## Lorentz transformations in Space Time Algebra (STA)

[If mathjax doesn’t display properly for you, click here for a PDF of this post]

## Motivation.

One of the remarkable features of geometric algebra are the complex exponential sandwiches that can be used to encode rotations in any dimension, or rotation like operations like Lorentz transformations in Minkowski spaces. In this post, we show some examples that unpack the geometric algebra expressions for Lorentz transformations operations of this sort. In particular, we will look at the exponential sandwich operations for spatial rotations and Lorentz boosts in the Dirac algebra, known as Space Time Algebra (STA) in geometric algebra circles, and demonstrate that these sandwiches do have the desired effects.

## Theorem 1.1: Lorentz transformation.

The transformation
\label{eqn:lorentzTransform:580}
x \rightarrow e^{B} x e^{-B} = x’,

where $$B = a \wedge b$$, is an STA 2-blade for any two linearly independent four-vectors $$a, b$$, is a norm preserving, that is
\label{eqn:lorentzTransform:600}
x^2 = {x’}^2.

### Start proof:

The proof is disturbingly trivial in this geometric algebra form
\label{eqn:lorentzTransform:40}
\begin{aligned}
{x’}^2
&=
e^{B} x e^{-B} e^{B} x e^{-B} \\
&=
e^{B} x x e^{-B} \\
&=
x^2 e^{B} e^{-B} \\
&=
x^2.
\end{aligned}

### End proof.

In particular, observe that we did not need to construct the usual infinitesimal representations of rotation and boost transformation matrices or tensors in order to demonstrate that we have spacetime invariance for the transformations. The rough idea of such a transformation is that the exponential commutes with components of the four-vector that lie off the spacetime plane specified by the bivector $$B$$, and anticommutes with components of the four-vector that lie in the plane. The end result is that the sandwich operation simplifies to
\label{eqn:lorentzTransform:60}
x’ = x_\parallel e^{-B} + x_\perp,

where $$x = x_\perp + x_\parallel$$ and $$x_\perp \cdot B = 0$$, and $$x_\parallel \wedge B = 0$$. In particular, using $$x = x B B^{-1} = \lr{ x \cdot B + x \wedge B } B^{-1}$$, we find that
\label{eqn:lorentzTransform:80}
\begin{aligned}
x_\parallel &= \lr{ x \cdot B } B^{-1} \\
x_\perp &= \lr{ x \wedge B } B^{-1}.
\end{aligned}

When $$B$$ is a spacetime plane $$B = b \wedge \gamma_0$$, then this exponential has a hyperbolic nature, and we end up with a Lorentz boost. When $$B$$ is a spatial bivector, we end up with a single complex exponential, encoding our plane old 3D rotation. More general $$B$$’s that encode composite boosts and rotations are also possible, but $$B$$ must be invertible (it should have no lightlike factors.) The rough geometry of these projections is illustrated in fig 1, where the spacetime plane is represented by $$B$$.

fig 1. Projection and rejection geometry.

What is not so obvious is how to pick $$B$$’s that correspond to specific rotation axes or boost directions. Let’s consider each of those cases in turn.

## Theorem 1.2: Boost.

The boost along a direction vector $$\vcap$$ and rapidity $$\alpha$$ is given by
\label{eqn:lorentzTransform:620}
x’ = e^{-\vcap \alpha/2} x e^{\vcap \alpha/2},

where $$\vcap = \gamma_{k0} \cos\theta^k$$ is an STA bivector representing a spatial direction with direction cosines $$\cos\theta^k$$.

### Start proof:

We want to demonstrate that this is equivalent to the usual boost formulation. We can start with decomposition of the four-vector $$x$$ into components that lie in and off of the spacetime plane $$\vcap$$.
\label{eqn:lorentzTransform:100}
\begin{aligned}
x
&= \lr{ x^0 + \Bx } \gamma_0 \\
&= \lr{ x^0 + \Bx \vcap^2 } \gamma_0 \\
&= \lr{ x^0 + \lr{ \Bx \cdot \vcap} \vcap + \lr{ \Bx \wedge \vcap} \vcap } \gamma_0,
\end{aligned}

where $$\Bx = x \wedge \gamma_0$$. The first two components lie in the boost plane, whereas the last is the spatial component of the vector that lies perpendicular to the boost plane. Observe that $$\vcap$$ anticommutes with the dot product term and commutes with he wedge product term, so we have
\label{eqn:lorentzTransform:120}
\begin{aligned}
x’
&=
\lr{ x^0 + \lr{ \Bx \cdot \vcap } \vcap } \gamma_0
e^{\vcap \alpha/2 }
e^{\vcap \alpha/2 }
+
\lr{ \Bx \wedge \vcap } \vcap \gamma_0
e^{-\vcap \alpha/2 }
e^{\vcap \alpha/2 } \\
&=
\lr{ x^0 + \lr{ \Bx \cdot \vcap } \vcap } \gamma_0
e^{\vcap \alpha }
+
\lr{ \Bx \wedge \vcap } \vcap \gamma_0.
\end{aligned}

Noting that $$\vcap^2 = 1$$, we may expand the exponential in hyperbolic functions, and find that the boosted portion of the vector expands as
\label{eqn:lorentzTransform:260}
\begin{aligned}
\lr{ x^0 + \lr{ \Bx \cdot \vcap} \vcap } \gamma_0 e^{\vcap \alpha}
&=
\lr{ x^0 + \lr{ \Bx \cdot \vcap} \vcap } \gamma_0 \lr{ \cosh\alpha + \vcap \sinh \alpha} \\
&=
\lr{ x^0 + \lr{ \Bx \cdot \vcap} \vcap } \lr{ \cosh\alpha – \vcap \sinh \alpha} \gamma_0 \\
&=
\lr{ x^0 \cosh\alpha – \lr{ \Bx \cdot \vcap} \sinh \alpha} \gamma_0
+
\lr{ -x^0 \sinh \alpha + \lr{ \Bx \cdot \vcap} \cosh \alpha } \vcap \gamma_0.
\end{aligned}

