text. Instead, I am annotating my copy of textbook with little details instead. My usual notes collection for the class will contain musings of details that were unclear, or in some cases, details that were provided in class, but are not in the text (and too long to pencil into my book.)

The notes linked above include:

  • Reading notes for chapter 2 (Fundamental Parameters of Antennas) and chapter 3 (Radiation Integrals and Auxiliary Potential Functions) of the class text.
  • Geometric Algebra musings.  How to do formulate Maxwell’s equations when magnetic sources are also included (those modeling magnetic dipoles).
  • Some problems for chapter 2 content.

Recovering the fields

February 4, 2015 ece1229 No comments , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

This is a small addition to Phasor form of (extended) Maxwell’s equations in Geometric Algebra.

Relative to the observer frame implicitly specified by \( \gamma_0 \), here’s an expansion of the curl of the electric four potential

\begin{equation}\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:720}
\begin{aligned}
\grad \wedge A_{\textrm{e}}
&=
\inv{2}\lr{
\grad A_{\textrm{e}}

A_{\textrm{e}} \grad
} \\
&=
\inv{2}\lr{
\gamma_0 \lr{ \spacegrad + j k } \gamma_0 \lr{ A_{\textrm{e}}^0 – \BA_{\textrm{e}} }

\gamma_0 \lr{ A_{\textrm{e}}^0 – \BA_{\textrm{e}} } \gamma_0 \lr{ \spacegrad + j k }
} \\
&=
\inv{2}\lr{
\lr{ -\spacegrad + j k } \lr{ A_{\textrm{e}}^0 – \BA_{\textrm{e}} }

\lr{ A_{\textrm{e}}^0 + \BA_{\textrm{e}} } \lr{ \spacegrad + j k }
} \\
&=
\inv{2}\lr{
– 2 \spacegrad A_{\textrm{e}}^0 + j k A_{\textrm{e}}^0 – j k A_{\textrm{e}}^0
+ \spacegrad \BA_{\textrm{e}} – \BA_{\textrm{e}} \spacegrad
– 2 j k \BA_{\textrm{e}}
} \\
&=
– \lr{ \spacegrad A_{\textrm{e}}^0 + j k \BA_{\textrm{e}} }
+ \spacegrad \wedge \BA_{\textrm{e}}
\end{aligned}
\end{equation}

In the above expansion when the gradients appeared on the right of the field components, they are acting from the right (i.e. implicitly using the Hestenes dot convention.)

The electric and magnetic fields can be picked off directly from above, and in the units implied by this choice of four-potential are

\begin{equation}\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:760}
\BE_{\textrm{e}} = – \lr{ \spacegrad A_{\textrm{e}}^0 + j k \BA_{\textrm{e}} } = -j \lr{ \inv{k}\spacegrad \spacegrad \cdot \BA_{\textrm{e}} + k \BA_{\textrm{e}} }
\end{equation}
\begin{equation}\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:780}
c \BB_{\textrm{e}} = \spacegrad \cross \BA_{\textrm{e}}.
\end{equation}

For the fields due to the magnetic potentials

\begin{equation}\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:800}
\lr{ \grad \wedge A_{\textrm{e}} } I
=
– \lr{ \spacegrad A_{\textrm{e}}^0 + j k \BA_{\textrm{e}} } I
– \spacegrad \cross \BA_{\textrm{e}},
\end{equation}

so the fields are

\begin{equation}\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:840}
c \BB_{\textrm{m}} = – \lr{ \spacegrad A_{\textrm{m}}^0 + j k \BA_{\textrm{m}} } = -j \lr{ \inv{k}\spacegrad \spacegrad \cdot \BA_{\textrm{m}} + k \BA_{\textrm{m}} }
\end{equation}
\begin{equation}\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:860}
\BE_{\textrm{m}} = -\spacegrad \cross \BA_{\textrm{m}}.
\end{equation}

Including both electric and magnetic sources the fields are

\begin{equation}\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:900}
\BE = -\spacegrad \cross \BA_{\textrm{m}} -j \lr{ \inv{k}\spacegrad \spacegrad \cdot \BA_{\textrm{e}} + k \BA_{\textrm{e}} }
\end{equation}
\begin{equation}\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:920}
c \BB = \spacegrad \cross \BA_{\textrm{e}} -j \lr{ \inv{k}\spacegrad \spacegrad \cdot \BA_{\textrm{m}} + k \BA_{\textrm{m}} }
\end{equation}

Dual-Maxwell’s (phasor) equations in Geometric Algebra

February 3, 2015 ece1229 No comments , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

These notes repeat (mostly word for word) the previous notes Maxwell’s (phasor) equations in Geometric Algebra. Electric charges and currents have been replaced with magnetic charges and currents, and the appropriate relations modified accordingly.

In [1] section 3.3, treating magnetic charges and currents, and no electric charges and currents, is a demonstration of the required (curl) form for the electric field, and potential form for the electric field. Not knowing what to name this, I’ll call the associated equations the dual-Maxwell’s equations.

I was wondering how this derivation would proceed using the Geometric Algebra (GA) formalism.

Dual-Maxwell’s equation in GA phasor form.

The dual-Maxwell’s equations, omitting electric charges and currents, are

\begin{equation}\label{eqn:phasorDualMaxwellsGA:20}
\spacegrad \cross \boldsymbol{\mathcal{E}} = -\PD{t}{\boldsymbol{\mathcal{B}}} -\BM
\end{equation}
\begin{equation}\label{eqn:phasorDualMaxwellsGA:40}
\spacegrad \cross \boldsymbol{\mathcal{H}} = \PD{t}{\boldsymbol{\mathcal{D}}}
\end{equation}
\begin{equation}\label{eqn:phasorDualMaxwellsGA:60}
\spacegrad \cdot \boldsymbol{\mathcal{D}} = 0
\end{equation}
\begin{equation}\label{eqn:phasorDualMaxwellsGA:80}
\spacegrad \cdot \boldsymbol{\mathcal{B}} = \rho_m.
\end{equation}

Assuming linear media \( \boldsymbol{\mathcal{B}} = \mu_0
\boldsymbol{\mathcal{H}} \), \( \boldsymbol{\mathcal{D}} = \epsilon_0
\boldsymbol{\mathcal{E}} \), and phasor relationships of the form \(
\boldsymbol{\mathcal{E}} = \textrm{Re} \lr{ \BE(\Br) e^{j \omega t}} \) for the fields and the currents, these reduce to

\begin{equation}\label{eqn:phasorDualMaxwellsGA:100}
\spacegrad \cross \BE = – j \omega \BB – \BM
\end{equation}
\begin{equation}\label{eqn:phasorDualMaxwellsGA:120}
\spacegrad \cross \BB = j \omega \epsilon_0 \mu_0 \BE
\end{equation}
\begin{equation}\label{eqn:phasorDualMaxwellsGA:140}
\spacegrad \cdot \BE = 0
\end{equation}
\begin{equation}\label{eqn:phasorDualMaxwellsGA:160}
\spacegrad \cdot \BB = \rho_m.
\end{equation}

These four equations can be assembled into a single equation form using the GA identities

\begin{equation}\label{eqn:phasorDualMaxwellsGA:200}
\Bf \Bg
= \Bf \cdot \Bg + \Bf \wedge \Bg
= \Bf \cdot \Bg + I \Bf \cross \Bg.
\end{equation}
\begin{equation}\label{eqn:phasorDualMaxwellsGA:220}
I = \xcap \ycap \zcap.
\end{equation}

The electric and magnetic field equations, respectively, are

\begin{equation}\label{eqn:phasorDualMaxwellsGA:260}
\spacegrad \BE = – \lr{ \BM + j k c \BB} I
\end{equation}
\begin{equation}\label{eqn:phasorDualMaxwellsGA:280}
\spacegrad c \BB = c \rho_m + j k \BE I
\end{equation}

where \( \omega = k c \), and \( 1 = c^2 \epsilon_0 \mu_0 \) have also been used to eliminate some of the mess of constants.

Summing these (first scaling \ref{eqn:phasorDualMaxwellsGA:280} by \( I \)), gives Maxwell’s equation in its GA phasor form

\begin{equation}\label{eqn:phasorDualMaxwellsGA:300}
\boxed{
\lr{ \spacegrad + j k } \lr{ \BE + I c \BB } = \lr{c \rho – \BM} I.
}
\end{equation}

Preliminaries. Dual magnetic form of Maxwell’s equations.

The arguments of the text showing that a potential representation for the electric and magnetic fields is possible easily translates into GA. To perform this translation, some duality lemmas are required

First consider the cross product of two vectors \( \Bx, \By \) and the right handed dual \( -\By I \) of \( \By \), a bivector, of one of these vectors. Noting that the Euclidean pseudoscalar \( I \) commutes with all grade multivectors in a Euclidean geometric algebra space, the cross product can be written

\begin{equation}\label{eqn:phasorDualMaxwellsGA:320}
\begin{aligned}
\lr{ \Bx \cross \By }
&=
-I \lr{ \Bx \wedge \By } \\
&=
-I \inv{2} \lr{ \Bx \By – \By \Bx } \\
&=
\inv{2} \lr{ \Bx (-\By I) – (-\By I) \Bx } \\
&=
\Bx \cdot \lr{ -\By I }.
\end{aligned}
\end{equation}

The last step makes use of the fact that the wedge product of a vector and vector is antisymmetric, whereas the dot product (vector grade selection) of a vector and bivector is antisymmetric. Details on grade selection operators and how to characterize symmetric and antisymmetric products of vectors with blades as either dot or wedge products can be found in [3], [2].