We are left with
\label{eqn:lorentzTransform:320}
\begin{aligned}
x’
&=
\lr{ x^0 \cosh\alpha – \lr{ \Bx \cdot \vcap} \sinh \alpha} \gamma_0
+
\lr{ \lr{ \Bx \cdot \vcap} \cosh \alpha -x^0 \sinh \alpha } \vcap \gamma_0
+
\lr{ \Bx \wedge \vcap} \vcap \gamma_0 \\
&=
\begin{bmatrix}
\gamma_0 & \vcap \gamma_0
\end{bmatrix}
\begin{bmatrix}
\cosh\alpha & – \sinh\alpha \\
-\sinh\alpha & \cosh\alpha
\end{bmatrix}
\begin{bmatrix}
x^0 \\
\Bx \cdot \vcap
\end{bmatrix}
+
\lr{ \Bx \wedge \vcap} \vcap \gamma_0,
\end{aligned}

which has the desired Lorentz boost structure. Of course, this is usually seen with $$\vcap = \gamma_{10}$$ so that the components in the coordinate column vector are $$(ct, x)$$.

## Theorem 1.3: Spatial rotation.

Given two linearly independent spatial bivectors $$\Ba = a^k \gamma_{k0}, \Bb = b^k \gamma_{k0}$$, a rotation of $$\theta$$ radians in the plane of $$\Ba, \Bb$$ from $$\Ba$$ towards $$\Bb$$, is given by
\label{eqn:lorentzTransform:640}
x’ = e^{-i\theta} x e^{i\theta},

where $$i = (\Ba \wedge \Bb)/\Abs{\Ba \wedge \Bb}$$, is a unit (spatial) bivector.

### Start proof:

Without loss of generality, we may pick $$i = \acap \bcap$$, where $$\acap^2 = \bcap^2 = 1$$, and $$\acap \cdot \bcap = 0$$. With such an orthonormal basis for the plane, we can decompose our four vector into portions that lie in and off the plane
\label{eqn:lorentzTransform:400}
\begin{aligned}
x
&= \lr{ x^0 + \Bx } \gamma_0 \\
&= \lr{ x^0 + \Bx i i^{-1} } \gamma_0 \\
&= \lr{ x^0 + \lr{ \Bx \cdot i } i^{-1} + \lr{ \Bx \wedge i } i^{-1} } \gamma_0.
\end{aligned}

The projective term lies in the plane of rotation, whereas the timelike and spatial rejection term are perpendicular. That is
\label{eqn:lorentzTransform:420}
\begin{aligned}
x_\parallel &= \lr{ \Bx \cdot i } i^{-1} \gamma_0 \\
x_\perp &= \lr{ x^0 + \lr{ \Bx \wedge i } i^{-1} } \gamma_0,
\end{aligned}

where $$x_\parallel \wedge i = 0$$, and $$x_\perp \cdot i = 0$$. The plane pseudoscalar $$i$$ anticommutes with $$x_\parallel$$, and commutes with $$x_\perp$$, so
\label{eqn:lorentzTransform:440}
\begin{aligned}
x’
&= e^{-i\theta/2} \lr{ x_\parallel + x_\perp } e^{i\theta/2} \\
&= x_\parallel e^{i\theta} + x_\perp.
\end{aligned}

However
\label{eqn:lorentzTransform:460}
\begin{aligned}
\lr{ \Bx \cdot i } i^{-1}
&=
\lr{ \Bx \cdot \lr{ \acap \wedge \bcap } } \bcap \acap \\
&=
\lr{\Bx \cdot \acap} \bcap \bcap \acap
-\lr{\Bx \cdot \bcap} \acap \bcap \acap \\
&=
\lr{\Bx \cdot \acap} \acap
+\lr{\Bx \cdot \bcap} \bcap,
\end{aligned}

so
\label{eqn:lorentzTransform:480}
\begin{aligned}
x_\parallel e^{i\theta}
&=
\lr{
\lr{\Bx \cdot \acap} \acap
+
\lr{\Bx \cdot \bcap} \bcap
}
\gamma_0
\lr{
\cos\theta + \acap \bcap \sin\theta
} \\
&=
\acap \lr{
\lr{\Bx \cdot \acap} \cos\theta

\lr{\Bx \cdot \bcap} \sin\theta
}
\gamma_0
+
\bcap \lr{
\lr{\Bx \cdot \acap} \sin\theta
+
\lr{\Bx \cdot \bcap} \cos\theta
}
\gamma_0,
\end{aligned}

so
\label{eqn:lorentzTransform:500}
x’
=
\begin{bmatrix}
\acap & \bcap
\end{bmatrix}
\begin{bmatrix}
\cos\theta & – \sin\theta \\
\sin\theta & \cos\theta
\end{bmatrix}
\begin{bmatrix}
\Bx \cdot \acap \\
\Bx \cdot \bcap \\
\end{bmatrix}
\gamma_0
+
\lr{ x \wedge i} i^{-1} \gamma_0.

Observe that this rejection term can be explicitly expanded to
\label{eqn:lorentzTransform:520}
\lr{ \Bx \wedge i} i^{-1} \gamma_0 =
x –
\lr{ \Bx \cdot \acap } \acap \gamma_0

\lr{ \Bx \cdot \acap } \acap \gamma_0.