Similarly, the dual of the dot product can be written as

\begin{equation}\label{eqn:phasorDualMaxwellsGA:440}
\begin{aligned}
-I \lr{ \Bx \cdot \By }
&=
-I \inv{2} \lr{ \Bx \By + \By \Bx } \\
&=
\inv{2} \lr{ \Bx (-\By I) + (-\By I) \Bx } \\
&=
\Bx \wedge \lr{ -\By I }.
\end{aligned}
\end{equation}

These duality transformations are motivated by the observation that in the GA form of Maxwell’s equation the magnetic field shows up in its dual form, a bivector. Spelled out in terms of the dual magnetic field, those equations are

\begin{equation}\label{eqn:phasorDualMaxwellsGA:360}
\spacegrad \cdot (-\BE I)= – j \omega \BB – \BM
\end{equation}
\begin{equation}\label{eqn:phasorDualMaxwellsGA:380}
\spacegrad \wedge \BH = j \omega \epsilon_0 \BE I
\end{equation}
\begin{equation}\label{eqn:phasorDualMaxwellsGA:400}
\spacegrad \wedge (-\BE I) = 0
\end{equation}
\begin{equation}\label{eqn:phasorDualMaxwellsGA:420}
\spacegrad \cdot \BB = \rho_m.
\end{equation}

Constructing a potential representation.

The starting point of the argument in the text was the observation that the triple product \( \spacegrad \cdot \lr{ \spacegrad \cross \Bx } = 0 \) for any (sufficiently continuous) vector \( \Bx \). This triple product is a completely antisymmetric sum, and the equivalent statement in GA is \( \spacegrad \wedge \spacegrad \wedge \Bx = 0 \) for any vector \( \Bx \). This follows from \( \Ba \wedge \Ba = 0 \), true for any vector \( \Ba \), including the gradient operator \( \spacegrad \), provided those gradients are acting on a sufficiently continuous blade.

In the absence of electric charges,
\ref{eqn:phasorDualMaxwellsGA:400} shows that the divergence of the dual electric field is zero. It it therefore possible to find a potential \( \BF \) such that

\begin{equation}\label{eqn:phasorDualMaxwellsGA:460}
-\epsilon_0 \BE I = \spacegrad \wedge \BF.
\end{equation}

Substituting this \ref{eqn:phasorDualMaxwellsGA:380} gives

\begin{equation}\label{eqn:phasorDualMaxwellsGA:480}
\spacegrad \wedge \lr{ \BH + j \omega \BF } = 0.
\end{equation}

This relation is a bivector identity with zero, so will be satisfied if

\begin{equation}\label{eqn:phasorDualMaxwellsGA:500}
\BH + j \omega \BF = -\spacegrad \phi_m,
\end{equation}

for some scalar \( \phi_m \). Unlike the \( -\epsilon_0 \BE I = \spacegrad \wedge \BF \) solution to \ref{eqn:phasorDualMaxwellsGA:400}, the grade of \( \phi_m \) is fixed by the requirement that \( \BE + j \omega \BF \) is unity (a vector), so
a \( \BE + j \omega \BF = \spacegrad \wedge \psi \), for a higher grade blade \( \psi \) would not work, despite satisfying the condition \( \spacegrad \wedge \spacegrad \wedge \psi = 0 \).

Substitution of \ref{eqn:phasorDualMaxwellsGA:500} and \ref{eqn:phasorDualMaxwellsGA:460} into \ref{eqn:phasorDualMaxwellsGA:380} gives

\begin{equation}\label{eqn:phasorDualMaxwellsGA:520}
\begin{aligned}
\spacegrad \cdot \lr{ \spacegrad \wedge \BF } &= -\epsilon_0 \BM – j \omega \epsilon_0 \mu_0 \lr{ -\spacegrad \phi_m -j \omega \BF } \\
\spacegrad^2 \BF – \spacegrad \lr{\spacegrad \cdot \BF} &=
\end{aligned}
\end{equation}

Rearranging gives

\begin{equation}\label{eqn:phasorDualMaxwellsGA:540}
\spacegrad^2 \BF + k^2 \BF = -\epsilon_0 \BM + \spacegrad \lr{ \spacegrad \cdot \BF + j \frac{k}{c} \phi_m }.
\end{equation}

The fields \( \BF \) and \( \phi_m \) are assumed to be phasors, say \( \boldsymbol{\mathcal{A}} = \textrm{Re} \BF e^{j k c t} \) and \( \varphi = \textrm{Re} \phi_m e^{j k c t} \). Grouping the scalar and vector potentials into the standard four vector form
\( F^\mu = \lr{\phi_m/c, \BF} \), and expanding the Lorentz gauge condition

\begin{equation}\label{eqn:phasorDualMaxwellsGA:580}
\begin{aligned}
0
&= \partial_\mu \lr{ F^\mu e^{j k c t}} \\
&= \partial_a \lr{ F^a e^{j k c t}} + \inv{c}\PD{t}{} \lr{ \frac{\phi_m}{c}
e^{j k c t}} \\
&= \spacegrad \cdot \BF e^{j k c t} + \inv{c} j k \phi_m e^{j k c t} \\
&= \lr{ \spacegrad \cdot \BF + j k \phi_m/c } e^{j k c t},
\end{aligned}
\end{equation}

shows that in
\ref{eqn:phasorDualMaxwellsGA:540}
the quantity in braces is in fact the Lorentz gauge condition, so in the Lorentz gauge, the vector potential satisfies a non-homogeneous Helmholtz equation.

\begin{equation}\label{eqn:phasorDualMaxwellsGA:550}
\boxed{
\spacegrad^2 \BF + k^2 \BF = -\epsilon_0 \BM.
}
\end{equation}

Maxwell’s equation in Four vector form

The four vector form of Maxwell’s equation follows from \ref{eqn:phasorDualMaxwellsGA:300} after pre-multiplying by \( \gamma^0 \).

With

\begin{equation}\label{eqn:phasorDualMaxwellsGA:620}
F = F^\mu \gamma_\mu = \lr{ \phi_m/c, \BF }
\end{equation}
\begin{equation}\label{eqn:phasorDualMaxwellsGA:640}
G = \grad \wedge F = – \epsilon_0 \lr{ \BE + c \BB I } I
\end{equation}
\begin{equation}\label{eqn:phasorDualMaxwellsGA:660}
\grad = \gamma^\mu \partial_\mu = \gamma^0 \lr{ \spacegrad + j k }
\end{equation}
\begin{equation}\label{eqn:phasorDualMaxwellsGA:680}
M = M^\mu \gamma_\mu = \lr{ c \rho_m, \BM },
\end{equation}

Maxwell’s equation is

\begin{equation}\label{eqn:phasorDualMaxwellsGA:720}
\boxed{
\grad G = -\epsilon_0 M.
}
\end{equation}

Here \( \setlr{ \gamma_\mu } \) is used as the basis of the four vector Minkowski space, with \( \gamma_0^2 = -\gamma_k^2 = 1 \) (i.e. \(\gamma^\mu \cdot \gamma_\nu = {\delta^\mu}_\nu \)), and \( \gamma_a \gamma_0 = \sigma_a \) where \( \setlr{ \sigma_a} \) is the Pauli basic (i.e. standard basis vectors for \R{3}).

Let’s demonstrate this, one piece at a time. Observe that the action of the spacetime gradient on a phasor, assuming that all time dependence is in the exponential, is

\begin{equation}\label{eqn:phasorDualMaxwellsGA:740}
\begin{aligned}
\gamma^\mu \partial_\mu \lr{ \psi e^{j k c t} }
&=
\lr{ \gamma^a \partial_a + \gamma_0 \partial_{c t} } \lr{ \psi e^{j k c t} }
\\
&=
\gamma_0 \lr{ \gamma_0 \gamma^a \partial_a + j k } \lr{ \psi e^{j k c t} } \\
&=
\gamma_0 \lr{ \sigma_a \partial_a + j k } \psi e^{j k c t} \\
&=
\gamma_0 \lr{ \spacegrad + j k } \psi e^{j k c t}
\end{aligned}
\end{equation}

This allows the operator identification of \ref{eqn:phasorDualMaxwellsGA:660}. The four current portion of the equation comes from

\begin{equation}\label{eqn:phasorDualMaxwellsGA:760}
\begin{aligned}
c \rho_m – \BM
&=
\gamma_0 \lr{ \gamma_0 c \rho_m – \gamma_0 \gamma_a \gamma_0 M^a } \\
&=
\gamma_0 \lr{ \gamma_0 c \rho_m + \gamma_a M^a } \\
&=
\gamma_0 \lr{ \gamma_\mu M^\mu } \\
&= \gamma_0 M.
\end{aligned}
\end{equation}

Taking the curl of the four potential gives

\begin{equation}\label{eqn:phasorDualMaxwellsGA:780}
\begin{aligned}
\grad \wedge F
&=
\lr{ \gamma^a \partial_a + \gamma_0 j k } \wedge \lr{ \gamma_0 \phi_m/c +
\gamma_b F^b } \\
&=
– \sigma_a \partial_a \phi_m/c + \gamma^a \wedge \gamma_b \partial_a F^b – j k
\sigma_b F^b \\
&=
– \sigma_a \partial_a \phi_m/c + \sigma_a \wedge \sigma_b \partial_a F^b – j k
\sigma_b F^b \\
&= \inv{c} \lr{ – \spacegrad \phi_m – j \omega \BF + c \spacegrad \wedge \BF }
\\
&= \epsilon_0 \lr{ c \BB – \BE I } \\
&= – \epsilon_0 \lr{ \BE + c \BB I } I.
\end{aligned}
\end{equation}

Substituting all of these into Maxwell’s \ref{eqn:phasorDualMaxwellsGA:300} gives

\begin{equation}\label{eqn:phasorDualMaxwellsGA:800}
-\frac{\gamma_0}{\epsilon_0}\grad G = \gamma_0 M,
\end{equation}

which recovers \ref{eqn:phasorDualMaxwellsGA:700} as desired.