This is the timelike component of the vector, plus the spatial component that is normal to the plane. This exponential sandwich transformation rotates only the portion of the vector that lies in the plane, and leaves the rest (timelike and normal) untouched.

## Problem: Verify components relative to boost direction.

In the proof of thm. 1.2, the vector $$x$$ was expanded in terms of the spacetime split. An alternate approach, is to expand as
\label{eqn:lorentzTransform:340}
\begin{aligned}
x
&= x \vcap^2 \\
&= \lr{ x \cdot \vcap + x \wedge \vcap } \vcap \\
&= \lr{ x \cdot \vcap } \vcap + \lr{ x \wedge \vcap } \vcap.
\end{aligned}

Show that
\label{eqn:lorentzTransform:360}
\lr{ x \cdot \vcap } \vcap
=
\lr{ x^0 + \lr{ \Bx \cdot \vcap} \vcap } \gamma_0,

and
\label{eqn:lorentzTransform:380}
\lr{ x \wedge \vcap } \vcap
=
\lr{ \Bx \wedge \vcap} \vcap \gamma_0.

Let $$x = x^\mu \gamma_\mu$$, so that
\label{eqn:lorentzTransform:160}
\begin{aligned}
x \cdot \vcap
&=
\gpgradeone{ x^\mu \gamma_\mu \cos\theta^b \gamma_{b 0} } \\
&=
x^\mu \cos\theta^b \gpgradeone{ \gamma_\mu \gamma_{b 0} }
.
\end{aligned}

The $$\mu = 0$$ component of this grade selection is
\label{eqn:lorentzTransform:180}
=
-\gamma_b,

and for $$\mu = a \ne 0$$, we have
\label{eqn:lorentzTransform:200}
=
-\delta_{a b} \gamma_0,

so we have
\label{eqn:lorentzTransform:220}
\begin{aligned}
x \cdot \vcap
&=
x^0 \cos\theta^b (-\gamma_b)
+
x^a \cos\theta^b (-\delta_{ab} \gamma_0 ) \\
&=
-x^0 \vcap \gamma_0

x^b \cos\theta^b \gamma_0 \\
&=
– \lr{ x^0 \vcap + \Bx \cdot \vcap } \gamma_0,
\end{aligned}

where $$\Bx = x \wedge \gamma_0$$ is the spatial portion of the four vector $$x$$ relative to the stationary observer frame. Since $$\vcap$$ anticommutes with $$\gamma_0$$, the component of $$x$$ in the spacetime plane $$\vcap$$ is
\label{eqn:lorentzTransform:240}
\lr{ x \cdot \vcap } \vcap =
\lr{ x^0 + \lr{ \Bx \cdot \vcap} \vcap } \gamma_0,

as expected.

For the rejection term, we have
\label{eqn:lorentzTransform:280}
x \wedge \vcap
=
x^\mu \cos\theta^s \gpgradethree{ \gamma_\mu \gamma_{s 0} }.

The $$\mu = 0$$ term clearly contributes nothing, leaving us with:
\label{eqn:lorentzTransform:300}
\begin{aligned}
\lr{ x \wedge \vcap } \vcap
&=
\lr{ x \wedge \vcap } \cdot \vcap \\
&=
x^r \cos\theta^s \cos\theta^t \lr{ \lr{ \gamma_r \wedge \gamma_{s}} \gamma_0 } \cdot \lr{ \gamma_{t0} } \\
&=
\lr{ \gamma_r \wedge \gamma_{s} } \gamma_0 \gamma_{t0}
} \\
&=
-x^r \cos\theta^s \cos\theta^t \lr{ \gamma_r \wedge \gamma_{s}} \cdot \gamma_t \\
&=
-x^r \cos\theta^s \cos\theta^t \lr{ -\gamma_r \delta_{st} + \gamma_s \delta_{rt} } \\
&=
x^r \cos\theta^t \cos\theta^t \gamma_r

x^t \cos\theta^s \cos\theta^t \gamma_s \\
&=
\Bx \gamma_0
– (\Bx \cdot \vcap) \vcap \gamma_0 \\
&=
\lr{ \Bx \wedge \vcap} \vcap \gamma_0,
\end{aligned}

as expected. Is there a clever way to demonstrate this without resorting to coordinates?

## Problem: Rotation transformation components.

Given a unit spatial bivector $$i = \acap \bcap$$, where $$\acap \cdot \bcap = 0$$ and $$i^2 = -1$$, show that
\label{eqn:lorentzTransform:540}
\lr{ x \cdot i } i^{-1}
=
\lr{ \Bx \cdot i } i^{-1} \gamma_0
=
\lr{\Bx \cdot \acap } \acap \gamma_0
+
\lr{\Bx \cdot \bcap } \bcap \gamma_0,

and
\label{eqn:lorentzTransform:560}
\lr{ x \wedge i } i^{-1}
=
\lr{ \Bx \wedge i } i^{-1} \gamma_0
=
x –
\lr{\Bx \cdot \acap } \acap \gamma_0

\lr{\Bx \cdot \bcap } \bcap \gamma_0.

Also show that $$i$$ anticommutes with $$\lr{ x \cdot i } i^{-1}$$ and commutes with $$\lr{ x \wedge i } i^{-1}$$.

This problem is left for the reader, as I don’t feel like typing out my solution.

The first part of this problem can be done in the tedious coordinate approach used above, but hopefully there is a better way.