Helmholtz equation directly from the GA form.

It is easier to find \ref{eqn:phasorDualMaxwellsGA:550} from the GA form of Maxwell’s \ref{eqn:phasorDualMaxwellsGA:700} than the traditional curl and divergence equations. Note that

\begin{equation}\label{eqn:phasorDualMaxwellsGA:820}
\begin{aligned}
\grad G
&=
\grad \lr{ \grad \wedge F } \\
&=
\grad \cdot \lr{ \grad \wedge F } \\
+
\grad \wedge \lr{ \grad \wedge F } \\
&=
\grad^2 F – \grad \lr{ \grad \cdot F },
\end{aligned}
\end{equation}

however, the Lorentz gauge condition \( \partial_\mu F^\mu = \grad \cdot F = 0 \) kills the latter term above. This leaves

\begin{equation}\label{eqn:phasorDualMaxwellsGA:840}
\begin{aligned}
\grad G
&=
\grad^2 F \\
&=
\gamma_0 \lr{ \spacegrad + j k }
\gamma_0 \lr{ \spacegrad + j k } F \\
&=
\gamma_0^2 \lr{ -\spacegrad + j k }
\lr{ \spacegrad + j k } F \\
&=
-\lr{ \spacegrad^2 + k^2 } F = -\epsilon_0 M.
\end{aligned}
\end{equation}

The timelike component of this gives

\begin{equation}\label{eqn:phasorDualMaxwellsGA:860}
\lr{ \spacegrad^2 + k^2 } \phi_m = -\epsilon_0 c \rho_m,
\end{equation}

and the spacelike components give

\begin{equation}\label{eqn:phasorDualMaxwellsGA:880}
\lr{ \spacegrad^2 + k^2 } \BF = -\epsilon_0 \BM,
\end{equation}

recovering \ref{eqn:phasorDualMaxwellsGA:550} as desired.

References

[1] Constantine A Balanis. Antenna theory: analysis and design. John Wiley \& Sons, 3rd edition, 2005.

[2] C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University Press New York, Cambridge, UK, 1st edition, 2003.

[3] D. Hestenes. New Foundations for Classical Mechanics. Kluwer Academic Publishers, 1999.

Maxwell’s (phasor) equations in Geometric Algebra

February 1, 2015 ece1229 1 comment , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

In [1] section 3.2 is a demonstration of the required (curl) form for the magnetic field, and potential form for the electric field.

I was wondering how this derivation would proceed using the Geometric Algebra (GA) formalism.

Maxwell’s equation in GA phasor form.

Maxwell’s equations, omitting magnetic charges and currents, are

\begin{equation}\label{eqn:phasorMaxwellsGA:20}
\spacegrad \cross \boldsymbol{\mathcal{E}} = -\PD{t}{\boldsymbol{\mathcal{B}}}
\end{equation}
\begin{equation}\label{eqn:phasorMaxwellsGA:40}
\spacegrad \cross \boldsymbol{\mathcal{H}} = \boldsymbol{\mathcal{J}} + \PD{t}{\boldsymbol{\mathcal{D}}}
\end{equation}
\begin{equation}\label{eqn:phasorMaxwellsGA:60}
\spacegrad \cdot \boldsymbol{\mathcal{D}} = \rho
\end{equation}
\begin{equation}\label{eqn:phasorMaxwellsGA:80}
\spacegrad \cdot \boldsymbol{\mathcal{B}} = 0.
\end{equation}

Assuming linear media \( \boldsymbol{\mathcal{B}} = \mu_0 \boldsymbol{\mathcal{H}} \), \( \boldsymbol{\mathcal{D}} = \epsilon_0 \boldsymbol{\mathcal{E}} \), and phasor relationships of the form \( \boldsymbol{\mathcal{E}} = \textrm{Re} \lr{ \BE(\Br) e^{j \omega t}} \) for the fields and the currents, these reduce to

\begin{equation}\label{eqn:phasorMaxwellsGA:100}
\spacegrad \cross \BE = – j \omega \BB
\end{equation}
\begin{equation}\label{eqn:phasorMaxwellsGA:120}
\spacegrad \cross \BB = \mu_0 \BJ + j \omega \epsilon_0 \mu_0 \BE
\end{equation}
\begin{equation}\label{eqn:phasorMaxwellsGA:140}
\spacegrad \cdot \BE = \rho/\epsilon_0
\end{equation}
\begin{equation}\label{eqn:phasorMaxwellsGA:160}
\spacegrad \cdot \BB = 0.
\end{equation}