For the last (commutation) part of the problem, here is a hint. Let $$x \wedge i = n i$$, where $$n \cdot i = 0$$. The result then follows easily.

## Maxwell’s equation Lagrangian (geometric algebra and tensor formalism)

Maxwell’s equation using geometric algebra Lagrangian.

## Motivation.

In my classical mechanics notes, I’ve got computations of Maxwell’s equation (singular in it’s geometric algebra form) from a Lagrangian in various ways (using a tensor, scalar and multivector Lagrangians), but all of these seem more convoluted than they should be.
Here we do this from scratch, starting with the action principle for field variables, covering:

• Derivation of the relativistic form of the Euler-Lagrange field equations from the covariant form of the action,
• Derivation of Maxwell’s equation (in it’s STA form) from the Maxwell Lagrangian,
• Relationship of the STA Maxwell Lagrangian to the tensor equivalent,
• Relationship of the STA form of Maxwell’s equation to it’s tensor equivalents,
• Relationship of the STA Maxwell’s equation to it’s conventional Gibbs form.
• Show that we may use a multivector valued Lagrangian with all of $$F^2$$, not just the scalar part.

It is assumed that the reader is thoroughly familiar with the STA formalism, and if that is not the case, there is no better reference than [1].

## Theorem 1.1: Relativistic Euler-Lagrange field equations.

Let $$\phi \rightarrow \phi + \delta \phi$$ be any variation of the field, such that the variation
$$\delta \phi = 0$$ vanishes at the boundaries of the action integral
\label{eqn:maxwells:2120}
S = \int d^4 x \LL(\phi, \partial_\nu \phi).

The extreme value of the action is found when the Euler-Lagrange equations
\label{eqn:maxwells:2140}
0 = \PD{\phi}{\LL} – \partial_\nu \PD{(\partial_\nu \phi)}{\LL},

are satisfied. For a Lagrangian with multiple field variables, there will be one such equation for each field.

### Start proof:

To ease the visual burden, designate the variation of the field by $$\delta \phi = \epsilon$$, and perform a first order expansion of the varied Lagrangian
\label{eqn:maxwells:20}
\begin{aligned}
\LL
&\rightarrow
\LL(\phi + \epsilon, \partial_\nu (\phi + \epsilon)) \\
&=
\LL(\phi, \partial_\nu \phi)
+
\PD{\phi}{\LL} \epsilon +
\PD{(\partial_\nu \phi)}{\LL} \partial_\nu \epsilon.
\end{aligned}

The variation of the Lagrangian is
\label{eqn:maxwells:40}
\begin{aligned}
\delta \LL
&=
\PD{\phi}{\LL} \epsilon +
\PD{(\partial_\nu \phi)}{\LL} \partial_\nu \epsilon \\
&=
\PD{\phi}{\LL} \epsilon +
\partial_\nu \lr{ \PD{(\partial_\nu \phi)}{\LL} \epsilon }

\epsilon \partial_\nu \PD{(\partial_\nu \phi)}{\LL},
\end{aligned}

which we may plug into the action integral to find
\label{eqn:maxwells:60}
\delta S
=
\int d^4 x \epsilon \lr{
\PD{\phi}{\LL}

\partial_\nu \PD{(\partial_\nu \phi)}{\LL}
}
+
\int d^4 x
\partial_\nu \lr{ \PD{(\partial_\nu \phi)}{\LL} \epsilon }.

The last integral can be evaluated along the $$dx^\nu$$ direction, leaving
\label{eqn:maxwells:80}
\int d^3 x
\evalbar{ \PD{(\partial_\nu \phi)}{\LL} \epsilon }{\Delta x^\nu},

where $$d^3 x = dx^\alpha dx^\beta dx^\gamma$$ is the product of differentials that does not include $$dx^\nu$$. By construction, $$\epsilon$$ vanishes on the boundary of the action integral so \ref{eqn:maxwells:80} is zero. The action takes its extreme value when
\label{eqn:maxwells:100}
0 = \delta S
=
\int d^4 x \epsilon \lr{
\PD{\phi}{\LL}

\partial_\nu \PD{(\partial_\nu \phi)}{\LL}
}.

The proof is complete after noting that this must hold for all variations of the field $$\epsilon$$, which means that we must have
\label{eqn:maxwells:120}
0 =
\PD{\phi}{\LL}

\partial_\nu \PD{(\partial_\nu \phi)}{\LL}.

### End proof.

Armed with the Euler-Lagrange equations, we can apply them to the Maxwell’s equation Lagrangian, which we will claim has the following form.

## Theorem 1.2: Maxwell’s equation Lagrangian.

Application of the Euler-Lagrange equations to the Lagrangian
\label{eqn:maxwells:2160}
\LL = – \frac{\epsilon_0 c}{2} F \cdot F + J \cdot A,

where $$F = \grad \wedge A$$, yields the vector portion of Maxwell’s equation
\label{eqn:maxwells:2180}
\grad \cdot F = \inv{\epsilon_0 c} J,

which implies
\label{eqn:maxwells:2200}
\grad F = \inv{\epsilon_0 c} J.

This is Maxwell’s equation.

### Start proof:

We wish to apply all of the Euler-Lagrange equations simultaneously (i.e. once for each of the four $$A_\mu$$ components of the potential), and cast it into four-vector form
\label{eqn:maxwells:140}
0 = \gamma_\nu \lr{ \PD{A_\nu}{} – \partial_\mu \PD{(\partial_\mu A_\nu)}{} } \LL.