These four equations can be assembled into a single equation form using the GA identities

\begin{equation}\label{eqn:phasorMaxwellsGA:200}
\Bf \Bg
= \Bf \cdot \Bg + \Bf \wedge \Bg
= \Bf \cdot \Bg + I \Bf \cross \Bg.
\end{equation}
\begin{equation}\label{eqn:phasorMaxwellsGA:220}
I = \xcap \ycap \zcap.
\end{equation}

The electric and magnetic field equations, respectively, are

\begin{equation}\label{eqn:phasorMaxwellsGA:260}
\spacegrad \BE = \rho/\epsilon_0 -j k c \BB I
\end{equation}
\begin{equation}\label{eqn:phasorMaxwellsGA:280}
\spacegrad c \BB = \frac{I}{\epsilon_0 c} \BJ + j k \BE I
\end{equation}

where \( \omega = k c \), and \( 1 = c^2 \epsilon_0 \mu_0 \) have also been used to eliminate some of the mess of constants.

Summing these (first scaling \ref{eqn:phasorMaxwellsGA:280} by \( I \)), gives Maxwell’s equation in its GA phasor form

\begin{equation}\label{eqn:phasorMaxwellsGA:300}
\boxed{
\lr{ \spacegrad + j k } \lr{ \BE + I c \BB } = \inv{\epsilon_0 c}\lr{c \rho – \BJ}.
}
\end{equation}

Preliminaries. Dual magnetic form of Maxwell’s equations.

The arguments of the text showing that a potential representation for the electric and magnetic fields is possible easily translates into GA. To perform this translation, some duality lemmas are required

First consider the cross product of two vectors \( \Bx, \By \) and the right handed dual \( -\By I \) of \( \By \), a bivector, of one of these vectors. Noting that the Euclidean pseudoscalar \( I \) commutes with all grade multivectors in a Euclidean geometric algebra space, the cross product can be written

\begin{equation}\label{eqn:phasorMaxwellsGA:320}
\begin{aligned}
\lr{ \Bx \cross \By }
&=
-I \lr{ \Bx \wedge \By } \\
&=
-I \inv{2} \lr{ \Bx \By – \By \Bx } \\
&=
\inv{2} \lr{ \Bx (-\By I) – (-\By I) \Bx } \\
&=
\Bx \cdot \lr{ -\By I }.
\end{aligned}
\end{equation}

The last step makes use of the fact that the wedge product of a vector and vector is antisymmetric, whereas the dot product (vector grade selection) of a vector and bivector is antisymmetric. Details on grade selection operators and how to characterize symmetric and antisymmetric products of vectors with blades as either dot or wedge products can be found in [3], [2].

Similarly, the dual of the dot product can be written as

\begin{equation}\label{eqn:phasorMaxwellsGA:440}
\begin{aligned}
-I \lr{ \Bx \cdot \By }
&=
-I \inv{2} \lr{ \Bx \By + \By \Bx } \\
&=
\inv{2} \lr{ \Bx (-\By I) + (-\By I) \Bx } \\
&=
\Bx \wedge \lr{ -\By I }.
\end{aligned}
\end{equation}

These duality transformations are motivated by the observation that in the GA form of Maxwell’s equation the magnetic field shows up in its dual form, a bivector. Spelled out in terms of the dual magnetic field, those equations are

\begin{equation}\label{eqn:phasorMaxwellsGA:360}
\spacegrad \wedge \BE = – j \omega \BB I
\end{equation}
\begin{equation}\label{eqn:phasorMaxwellsGA:380}
\spacegrad \cdot \lr{ -\BB I } = \mu_0 \BJ + j \omega \epsilon_0 \mu_0 \BE
\end{equation}
\begin{equation}\label{eqn:phasorMaxwellsGA:400}
\spacegrad \cdot \BE = \rho/\epsilon_0
\end{equation}
\begin{equation}\label{eqn:phasorMaxwellsGA:420}
\spacegrad \wedge (-\BB I) = 0.
\end{equation}

Constructing a potential representation.

The starting point of the argument in the text was the observation that the triple product \( \spacegrad \cdot \lr{ \spacegrad \cross \Bx } = 0 \) for any (sufficiently continuous) vector \( \Bx \). This triple product is a completely antisymmetric sum, and the equivalent statement in GA is \( \spacegrad \wedge \spacegrad \wedge \Bx = 0 \) for any vector \( \Bx \). This follows from \( \Ba \wedge \Ba = 0 \), true for any vector \( \Ba \), including the gradient operator \( \spacegrad \), provided those gradients are acting on a sufficiently continuous blade.