Since our Lagrangian splits nicely into kinetic and interaction terms, this gives us
\label{eqn:maxwells:160}
0 = \gamma_\nu \lr{ \PD{A_\nu}{(A \cdot J)} + \frac{\epsilon_0 c}{2} \partial_\mu \PD{(\partial_\mu A_\nu)}{ (F \cdot F)} }.

The interaction term above is just
\label{eqn:maxwells:180}
\gamma_\nu \PD{A_\nu}{(A \cdot J)}
=
\gamma_\nu \PD{A_\nu}{(A_\mu J^\mu)}
=
\gamma_\nu J^\nu
=
J,

but the kinetic term takes a bit more work. Let’s start with evaluating
\label{eqn:maxwells:200}
\begin{aligned}
\PD{(\partial_\mu A_\nu)}{ (F \cdot F)}
&=
\PD{(\partial_\mu A_\nu)}{ F } \cdot F
+
F \cdot \PD{(\partial_\mu A_\nu)}{ F } \\
&=
2 \PD{(\partial_\mu A_\nu)}{ F } \cdot F \\
&=
2 \PD{(\partial_\mu A_\nu)}{ (\partial_\alpha A_\beta) } \lr{ \gamma^\alpha \wedge \gamma^\beta } \cdot F \\
&=
2 \lr{ \gamma^\mu \wedge \gamma^\nu } \cdot F.
\end{aligned}

We hit this with the $$\mu$$-partial and expand as a scalar selection to find
\label{eqn:maxwells:220}
\begin{aligned}
\partial_\mu \PD{(\partial_\mu A_\nu)}{ (F \cdot F)}
&=
2 \lr{ \partial_\mu \gamma^\mu \wedge \gamma^\nu } \cdot F \\
&=
– 2 (\gamma^\nu \wedge \grad) \cdot F \\
&=
&=
&=
– 2 \gamma^\nu \cdot \lr{ \grad \cdot F }.
\end{aligned}

Putting all the pieces together yields
\label{eqn:maxwells:240}
0
= J – \epsilon_0 c \gamma_\nu \lr{ \gamma^\nu \cdot \lr{ \grad \cdot F } }
= J – \epsilon_0 c \lr{ \grad \cdot F },

but
\label{eqn:maxwells:260}
\begin{aligned}
&=
&=
&=
\end{aligned}

so the multivector field equations for this Lagrangian are
\label{eqn:maxwells:280}
\grad F = \inv{\epsilon_0 c} J,

as claimed.

## Problem: Correspondence with tensor formalism.

Cast the Lagrangian of \ref{eqn:maxwells:2160} into the conventional tensor form
\label{eqn:maxwells:300}
\LL = \frac{\epsilon_0 c}{4} F_{\mu\nu} F^{\mu\nu} + A^\mu J_\mu.

Also show that the four-vector component of Maxwell’s equation $$\grad \cdot F = J/(\epsilon_0 c)$$ is equivalent to the conventional tensor form of the Gauss-Ampere law
\label{eqn:maxwells:320}
\partial_\mu F^{\mu\nu} = \inv{\epsilon_0 c} J^\nu,

where $$F^{\mu\nu} = \partial^\mu A^\nu – \partial^\nu A^\mu$$ as usual. Also show that the trivector component of Maxwell’s equation $$\grad \wedge F = 0$$ is equivalent to the tensor form of the Gauss-Faraday law
\label{eqn:maxwells:340}
\partial_\alpha \lr{ \epsilon^{\alpha \beta \mu \nu} F_{\mu\nu} } = 0.

To show the Lagrangian correspondence we must expand $$F \cdot F$$ in coordinates
\label{eqn:maxwells:360}
\begin{aligned}
F \cdot F
&=
( \grad \wedge A ) \cdot
( \grad \wedge A ) \\
&=
\lr{ (\gamma^\mu \partial_\mu) \wedge (\gamma^\nu A_\nu) }
\cdot
\lr{ (\gamma^\alpha \partial_\alpha) \wedge (\gamma^\beta A_\beta) } \\
&=
\lr{ \gamma^\mu \wedge \gamma^\nu } \cdot \lr{ \gamma_\alpha \wedge \gamma_\beta }
(\partial_\mu A_\nu )
(\partial^\alpha A^\beta ) \\
&=
\lr{
{\delta^\mu}_\beta
{\delta^\nu}_\alpha

{\delta^\mu}_\alpha
{\delta^\nu}_\beta
}
(\partial_\mu A_\nu )
(\partial^\alpha A^\beta ) \\
&=
– \partial_\mu A_\nu \lr{
\partial^\mu A^\nu

\partial^\nu A^\mu
} \\
&=
– \partial_\mu A_\nu F^{\mu\nu} \\
&=
– \inv{2} \lr{
\partial_\mu A_\nu F^{\mu\nu}
+
\partial_\nu A_\mu F^{\nu\mu}
} \\
&=
– \inv{2} \lr{
\partial_\mu A_\nu

\partial_\nu A_\mu
}
F^{\mu\nu} \\
&=

\inv{2}
F_{\mu\nu}
F^{\mu\nu}.
\end{aligned}

With a substitution of this and $$A \cdot J = A_\mu J^\mu$$ back into the Lagrangian, we recover the tensor form of the Lagrangian.

To recover the tensor form of Maxwell’s equation, we first split it into vector and trivector parts
\label{eqn:maxwells:1580}

Now the vector component may be expanded in coordinates by dotting both sides with $$\gamma^\nu$$ to find
\label{eqn:maxwells:1600}
\inv{\epsilon_0 c} \gamma^\nu \cdot J = J^\nu,

and
\label{eqn:maxwells:1620}
\begin{aligned}
\gamma^\nu \cdot
&=
\partial_\mu \gamma^\nu \cdot \lr{ \gamma^\mu \cdot \lr{ \gamma_\alpha \wedge \gamma_\beta } \partial^\alpha A^\beta } \\
&=
\lr{
{\delta^\mu}_\alpha
{\delta^\nu}_\beta

{\delta^\nu}_\alpha
{\delta^\mu}_\beta
}
\partial_\mu
\partial^\alpha A^\beta \\
&=
\partial_\mu
\lr{
\partial^\mu A^\nu

\partial^\nu A^\mu
} \\
&=
\partial_\mu F^{\mu\nu}.
\end{aligned}

Equating \ref{eqn:maxwells:1600} and \ref{eqn:maxwells:1620} finishes the first part of the job. For the trivector component, we have
\label{eqn:maxwells:1640}
0
= (\gamma^\mu \partial_\mu) \wedge \lr{ \gamma^\alpha \wedge \gamma^\beta } \partial_\alpha A_\beta
= \inv{2} (\gamma^\mu \partial_\mu) \wedge \lr{ \gamma^\alpha \wedge \gamma^\beta } F_{\alpha \beta}.

Wedging with $$\gamma^\tau$$ and then multiplying by $$-2 I$$ we find
\label{eqn:maxwells:1660}
0 = – \lr{ \gamma^\mu \wedge \gamma^\alpha \wedge \gamma^\beta \wedge \gamma^\tau } I \partial_\mu F_{\alpha \beta},

but
\label{eqn:maxwells:1680}
\gamma^\mu \wedge \gamma^\alpha \wedge \gamma^\beta \wedge \gamma^\tau = -I \epsilon^{\mu \alpha \beta \tau},

which leaves us with
\label{eqn:maxwells:1700}
\epsilon^{\mu \alpha \beta \tau} \partial_\mu F_{\alpha \beta} = 0,

as expected.

## Problem: Correspondence of tensor and Gibbs forms of Maxwell’s equations.

Given the identifications

\label{eqn:lorentzForceCovariant:1500}
F^{k0} = E^k,

and
\label{eqn:lorentzForceCovariant:1520}
F^{rs} = -\epsilon^{rst} B^t,

and
\label{eqn:maxwells:1560}
J^\mu = \lr{ c \rho, \BJ },

the reader should satisfy themselves that the traditional Gibbs form of Maxwell’s equations can be recovered from \ref{eqn:maxwells:320}.

The reader is referred to Exercise 3.4 “Electrodynamics, variational principle.” from [2].

## Problem: Correspondence with grad and curl form of Maxwell’s equations.

With $$J = c \rho \gamma_0 + J^k \gamma_k$$ and $$F = \BE + I c \BB$$ show that Maxwell’s equation, as stated in \ref{eqn:maxwells:2200} expand to the conventional div and curl expressions for Maxwell’s equations.

To obtain Maxwell’s equations in their traditional vector forms, we pre-multiply both sides with $$\gamma_0$$
\label{eqn:maxwells:1720}
\gamma_0 \grad F = \inv{\epsilon_0 c} \gamma_0 J,

and then select each grade separately. First observe that the RHS above has scalar and bivector components, as
\label{eqn:maxwells:1740}
\gamma_0 J
=
c \rho + J^k \gamma_0 \gamma_k.

In terms of the spatial bivector basis $$\Be_k = \gamma_k \gamma_0$$, the RHS of \ref{eqn:maxwells:1720} is
\label{eqn:maxwells:1760}
\gamma_0 \frac{J}{\epsilon_0 c} = \frac{\rho}{\epsilon_0} – \mu_0 c \BJ.

For the LHS, first note that
\label{eqn:maxwells:1780}
\begin{aligned}
&=
\gamma_0
\lr{
\gamma_0 \partial^0 +
\gamma_k \partial^k
} \\
&=
\partial_0 – \gamma_0 \gamma_k \partial_k \\
&=
\end{aligned}

We can express all the the LHS of \ref{eqn:maxwells:1720} in the bivector spatial basis, so that Maxwell’s equation in multivector form is
\label{eqn:maxwells:1800}
\lr{ \inv{c} \PD{t}{} + \spacegrad } \lr{ \BE + I c \BB } = \frac{\rho}{\epsilon_0} – \mu_0 c \BJ.

Selecting the scalar, vector, bivector, and trivector grades of both sides (in the spatial basis) gives the following set of respective equations
\label{eqn:maxwells:1840}

\label{eqn:maxwells:1860}
\inv{c} \partial_t \BE + I c \spacegrad \wedge \BB = – \mu_0 c \BJ

\label{eqn:maxwells:1880}
\spacegrad \wedge \BE + I \partial_t \BB = 0

\label{eqn:maxwells:1900}
I c \spacegrad \cdot B = 0,

which we can rewrite after some duality transformations (and noting that $$\mu_0 \epsilon_0 c^2 = 1$$), we have
\label{eqn:maxwells:1940}

\label{eqn:maxwells:1960}
\spacegrad \cross \BB – \mu_0 \epsilon_0 \PD{t}{\BE} = \mu_0 \BJ

\label{eqn:maxwells:1980}
\spacegrad \cross \BE + \PD{t}{\BB} = 0

\label{eqn:maxwells:2000}

which are Maxwell’s equations in their traditional form.

## Problem: Alternative multivector Lagrangian.

Show that a scalar+pseudoscalar Lagrangian of the following form
\label{eqn:maxwells:2220}
\LL = – \frac{\epsilon_0 c}{2} F^2 + J \cdot A,

which omits the scalar selection of the Lagrangian in \ref{eqn:maxwells:2160}, also represents Maxwell’s equation. Discuss the scalar and pseudoscalar components of $$F^2$$, and show why the pseudoscalar inclusion is irrelevant.

The quantity $$F^2 = F \cdot F + F \wedge F$$ has both scalar and pseudoscalar
components. Note that unlike vectors, a bivector wedge in 4D with itself need not be zero (example: $$\gamma_0 \gamma_1 + \gamma_2 \gamma_3$$ wedged with itself).
We can see this multivector nature nicely by expansion in terms of the electric and magnetic fields
\label{eqn:maxwells:2020}
\begin{aligned}
F^2
&= \lr{ \BE + I c \BB }^2 \\
&= \BE^2 – c^2 \BB^2 + I c \lr{ \BE \BB + \BB \BE } \\
&= \BE^2 – c^2 \BB^2 + 2 I c \BE \cdot \BB.
\end{aligned}

Both the scalar and pseudoscalar parts of $$F^2$$ are Lorentz invariant, a requirement of our Lagrangian, but most Maxwell equation Lagrangians only include the scalar $$\BE^2 – c^2 \BB^2$$ component of the field square. If we allow the Lagrangian to be multivector valued, and evaluate the Euler-Lagrange equations, we quickly find the same results
\label{eqn:maxwells:2040}
\begin{aligned}
0
&= \gamma_\nu \lr{ \PD{A_\nu}{} – \partial_\mu \PD{(\partial_\mu A_\nu)}{} } \LL \\
&= \gamma_\nu \lr{ J^\nu + \frac{\epsilon_0 c}{2} \partial_\mu
\lr{
(\gamma^\mu \wedge \gamma^\nu) F
+
F (\gamma^\mu \wedge \gamma^\nu)
}
}.
\end{aligned}

Here some steps are skipped, building on our previous scalar Euler-Lagrange evaluation experience. We have a symmetric product of two bivectors, which we can express as a 0,4 grade selection, since
\label{eqn:maxwells:2060}
\gpgrade{ X F }{0,4} = \inv{2} \lr{ X F + F X },

for any two bivectors $$X, F$$. This leaves
\label{eqn:maxwells:2080}
\begin{aligned}
0
&= J + \epsilon_0 c \gamma_\nu \gpgrade{ (\grad \wedge \gamma^\nu) F }{0,4} \\
&= J + \epsilon_0 c \gamma_\nu \gpgrade{ -\gamma^\nu \grad F + (\gamma^\nu \cdot \grad) F }{0,4} \\
&= J + \epsilon_0 c \gamma_\nu \gpgrade{ -\gamma^\nu \grad F }{0,4} \\
&= J – \epsilon_0 c \gamma_\nu
\lr{
\gamma^\nu \cdot \lr{ \grad \cdot F } + \gamma^\nu \wedge \grad \wedge F
}.
\end{aligned}

However, since $$\grad \wedge F = \grad \wedge \grad \wedge A = 0$$, we see that there is no contribution from the $$F \wedge F$$ pseudoscalar component of the Lagrangian, and we are left with
\label{eqn:maxwells:2100}
\begin{aligned}
0
&= J – \epsilon_0 c (\grad \cdot F) \\
&= J – \epsilon_0 c \grad F,
\end{aligned}

which is Maxwell’s equation, as before.

# References

[1] C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University Press New York, Cambridge, UK, 1st edition, 2003.

[2] Peeter Joot. Quantum field theory. Kindle Direct Publishing, 2018.

## Updated notes for ece1229 antenna theory

I’ve now posted a first update of my notesÂ for theÂ antenna theory courseÂ that I am taking this term at UofT.

Unlike most of the other classes I have taken, I am not attempting to take comprehensive notes for this class. The class is taught on slides which go by faster than I can easily take notes for (and some of which match the textbook closely). In class I have annotated my copy of textbook with little details instead. This set of notes contains musings of details that were unclear, or in some cases, details that were provided in class, but are not in the text (and too long to pencil into my book), as well as some notes Geometric Algebra formalism for Maxwell’s equations with magnetic sources (something I’ve encountered for the first time in any real detail in this class).

The notes compilation linked above includes all of the following separate notes, some of which have been posted separately on this blog:

## Notes for ece1229 antenna theory

I’ve now posted a first set of notes for the antenna theory course that I am taking this term at UofT.

Unlike most of the other classes I have taken, I am not attempting to take comprehensive notes for this class. The class is taught on slides that match the textbook so closely, there is little value to me taking notes that just replicate the text. Instead, I am annotating my copy of textbook with little details instead. My usual notes collection for the class will contain musings of details that were unclear, or in some cases, details that were provided in class, but are not in the text (and too long to pencil into my book.)

• Reading notes for chapter 2 (Fundamental Parameters of Antennas) and chapter 3 (Radiation Integrals and Auxiliary Potential Functions) of the class text.
• Geometric Algebra musings.Â  How to do formulate Maxwell’s equations when magnetic sources are also included (those modeling magnetic dipoles).
• Some problems for chapter 2 content.

## Phasor form of (extended) Maxwell’s equations in Geometric Algebra

Separate examinations of the phasor form of Maxwell’s equation (with electric charges and current densities), and the Dual Maxwell’s equation (i.e. allowing magnetic charges and currents) were just performed. Here the structure of these equations with both electric and magnetic charges and currents will be examined.

The vector curl and divergence form of Maxwell’s equations are

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:20}
\spacegrad \cross \boldsymbol{\mathcal{E}} = -\PD{t}{\boldsymbol{\mathcal{B}}} -\BM

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:40}
\spacegrad \cross \boldsymbol{\mathcal{H}} = \boldsymbol{\mathcal{J}} + \PD{t}{\boldsymbol{\mathcal{D}}}

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:60}

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:80}

In phasor form these are

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:100}
\spacegrad \cross \BE = – j k c \BB -\BM

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:120}
\spacegrad \cross \BH = \BJ + j k c \BD

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:140}

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:160}

Switching to $$\BE = \BD/\epsilon_0, \BB = \mu_0 \BH$$ fields (even though these aren’t the primary fields in engineering), gives

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:180}
\spacegrad \cross \BE = – j k (c \BB) -\BM

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:200}
\spacegrad \cross (c \BB) = \frac{\BJ}{\epsilon_0 c} + j k \BE

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:220}

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:240}
\spacegrad \cdot (c \BB) = c \rho_m.

Finally, using

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:260}
\Bf \Bg = \Bf \cdot \Bg + I \Bf \cross \Bg,

the divergence and curl contributions of each of the fields can be grouped

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:300}
\spacegrad \BE = \rho/\epsilon_0 – \lr{ j k (c \BB) +\BM} I

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:320}
\spacegrad (c \BB I) = c \rho_m I – \lr{ \frac{\BJ}{\epsilon_0 c} + j k \BE },

or

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:340}
\spacegrad \lr{ \BE + c \BB I }
=
\rho/\epsilon_0 – \lr{ j k (c \BB) +\BM} I
+
c \rho_m I – \lr{ \frac{\BJ}{\epsilon_0 c} + j k \BE }.

Regrouping gives Maxwell’s equations including both electric and magnetic sources
\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:360}
\boxed{
\lr{ \spacegrad + j k } \lr{ \BE + c \BB I }
=
\inv{\epsilon_0 c} \lr{ c \rho – \BJ }
+ \lr{ c \rho_m – \BM } I.
}

It was observed that these can be put into a tidy four vector form by premultiplying by $$\gamma_0$$, where

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:400}
J = \gamma_\mu J^\mu = \lr{ c \rho, \BJ }

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:420}
M = \gamma_\mu M^\mu = \lr{ c \rho_m, \BM }

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:440}
\grad = \gamma_0 \lr{ \spacegrad + j k } = \gamma^k \partial_k + j k \gamma_0,

That gives

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:460}
\boxed{
\grad \lr{ \BE + c \BB I } = \frac{J}{\epsilon_0 c} + M I.
}

When there were only electric sources, it was observed that potential solutions were of the form $$\BE + c \BB I \propto \grad \wedge A$$, whereas when there was only magnetic sources it was observed that potential solutions were of the form $$\BE + c \BB I \propto (\grad \wedge F) I$$. It seems reasonable to attempt a trial solution that contains both such contributions, say

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:480}
\BE + c \BB I = \grad \wedge A_{\textrm{e}} + \grad \wedge A_{\textrm{m}} I.

Without any loss of generality Lorentz gauge conditions can be imposed on the four-vector fields $$A_{\textrm{e}}, A_{\textrm{m}}$$. Those conditions are

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:500}

Since $$\grad X = \grad \cdot X + \grad \wedge X$$, for any four vector $$X$$, the trial solution \ref{eqn:phasorMaxwellsWithElectricAndMagneticCharges:480} is reduced to

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:520}
\BE + c \BB I = \grad A_{\textrm{e}} + \grad A_{\textrm{m}} I.

Maxwell’s equation is now

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:540}
\begin{aligned}
\frac{J}{\epsilon_0 c} + M I
&=
\grad^2 \lr{ A_{\textrm{e}} + A_{\textrm{m}} I } \\
&=
\gamma_0 \lr{ \spacegrad + j k }
\gamma_0 \lr{ \spacegrad + j k }
\lr{ A_{\textrm{e}} + A_{\textrm{m}} I } \\
&=
\lr{ -\spacegrad + j k }
\lr{ \spacegrad + j k }
\lr{ A_{\textrm{e}} + A_{\textrm{m}} I } \\
&=
\lr{ A_{\textrm{e}} + A_{\textrm{m}} I }.
\end{aligned}

Notice how tidily this separates into vector and trivector components. Those are

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:580}
-\lr{ \spacegrad^2 + k^2 } A_{\textrm{e}} = \frac{J}{\epsilon_0 c}

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:600}
-\lr{ \spacegrad^2 + k^2 } A_{\textrm{m}} = M.

The result is a single Helmholtz equation for each of the electric and magnetic four-potentials, and both can be solved completely independently. This was claimed in class, but now the underlying reason is clear.

Because a single frequency phasor relationship was implied the scalar components of each of these four potentials is determined by the Lorentz gauge condition. For example

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:620}
\begin{aligned}
0
&=
\spacegrad \cdot \lr{ A_{\textrm{e}} e^{j k c t} } \\
&=
\lr{ \gamma^0 \inv{c} \PD{t}{} + \gamma^k \PD{x^k}{} } \cdot
\lr{
\gamma_0 A_{\textrm{e}}^0 e^{j k c t}
+ \gamma_m A_{\textrm{e}}^m e^{j k c t}
} \\
&=
\lr{ \gamma^0 j k + \gamma^r \PD{x^r}{} } \cdot
\lr{
\gamma_0 A_{\textrm{e}}^0
+ \gamma_s A_{\textrm{e}}^s
}
e^{j k c t} \\
&=
\lr{
j k
A_{\textrm{e}}^0
+
\BA_{\textrm{e}}
}
e^{j k c t},
\end{aligned}

so

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:640}
A_{\textrm{e}}^0
=\frac{ j} { k }