In the absence of magnetic charges, \ref{eqn:phasorMaxwellsGA:420} shows that the divergence of the dual magnetic field is zero. It it therefore possible to find a potential \( \BA \) such that

\begin{equation}\label{eqn:phasorMaxwellsGA:460}
\BB I = \spacegrad \wedge \BA.
\end{equation}

Substituting this into Maxwell-Faraday \ref{eqn:phasorMaxwellsGA:360} gives

\begin{equation}\label{eqn:phasorMaxwellsGA:480}
\spacegrad \wedge \lr{ \BE + j \omega \BA } = 0.
\end{equation}

This relation is a bivector identity with zero, so will be satisfied if

\begin{equation}\label{eqn:phasorMaxwellsGA:500}
\BE + j \omega \BA = -\spacegrad \phi,
\end{equation}

for some scalar \( \phi \). Unlike the \( \BB I = \spacegrad \wedge \BA \) solution to \ref{eqn:phasorMaxwellsGA:420}, the grade of \( \phi \) is fixed by the requirement that \( \BE + j \omega \BA \) is unity (a vector), so a \( \BE + j \omega \BA = \spacegrad \wedge \psi \), for a higher grade blade \( \psi \) would not work, despite satisifying the condition \( \spacegrad \wedge \spacegrad \wedge \psi = 0 \).

Substitution of \ref{eqn:phasorMaxwellsGA:500} and \ref{eqn:phasorMaxwellsGA:460} into Ampere’s law \ref{eqn:phasorMaxwellsGA:380} gives

\begin{equation}\label{eqn:phasorMaxwellsGA:520}
\begin{aligned}
-\spacegrad \cdot \lr{ \spacegrad \wedge \BA } &= \mu_0 \BJ + j \omega \epsilon_0 \mu_0 \lr{ -\spacegrad \phi -j \omega \BA } \\
-\spacegrad^2 \BA – \spacegrad \lr{\spacegrad \cdot \BA} &=
\end{aligned}
\end{equation}

Rearranging gives

\begin{equation}\label{eqn:phasorMaxwellsGA:540}
\spacegrad^2 \BA + k^2 \BA = -\mu_0 \BJ – \spacegrad \lr{ \spacegrad \cdot \BA + j \frac{k}{c} \phi }.
\end{equation}

The fields \( \BA \) and \( \phi \) are assumed to be phasors, say \( \boldsymbol{\mathcal{A}} = \textrm{Re} \BA e^{j k c t} \) and \( \varphi = \textrm{Re} \phi e^{j k c t} \). Grouping the scalar and vector potentials into the standard four vector form \( A^\mu = \lr{\phi/c, \BA} \), and expanding the Lorentz gauge condition

\begin{equation}\label{eqn:phasorMaxwellsGA:580}
\begin{aligned}
0
&= \partial_\mu \lr{ A^\mu e^{j k c t}} \\
&= \partial_a \lr{ A^a e^{j k c t}} + \inv{c}\PD{t}{} \lr{ \frac{\phi}{c} e^{j k c t}} \\
&= \spacegrad \cdot \BA e^{j k c t} + \inv{c} j k \phi e^{j k c t} \\
&= \lr{ \spacegrad \cdot \BA + j k \phi/c } e^{j k c t},
\end{aligned}
\end{equation}

shows that in \ref{eqn:phasorMaxwellsGA:540} the quantity in braces is in fact the Lorentz gauge condition, so in the Lorentz gauge, the vector potential satisfies a non-homogeneous Helmholtz equation.

\begin{equation}\label{eqn:phasorMaxwellsGA:550}
\boxed{
\spacegrad^2 \BA + k^2 \BA = -\mu_0 \BJ.
}
\end{equation}

Maxwell’s equation in Four vector form

The four vector form of Maxwell’s equation follows from \ref{eqn:phasorMaxwellsGA:300} after pre-multiplying by \( \gamma^0 \).

With

\begin{equation}\label{eqn:phasorMaxwellsGA:620}
A = A^\mu \gamma_\mu = \lr{ \phi/c, \BA }
\end{equation}
\begin{equation}\label{eqn:phasorMaxwellsGA:640}
F = \grad \wedge A = \inv{c} \lr{ \BE + c \BB I }
\end{equation}
\begin{equation}\label{eqn:phasorMaxwellsGA:660}
\grad = \gamma^\mu \partial_\mu = \gamma^0 \lr{ \spacegrad + j k }
\end{equation}
\begin{equation}\label{eqn:phasorMaxwellsGA:680}
J = J^\mu \gamma_\mu = \lr{ c \rho, \BJ },
\end{equation}

Maxwell’s equation is

\begin{equation}\label{eqn:phasorMaxwellsGA:700}
\boxed{
\grad F = \mu_0 J.
}
\end{equation}

Here \( \setlr{ \gamma_\mu } \) is used as the basis of the four vector Minkowski space, with \( \gamma_0^2 = -\gamma_k^2 = 1 \) (i.e. \(\gamma^\mu \cdot \gamma_\nu = {\delta^\mu}_\nu \)), and \( \gamma_a \gamma_0 = \sigma_a \) where \( \setlr{ \sigma_a} \) is the Pauli basic (i.e. standard basis vectors for \R{3}).

Let’s demonstrate this, one piece at a time. Observe that the action of the spacetime gradient on a phasor, assuming that all time dependence is in the exponential, is

\begin{equation}\label{eqn:phasorMaxwellsGA:740}
\begin{aligned}
\gamma^\mu \partial_\mu \lr{ \psi e^{j k c t} }
&=
\lr{ \gamma^a \partial_a + \gamma_0 \partial_{c t} } \lr{ \psi e^{j k c t} }
\\
&=
\gamma_0 \lr{ \gamma_0 \gamma^a \partial_a + j k } \lr{ \psi e^{j k c t} } \\
&=
\gamma_0 \lr{ \sigma_a \partial_a + j k } \psi e^{j k c t} \\
&=
\gamma_0 \lr{ \spacegrad + j k } \psi e^{j k c t}
\end{aligned}
\end{equation}

This allows the operator identification of \ref{eqn:phasorMaxwellsGA:660}. The four current portion of the equation comes from

\begin{equation}\label{eqn:phasorMaxwellsGA:760}
\begin{aligned}
c \rho – \BJ
&=
\gamma_0 \lr{ \gamma_0 c \rho – \gamma_0 \gamma_a \gamma_0 J^a } \\
&=
\gamma_0 \lr{ \gamma_0 c \rho + \gamma_a J^a } \\
&=
\gamma_0 \lr{ \gamma_\mu J^\mu } \\
&= \gamma_0 J.
\end{aligned}
\end{equation}

Taking the curl of the four potential gives

\begin{equation}\label{eqn:phasorMaxwellsGA:780}
\begin{aligned}
\grad \wedge A
&=
\lr{ \gamma^a \partial_a + \gamma_0 j k } \wedge \lr{ \gamma_0 \phi/c + \gamma_b A^b } \\
&=
– \sigma_a \partial_a \phi/c + \gamma^a \wedge \gamma_b \partial_a A^b – j k
\sigma_b A^b \\
&=
– \sigma_a \partial_a \phi/c + \sigma_a \wedge \sigma_b \partial_a A^b – j k
\sigma_b A^b \\
&= \inv{c} \lr{ – \spacegrad \phi – j \omega \BA + c \spacegrad \wedge \BA }
\\
&= \inv{c} \lr{ \BE + c \BB I }.
\end{aligned}
\end{equation}

Substituting all of these into Maxwell’s \ref{eqn:phasorMaxwellsGA:300} gives

\begin{equation}\label{eqn:phasorMaxwellsGA:800}
\gamma_0 \grad c F = \inv{ \epsilon_0 c } \gamma_0 J,
\end{equation}

which recovers \ref{eqn:phasorMaxwellsGA:700} as desired.

Helmholtz equation directly from the GA form.

It is easier to find \ref{eqn:phasorMaxwellsGA:550} from the GA form of Maxwell’s \ref{eqn:phasorMaxwellsGA:700} than the traditional curl and divergence equations. Note that

\begin{equation}\label{eqn:phasorMaxwellsGA:820}
\grad F
=
\grad \lr{ \grad \wedge A }
=
\grad \cdot \lr{ \grad \wedge A }
+
\grad \wedge \lr{ \grad \wedge A }
=
\grad^2 A – \grad \lr{ \grad \cdot A },
\end{equation}

however, the Lorentz gauge condition \( \partial_\mu A^\mu = \grad \cdot A = 0 \) kills the latter term above. This leaves

\begin{equation}\label{eqn:phasorMaxwellsGA:840}
\begin{aligned}
\grad F
&=
\grad^2 A \\
&=
\gamma_0 \lr{ \spacegrad + j k }
\gamma_0 \lr{ \spacegrad + j k } A \\
&=
\gamma_0^2 \lr{ -\spacegrad + j k }
\lr{ \spacegrad + j k } A \\
&=
-\lr{ \spacegrad^2 + k^2 } A = \mu_0 J.
\end{aligned}
\end{equation}

The timelike component of this gives

\begin{equation}\label{eqn:phasorMaxwellsGA:860}
\lr{ \spacegrad^2 + k^2 } \phi = -\rho/\epsilon_0,
\end{equation}

and the spacelike components give

\begin{equation}\label{eqn:phasorMaxwellsGA:880}
\lr{ \spacegrad^2 + k^2 } \BA = -\mu_0 \BJ,
\end{equation}

recovering \ref{eqn:phasorMaxwellsGA:550} as desired.

References

[1] Constantine A Balanis. Antenna theory: analysis and design. John Wiley & Sons, 3rd edition, 2005.

[2] C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University Press New York, Cambridge, UK, 1st edition, 2003.

[3] D. Hestenes. New Foundations for Classical Mechanics. Kluwer Academic Publishers, 1999.

%d bloggers like this: