Fundamental Theorem of Geometric Calculus

Relativistic multivector surface integrals

December 31, 2020 math and physics play No comments , , , , , , ,

[Click here for a PDF of this post]

Background.

This post is a continuation of:

Surface integrals.

[If mathjax doesn’t display properly for you, click here for a PDF of this post]

We’ve now covered line integrals and the fundamental theorem for line integrals, so it’s now time to move on to surface integrals.

Definition 1.1: Surface integral.

Given a two variable parameterization \( x = x(u,v) \), we write \( d^2\Bx = \Bx_u \wedge \Bx_v du dv \), and call
\begin{equation*}
\int F d^2\Bx\, G,
\end{equation*}
a surface integral, where \( F,G \) are arbitrary multivector functions.

Like our multivector line integral, this is intrinsically multivector valued, with a product of \( F \) with arbitrary grades, a bivector \( d^2 \Bx \), and \( G \), also potentially with arbitrary grades. Let’s consider an example.

Problem: Surface area integral example.

Given the hyperbolic surface parameterization \( x(\rho,\alpha) = \rho \gamma_0 e^{-\vcap \alpha} \), where \( \vcap = \gamma_{20} \) evaluate the indefinite integral
\begin{equation}\label{eqn:relativisticSurface:40}
\int \gamma_1 e^{\gamma_{21}\alpha} d^2 \Bx\, \gamma_2.
\end{equation}

Answer

We have \( \Bx_\rho = \gamma_0 e^{-\vcap \alpha} \) and \( \Bx_\alpha = \rho\gamma_{2} e^{-\vcap \alpha} \), so
\begin{equation}\label{eqn:relativisticSurface:60}
\begin{aligned}
d^2 \Bx
&=
(\Bx_\rho \wedge \Bx_\alpha) d\rho d\alpha \\
&=
\gpgradetwo{
\gamma_{0} e^{-\vcap \alpha} \rho\gamma_{2} e^{-\vcap \alpha}
}
d\rho d\alpha \\
&=
\rho \gamma_{02} d\rho d\alpha,
\end{aligned}
\end{equation}
so the integral is
\begin{equation}\label{eqn:relativisticSurface:80}
\begin{aligned}
\int \rho \gamma_1 e^{\gamma_{21}\alpha} \gamma_{022} d\rho d\alpha
&=
-\inv{2} \rho^2 \int \gamma_1 e^{\gamma_{21}\alpha} \gamma_{0} d\alpha \\
&=
\frac{\gamma_{01}}{2} \rho^2 \int e^{\gamma_{21}\alpha} d\alpha \\
&=
\frac{\gamma_{01}}{2} \rho^2 \gamma^{12} e^{\gamma_{21}\alpha} \\
&=
\frac{\rho^2 \gamma_{20}}{2} e^{\gamma_{21}\alpha}.
\end{aligned}
\end{equation}
Because \( F \) and \( G \) were both vectors, the resulting integral could only have been a multivector with grades 0,2,4. As it happens, there were no scalar nor pseudoscalar grades in the end result, and we ended up with the spacetime plane between \( \gamma_0 \), and \( \gamma_2 e^{\gamma_{21}\alpha} \), which are rotations of \(\gamma_2\) in the x,y plane. This is illustrated in fig. 1 (omitting scale and sign factors.)

fig. 1. Spacetime plane.

Fundamental theorem for surfaces.

For line integrals we saw that \( d\Bx \cdot \grad = \gpgradezero{ d\Bx \partial } \), and obtained the fundamental theorem for multivector line integrals by omitting the grade selection and using the multivector operator \( d\Bx \partial \) in the integrand directly. We have the same situation for surface integrals. In particular, we know that the \(\mathbb{R}^3\) Stokes theorem can be expressed in terms of \( d^2 \Bx \cdot \spacegrad \)

Problem: GA form of 3D Stokes’ theorem integrand.

Given an \(\mathbb{R}^3\) vector field \( \Bf \), show that
\begin{equation}\label{eqn:relativisticSurface:180}
\int dA \ncap \cdot \lr{ \spacegrad \cross \Bf }
=
-\int \lr{d^2\Bx \cdot \spacegrad } \cdot \Bf.
\end{equation}

Answer

Let \( d^2 \Bx = I \ncap dA \), implicitly fixing the relative orientation of the bivector area element compared to the chosen surface normal direction.
\begin{equation}\label{eqn:relativisticSurface:200}
\begin{aligned}
\int \lr{d^2\Bx \cdot \spacegrad } \cdot \Bf
&=
\int dA \gpgradeone{I \ncap \spacegrad } \cdot \Bf \\
&=
\int dA \lr{ I \lr{ \ncap \wedge \spacegrad} } \cdot \Bf \\
&=
\int dA \gpgradezero{ I^2 \lr{ \ncap \cross \spacegrad} \Bf } \\
&=
-\int dA \lr{ \ncap \cross \spacegrad} \cdot \Bf \\
&=
-\int dA \ncap \cdot \lr{ \spacegrad \cross \Bf }.
\end{aligned}
\end{equation}

The moral of the story is that the conventional dual form of the \(\mathbb{R}^3\) Stokes’ theorem can be written directly by projecting the gradient onto the surface area element. Geometrically, this projection operation has a rotational effect as well, since for bivector \( B \), and vector \( x \), the bivector-vector dot product \( B \cdot x \) is the component of \( x \) that lies in the plane \( B \wedge x = 0 \), but also rotated 90 degrees.

For multivector integration, we do not want an integral operator that includes such dot products. In the line integral case, we were able to achieve the same projective operation by using vector derivative instead of a dot product, and can do the same for the surface integral case. In particular

Theorem 1.1: Projection of gradient onto the tangent space.

Given a curvilinear representation of the gradient with respect to parameters \( u^0, u^1, u^2, u^3 \)
\begin{equation*}
\grad = \sum_\mu \Bx^\mu \PD{u^\mu}{},
\end{equation*}
the surface projection onto the tangent space associated with any two of those parameters, satisfies
\begin{equation*}
d^2 \Bx \cdot \grad = \gpgradeone{ d^2 \Bx \partial }.
\end{equation*}

Start proof:

Without loss of generality, we may pick \( u^0, u^1 \) as the parameters associated with the tangent space. The area element for the surface is
\begin{equation}\label{eqn:relativisticSurface:100}
d^2 \Bx = \Bx_0 \wedge \Bx_1 \,
du^0 du^1.
\end{equation}
Dotting this with the gradient gives
\begin{equation}\label{eqn:relativisticSurface:120}
\begin{aligned}
d^2 \Bx \cdot \grad
&=
du^0 du^1
\lr{ \Bx_0 \wedge \Bx_1 } \cdot \Bx^\mu \PD{u^\mu}{} \\
&=
du^0 du^1
\lr{
\Bx_0
\lr{\Bx_1 \cdot \Bx^\mu }

\Bx_1
\lr{\Bx_0 \cdot \Bx^\mu }
}
\PD{u^\mu}{} \\
&=
du^0 du^1
\lr{
\Bx_0 \PD{u^1}{}

\Bx_0 \PD{u^1}{}
}.
\end{aligned}
\end{equation}
On the other hand, the vector derivative for this surface is
\begin{equation}\label{eqn:relativisticSurface:140}
\partial
=
\Bx^0 \PD{u^0}{}
+
\Bx^1 \PD{u^1}{},
\end{equation}
so
\begin{equation}\label{eqn:relativisticSurface:160}
\begin{aligned}
\gpgradeone{d^2 \Bx \partial}
&=
du^0 du^1\,
\lr{ \Bx_0 \wedge \Bx_1 } \cdot
\lr{
\Bx^0 \PD{u^0}{}
+
\Bx^1 \PD{u^1}{}
} \\
&=
du^0 du^1
\lr{
\Bx_0 \PD{u^1}{}

\Bx_1 \PD{u^0}{}
}.
\end{aligned}
\end{equation}

End proof.

We now want to formulate the geometric algebra form of the fundamental theorem for surface integrals.

Theorem 1.2: Fundamental theorem for surface integrals.

Given multivector functions \( F, G \), and surface area element \( d^2 \Bx = \lr{ \Bx_u \wedge \Bx_v }\, du dv \), associated with a two parameter curve \( x(u,v) \), then
\begin{equation*}
\int_S F d^2\Bx \lrpartial G = \int_{\partial S} F d^1\Bx G,
\end{equation*}
where \( S \) is the integration surface, and \( \partial S \) designates its boundary, and the line integral on the RHS is really short hand for
\begin{equation*}
\int
\evalbar{ \lr{ F (-d\Bx_v) G } }{\Delta u}
+
\int
\evalbar{ \lr{ F (d\Bx_u) G } }{\Delta v},
\end{equation*}
which is a line integral that traverses the boundary of the surface with the opposite orientation to the circulation of the area element.

Start proof:

The vector derivative for this surface is
\begin{equation}\label{eqn:relativisticSurface:220}
\partial =
\Bx^u \PD{u}{}
+
\Bx^v \PD{v}{},
\end{equation}
so
\begin{equation}\label{eqn:relativisticSurface:240}
F d^2\Bx \lrpartial G
=
\PD{u}{} \lr{ F d^2\Bx\, \Bx^u G }
+
\PD{v}{} \lr{ F d^2\Bx\, \Bx^v G },
\end{equation}
where \( d^2\Bx\, \Bx^u \) is held constant with respect to \( u \), and \( d^2\Bx\, \Bx^v \) is held constant with respect to \( v \) (since the partials of the vector derivative act on \( F, G \), but not on the area element, nor on the reciprocal vectors of \( \lrpartial \) itself.) Note that
\begin{equation}\label{eqn:relativisticSurface:260}
d^2\Bx \wedge \Bx^u
=
du dv\, \lr{ \Bx_u \wedge \Bx_v } \wedge \Bx^u = 0,
\end{equation}
since \( \Bx^u \in sectionpan \setlr{ \Bx_u\, \Bx_v } \), so
\begin{equation}\label{eqn:relativisticSurface:280}
\begin{aligned}
d^2\Bx\, \Bx^u
&=
d^2\Bx \cdot \Bx^u
+
d^2\Bx \wedge \Bx^u \\
&=
d^2\Bx \cdot \Bx^u \\
&=
du dv\, \lr{ \Bx_u \wedge \Bx_v } \cdot \Bx^u \\
&=
-du dv\, \Bx_v.
\end{aligned}
\end{equation}
Similarly
\begin{equation}\label{eqn:relativisticSurface:300}
\begin{aligned}
d^2\Bx\, \Bx^v
&=
d^2\Bx \cdot \Bx^v \\
&=
du dv\, \lr{ \Bx_u \wedge \Bx_v } \cdot \Bx^v \\
&=
du dv\, \Bx_u.
\end{aligned}
\end{equation}
This leaves us with
\begin{equation}\label{eqn:relativisticSurface:320}
F d^2\Bx \lrpartial G
=
-du dv\,
\PD{u}{} \lr{ F \Bx_v G }
+
du dv\,
\PD{v}{} \lr{ F \Bx_u G },
\end{equation}
where \( \Bx_v, \Bx_u \) are held constant with respect to \( u,v \) respectively. Fortuitously, this constant condition can be dropped, since the antisymmetry of the wedge in the area element results in perfect cancellation. If these line elements are not held constant then
\begin{equation}\label{eqn:relativisticSurface:340}
\PD{u}{} \lr{ F \Bx_v G }

\PD{v}{} \lr{ F \Bx_u G }
=
F \lr{
\PD{v}{\Bx_u}

\PD{u}{\Bx_v}
} G
+
\lr{
\PD{u}{F} \Bx_v G
+
F \Bx_v \PD{u}{G}
}
+
\lr{
\PD{v}{F} \Bx_u G
+
F \Bx_u \PD{v}{G}
}
,
\end{equation}
but the mixed partial contribution is zero
\begin{equation}\label{eqn:relativisticSurface:360}
\begin{aligned}
\PD{v}{\Bx_u}

\PD{u}{\Bx_v}
&=
\PD{v}{} \PD{u}{x}

\PD{u}{} \PD{v}{x} \\
&=
0,
\end{aligned}
\end{equation}
by equality of mixed partials. We have two perfect differentials, and can evaluate each of these integrals
\begin{equation}\label{eqn:relativisticSurface:380}
\begin{aligned}
\int F d^2\Bx \lrpartial G
&=
-\int
du dv\,
\PD{u}{} \lr{ F \Bx_v G }
+
\int
du dv\,
\PD{v}{} \lr{ F \Bx_u G } \\
&=
-\int
dv\,
\evalbar{ \lr{ F \Bx_v G } }{\Delta u}
+
\int
du\,
\evalbar{ \lr{ F \Bx_u G } }{\Delta v} \\
&=
\int
\evalbar{ \lr{ F (-d\Bx_v) G } }{\Delta u}
+
\int
\evalbar{ \lr{ F (d\Bx_u) G } }{\Delta v}.
\end{aligned}
\end{equation}
We use the shorthand \( d^1 \Bx = d\Bx_u – d\Bx_v \) to write
\begin{equation}\label{eqn:relativisticSurface:400}
\int_S F d^2\Bx \lrpartial G = \int_{\partial S} F d^1\Bx G,
\end{equation}
with the understanding that this is really instructions to evaluate the line integrals in the last step of \ref{eqn:relativisticSurface:380}.

End proof.

Problem: Integration in the t,y plane.

Let \( x(t,y) = c t \gamma_0 + y \gamma_2 \). Write out both sides of the fundamental theorem explicitly.

Answer

Let’s designate the tangent basis vectors as
\begin{equation}\label{eqn:relativisticSurface:420}
\Bx_0 = \PD{t}{x} = c \gamma_0,
\end{equation}
and
\begin{equation}\label{eqn:relativisticSurface:440}
\Bx_2 = \PD{y}{x} = \gamma_2,
\end{equation}
so the vector derivative is
\begin{equation}\label{eqn:relativisticSurface:460}
\partial
= \inv{c} \gamma^0 \PD{t}{}
+ \gamma^2 \PD{y}{},
\end{equation}
and the area element is
\begin{equation}\label{eqn:relativisticSurface:480}
d^2 \Bx = c \gamma_0 \gamma_2.
\end{equation}
The fundamental theorem of surface integrals is just a statement that
\begin{equation}\label{eqn:relativisticSurface:500}
\int_{t_0}^{t_1} c dt
\int_{y_0}^{y_1} dy
F \gamma_0 \gamma_2 \lr{
\inv{c} \gamma^0 \PD{t}{}
+ \gamma^2 \PD{y}{}
} G
=
\int F \lr{ c \gamma_0 dt – \gamma_2 dy } G,
\end{equation}
where the RHS, when stated explicitly, really means
\begin{equation}\label{eqn:relativisticSurface:520}
\begin{aligned}
\int &F \lr{ c \gamma_0 dt – \gamma_2 dy } G
=
\int_{t_0}^{t_1} c dt \lr{ F(t,y_1) \gamma_0 G(t, y_1) – F(t,y_0) \gamma_0 G(t, y_0) } \\
&\qquad –
\int_{y_0}^{y_1} dy \lr{ F(t_1,y) \gamma_2 G(t_1, y) – F(t_0,y) \gamma_0 G(t_0, y) }.
\end{aligned}
\end{equation}
In this particular case, since \( \Bx_0 = c \gamma_0, \Bx_2 = \gamma_2 \) are both constant functions that depend on neither \( t \) nor \( y \), it is easy to derive the full expansion of \ref{eqn:relativisticSurface:520} directly from the LHS of \ref{eqn:relativisticSurface:500}.

Problem: A cylindrical hyperbolic surface.

Generalizing the example surface integral from \ref{eqn:relativisticSurface:40}, let
\begin{equation}\label{eqn:relativisticSurface:540}
x(\rho, \alpha) = \rho e^{-\vcap \alpha/2} x(0,1) e^{\vcap \alpha/2},
\end{equation}
where \( \rho \) is a scalar, and \( \vcap = \cos\theta_k\gamma_{k0} \) is a unit spatial bivector, and \( \cos\theta_k \) are direction cosines of that vector. This is a composite transformation, where the \( \alpha \) variation boosts the \( x(0,1) \) four-vector, and the \( \rho \) parameter contracts or increases the magnitude of this vector, resulting in \( x \) spanning a hyperbolic region of spacetime.

Compute the tangent and reciprocal basis, the area element for the surface, and explicitly state both sides of the fundamental theorem.

Answer

For the tangent basis vectors we have
\begin{equation}\label{eqn:relativisticSurface:560}
\Bx_\rho = \PD{\rho}{x} =
e^{-\vcap \alpha/2} x(0,1) e^{\vcap \alpha/2} = \frac{x}{\rho},
\end{equation}
and
\begin{equation}\label{eqn:relativisticSurface:580}
\Bx_\alpha = \PD{\alpha}{x} =
\lr{-\vcap/2} x
+
x \lr{ \vcap/2 }
=
x \cdot \vcap.
\end{equation}
These vectors \( \Bx_\rho, \Bx_\alpha \) are orthogonal, as \( x \cdot \vcap \) is the projection of \( x \) onto the spacetime plane \( x \wedge \vcap = 0 \), but rotated so that \( x \cdot \lr{ x \cdot \vcap } = 0 \). Because of this orthogonality, the vector derivative for this tangent space is
\begin{equation}\label{eqn:relativisticSurface:600}
\partial =
\inv{x \cdot \vcap} \PD{\alpha}{}
+
\frac{\rho}{x}
\PD{\rho}{}
.
\end{equation}
The area element is
\begin{equation}\label{eqn:relativisticSurface:620}
\begin{aligned}
d^2 \Bx
&=
d\rho d\alpha\,
\frac{x}{\rho} \wedge \lr{ x \cdot \vcap } \\
&=
\inv{\rho} d\rho d\alpha\,
x \lr{ x \cdot \vcap }
.
\end{aligned}
\end{equation}
The full statement of the fundamental theorem for this surface is
\begin{equation}\label{eqn:relativisticSurface:640}
\int_S
d\rho d\alpha\,
F
\lr{
\inv{\rho} x \lr{ x \cdot \vcap }
}
\lr{
\inv{x \cdot \vcap} \PD{\alpha}{}
+
\frac{\rho}{x}
\PD{\rho}{}
}
G
=
\int_{\partial S}
F \lr{ d\rho \frac{x}{\rho} – d\alpha \lr{ x \cdot \vcap } } G.
\end{equation}
As in the previous example, due to the orthogonality of the tangent basis vectors, it’s easy to show find the RHS directly from the LHS.

Problem: Simple example with non-orthogonal tangent space basis vectors.

Let \( x(u,v) = u a + v b \), where \( u,v \) are scalar parameters, and \( a, b \) are non-null and non-colinear constant four-vectors. Write out the fundamental theorem for surfaces with respect to this parameterization.

Answer

The tangent basis vectors are just \( \Bx_u = a, \Bx_v = b \), with reciprocals
\begin{equation}\label{eqn:relativisticSurface:660}
\Bx^u = \Bx_v \cdot \inv{ \Bx_u \wedge \Bx_v } = b \cdot \inv{ a \wedge b },
\end{equation}
and
\begin{equation}\label{eqn:relativisticSurface:680}
\Bx^v = -\Bx_u \cdot \inv{ \Bx_u \wedge \Bx_v } = -a \cdot \inv{ a \wedge b }.
\end{equation}
The fundamental theorem, with respect to this surface, when written out explicitly takes the form
\begin{equation}\label{eqn:relativisticSurface:700}
\int F \, du dv\, \lr{ a \wedge b } \inv{ a \wedge b } \cdot \lr{ a \PD{u}{} – b \PD{v}{} } G
=
\int F \lr{ a du – b dv } G.
\end{equation}
This is a good example to illustrate the geometry of the line integral circulation.
Suppose that we are integrating over \( u \in [0,1], v \in [0,1] \). In this case, the line integral really means
\begin{equation}\label{eqn:relativisticSurface:720}
\begin{aligned}
\int &F \lr{ a du – b dv } G
=
+
\int F(u,1) (+a du) G(u,1)
+
\int F(u,0) (-a du) G(u,0) \\
&\quad+
\int F(1,v) (-b dv) G(1,v)
+
\int F(0,v) (+b dv) G(0,v),
\end{aligned}
\end{equation}
which is a path around the spacetime parallelogram spanned by \( u, v \), as illustrated in fig. 1, which illustrates the orientation of the bivector area element with the arrows around the exterior of the parallelogram: \( 0 \rightarrow a \rightarrow a + b \rightarrow b \rightarrow 0 \).

fig. 2. Line integral orientation.

Fundamental theorem of geometric calculus for line integrals (relativistic.)

December 16, 2020 math and physics play 1 comment , , , , , , , , , , , , , , , , , , , , , , , , , , ,

[This post is best viewed in PDF form, due to latex elements that I could not format with wordpress mathjax.]

Background for this particular post can be found in

  1. Curvilinear coordinates and gradient in spacetime, and reciprocal frames, and
  2. Lorentz transformations in Space Time Algebra (STA)
  3. A couple more reciprocal frame examples.

Motivation.

I’ve been slowly working my way towards a statement of the fundamental theorem of integral calculus, where the functions being integrated are elements of the Dirac algebra (space time multivectors in the geometric algebra parlance.)

This is interesting because we want to be able to do line, surface, 3-volume and 4-volume space time integrals. We have many \(\mathbb{R}^3\) integral theorems
\begin{equation}\label{eqn:fundamentalTheoremOfGC:40a}
\int_A^B d\Bl \cdot \spacegrad f = f(B) – f(A),
\end{equation}
\begin{equation}\label{eqn:fundamentalTheoremOfGC:60a}
\int_S dA\, \ncap \cross \spacegrad f = \int_{\partial S} d\Bx\, f,
\end{equation}
\begin{equation}\label{eqn:fundamentalTheoremOfGC:80a}
\int_S dA\, \ncap \cdot \lr{ \spacegrad \cross \Bf} = \int_{\partial S} d\Bx \cdot \Bf,
\end{equation}
\begin{equation}\label{eqn:fundamentalTheoremOfGC:100a}
\int_S dx dy \lr{ \PD{y}{P} – \PD{x}{Q} }
=
\int_{\partial S} P dx + Q dy,
\end{equation}
\begin{equation}\label{eqn:fundamentalTheoremOfGC:120a}
\int_V dV\, \spacegrad f = \int_{\partial V} dA\, \ncap f,
\end{equation}
\begin{equation}\label{eqn:fundamentalTheoremOfGC:140a}
\int_V dV\, \spacegrad \cross \Bf = \int_{\partial V} dA\, \ncap \cross \Bf,
\end{equation}
\begin{equation}\label{eqn:fundamentalTheoremOfGC:160a}
\int_V dV\, \spacegrad \cdot \Bf = \int_{\partial V} dA\, \ncap \cdot \Bf,
\end{equation}
and want to know how to generalize these to four dimensions and also make sure that we are handling the relativistic mixed signature correctly. If our starting point was the mess of equations above, we’d be in trouble, since it is not obvious how these generalize. All the theorems with unit normals have to be handled completely differently in four dimensions since we don’t have a unique normal to any given spacetime plane.
What comes to our rescue is the Fundamental Theorem of Geometric Calculus (FTGC), which has the form
\begin{equation}\label{eqn:fundamentalTheoremOfGC:40}
\int F d^n \Bx\, \lrpartial G = \int F d^{n-1} \Bx\, G,
\end{equation}
where \(F,G\) are multivectors functions (i.e. sums of products of vectors.) We’ve seen ([2], [1]) that all the identities above are special cases of the fundamental theorem.

Do we need any special care to state the FTGC correctly for our relativistic case? It turns out that the answer is no! Tangent and reciprocal frame vectors do all the heavy lifting, and we can use the fundamental theorem as is, even in our mixed signature space. The only real change that we need to make is use spacetime gradient and vector derivative operators instead of their spatial equivalents. We will see how this works below. Note that instead of starting with \ref{eqn:fundamentalTheoremOfGC:40} directly, I will attempt to build up to that point in a progressive fashion that is hopefully does not require the reader to make too many unjustified mental leaps.

Multivector line integrals.

We want to define multivector line integrals to start with. Recall that in \(\mathbb{R}^3\) we would say that for scalar functions \( f\), the integral
\begin{equation}\label{eqn:fundamentalTheoremOfGC:180b}
\int d\Bx\, f = \int f d\Bx,
\end{equation}
is a line integral. Also, for vector functions \( \Bf \) we call
\begin{equation}\label{eqn:fundamentalTheoremOfGC:200}
\int d\Bx \cdot \Bf = \inv{2} \int d\Bx\, \Bf + \Bf d\Bx.
\end{equation}
a line integral. In order to generalize line integrals to multivector functions, we will allow our multivector functions to be placed on either or both sides of the differential.

Definition 1.1: Line integral.

Given a single variable parameterization \( x = x(u) \), we write \( d^1\Bx = \Bx_u du \), and call
\begin{equation}\label{eqn:fundamentalTheoremOfGC:220a}
\int F d^1\Bx\, G,
\end{equation}
a line integral, where \( F,G \) are arbitrary multivector functions.

We must be careful not to reorder any of the factors in the integrand, since the differential may not commute with either \( F \) or \( G \). Here is a simple example where the integrand has a product of a vector and differential.

Problem: Circular parameterization.

Given a circular parameterization \( x(\theta) = \gamma_1 e^{-i\theta} \), where \( i = \gamma_1 \gamma_2 \), the unit bivector for the \(x,y\) plane. Compute the line integral
\begin{equation}\label{eqn:fundamentalTheoremOfGC:100}
\int_0^{\pi/4} F(\theta)\, d^1 \Bx\, G(\theta),
\end{equation}
where \( F(\theta) = \Bx^\theta + \gamma_3 + \gamma_1 \gamma_0 \) is a multivector valued function, and \( G(\theta) = \gamma_0 \) is vector valued.

Answer

The tangent vector for the curve is
\begin{equation}\label{eqn:fundamentalTheoremOfGC:60}
\Bx_\theta
= -\gamma_1 \gamma_1 \gamma_2 e^{-i\theta}
= \gamma_2 e^{-i\theta},
\end{equation}
with reciprocal vector \( \Bx^\theta = e^{i \theta} \gamma^2 \). The differential element is \( d^1 \Bx = \gamma_2 e^{-i\theta} d\theta \), so the integrand is
\begin{equation}\label{eqn:fundamentalTheoremOfGC:80}
\begin{aligned}
\int_0^{\pi/4} \lr{ \Bx^\theta + \gamma_3 + \gamma_1 \gamma_0 } d^1 \Bx\, \gamma_0
&=
\int_0^{\pi/4} \lr{ e^{i\theta} \gamma^2 + \gamma_3 + \gamma_1 \gamma_0 } \gamma_2 e^{-i\theta} d\theta\, \gamma_0 \\
&=
\frac{\pi}{4} \gamma_0 + \lr{ \gamma_{32} + \gamma_{102} } \inv{-i} \lr{ e^{-i\pi/4} – 1 } \gamma_0 \\
&=
\frac{\pi}{4} \gamma_0 + \inv{\sqrt{2}} \lr{ \gamma_{32} + \gamma_{102} } \gamma_{120} \lr{ 1 – \gamma_{12} } \\
&=
\frac{\pi}{4} \gamma_0 + \inv{\sqrt{2}} \lr{ \gamma_{310} + 1 } \lr{ 1 – \gamma_{12} }.
\end{aligned}
\end{equation}
Observe how care is required not to reorder any terms. This particular end result is a multivector with scalar, vector, bivector, and trivector grades, but no pseudoscalar component. The grades in the end result depend on both the function in the integrand and on the path. For example, had we integrated all the way around the circle, the end result would have been the vector \( 2 \pi \gamma_0 \) (i.e. a \( \gamma_0 \) weighted unit circle circumference), as all the other grades would have been killed by the complex exponential integrated over a full period.

Problem: Line integral for boosted time direction vector.

Let \( x = e^{\vcap \alpha/2} \gamma_0 e^{-\vcap \alpha/2} \) represent the spacetime curve of all the boosts of \( \gamma_0 \) along a specific velocity direction vector, where \( \vcap = (v \wedge \gamma_0)/\Norm{v \wedge \gamma_0} \) is a unit spatial bivector for any constant vector \( v \). Compute the line integral
\begin{equation}\label{eqn:fundamentalTheoremOfGC:240}
\int x\, d^1 \Bx.
\end{equation}

Answer

Observe that \( \vcap \) and \( \gamma_0 \) anticommute, so we may write our boost as a one sided exponential
\begin{equation}\label{eqn:fundamentalTheoremOfGC:260}
x(\alpha) = \gamma_0 e^{-\vcap \alpha} = e^{\vcap \alpha} \gamma_0 = \lr{ \cosh\alpha + \vcap \sinh\alpha } \gamma_0.
\end{equation}
The tangent vector is just
\begin{equation}\label{eqn:fundamentalTheoremOfGC:280}
\Bx_\alpha = \PD{\alpha}{x} = e^{\vcap\alpha} \vcap \gamma_0.
\end{equation}
Let’s get a bit of intuition about the nature of this vector. It’s square is
\begin{equation}\label{eqn:fundamentalTheoremOfGC:300}
\begin{aligned}
\Bx_\alpha^2
&=
e^{\vcap\alpha} \vcap \gamma_0
e^{\vcap\alpha} \vcap \gamma_0 \\
&=
-e^{\vcap\alpha} \vcap e^{-\vcap\alpha} \vcap (\gamma_0)^2 \\
&=
-1,
\end{aligned}
\end{equation}
so we see that the tangent vector is a spacelike unit vector. As the vector representing points on the curve is necessarily timelike (due to Lorentz invariance), these two must be orthogonal at all points. Let’s confirm this algebraically
\begin{equation}\label{eqn:fundamentalTheoremOfGC:320}
\begin{aligned}
x \cdot \Bx_\alpha
&=
\gpgradezero{ e^{\vcap \alpha} \gamma_0 e^{\vcap \alpha} \vcap \gamma_0 } \\
&=
\gpgradezero{ e^{-\vcap \alpha} e^{\vcap \alpha} \vcap (\gamma_0)^2 } \\
&=
\gpgradezero{ \vcap } \\
&= 0.
\end{aligned}
\end{equation}
Here we used \( e^{\vcap \alpha} \gamma_0 = \gamma_0 e^{-\vcap \alpha} \), and \( \gpgradezero{A B} = \gpgradezero{B A} \). Geometrically, we have the curious fact that the direction vectors to points on the curve are perpendicular (with respect to our relativistic dot product) to the tangent vectors on the curve, as illustrated in fig. 1.

fig. 1. Tangent perpendicularity in mixed metric.

Perfect differentials.

Having seen a couple examples of multivector line integrals, let’s now move on to figure out the structure of a line integral that has a “perfect” differential integrand. We can take a hint from the \(\mathbb{R}^3\) vector result that we already know, namely
\begin{equation}\label{eqn:fundamentalTheoremOfGC:120}
\int_A^B d\Bl \cdot \spacegrad f = f(B) – f(A).
\end{equation}
It seems reasonable to guess that the relativistic generalization of this is
\begin{equation}\label{eqn:fundamentalTheoremOfGC:140}
\int_A^B dx \cdot \grad f = f(B) – f(A).
\end{equation}
Let’s check that, by expanding in coordinates
\begin{equation}\label{eqn:fundamentalTheoremOfGC:160}
\begin{aligned}
\int_A^B dx \cdot \grad f
&=
\int_A^B d\tau \frac{dx^\mu}{d\tau} \partial_\mu f \\
&=
\int_A^B d\tau \frac{dx^\mu}{d\tau} \PD{x^\mu}{f} \\
&=
\int_A^B d\tau \frac{df}{d\tau} \\
&=
f(B) – f(A).
\end{aligned}
\end{equation}
If we drop the dot product, will we have such a nice result? Let’s see:
\begin{equation}\label{eqn:fundamentalTheoremOfGC:180}
\begin{aligned}
\int_A^B dx \grad f
&=
\int_A^B d\tau \frac{dx^\mu}{d\tau} \gamma_\mu \gamma^\nu \partial_\nu f \\
&=
\int_A^B d\tau \frac{dx^\mu}{d\tau} \PD{x^\mu}{f}
+
\int_A^B
d\tau
\sum_{\mu \ne \nu} \gamma_\mu \gamma^\nu
\frac{dx^\mu}{d\tau} \PD{x^\nu}{f}.
\end{aligned}
\end{equation}
This scalar component of this integrand is a perfect differential, but the bivector part of the integrand is a complete mess, that we have no hope of generally integrating. It happens that if we consider one of the simplest parameterization examples, we can get a strong hint of how to generalize the differential operator to one that ends up providing a perfect differential. In particular, let’s integrate over a linear constant path, such as \( x(\tau) = \tau \gamma_0 \). For this path, we have
\begin{equation}\label{eqn:fundamentalTheoremOfGC:200a}
\begin{aligned}
\int_A^B dx \grad f
&=
\int_A^B \gamma_0 d\tau \lr{
\gamma^0 \partial_0 +
\gamma^1 \partial_1 +
\gamma^2 \partial_2 +
\gamma^3 \partial_3 } f \\
&=
\int_A^B d\tau \lr{
\PD{\tau}{f} +
\gamma_0 \gamma^1 \PD{x^1}{f} +
\gamma_0 \gamma^2 \PD{x^2}{f} +
\gamma_0 \gamma^3 \PD{x^3}{f}
}.
\end{aligned}
\end{equation}
Just because the path does not have any \( x^1, x^2, x^3 \) component dependencies does not mean that these last three partials are neccessarily zero. For example \( f = f(x(\tau)) = \lr{ x^0 }^2 \gamma_0 + x^1 \gamma_1 \) will have a non-zero contribution from the \( \partial_1 \) operator. In that particular case, we can easily integrate \( f \), but we have to know the specifics of the function to do the integral. However, if we had a differential operator that did not include any component off the integration path, we would ahve a perfect differential. That is, if we were to replace the gradient with the projection of the gradient onto the tangent space, we would have a perfect differential. We see that the function of the dot product in \ref{eqn:fundamentalTheoremOfGC:140} has the same effect, as it rejects any component of the gradient that does not lie on the tangent space.

Definition 1.2: Vector derivative.

Given a spacetime manifold parameterized by \( x = x(u^0, \cdots u^{N-1}) \), with tangent vectors \( \Bx_\mu = \PDi{u^\mu}{x} \), and reciprocal vectors \( \Bx^\mu \in \textrm{Span}\setlr{\Bx_\nu} \), such that \( \Bx^\mu \cdot \Bx_\nu = {\delta^\mu}_\nu \), the vector derivative is defined as
\begin{equation}\label{eqn:fundamentalTheoremOfGC:240a}
\partial = \sum_{\mu = 0}^{N-1} \Bx^\mu \PD{u^\mu}{}.
\end{equation}
Observe that if this is a full parameterization of the space (\(N = 4\)), then the vector derivative is identical to the gradient. The vector derivative is the projection of the gradient onto the tangent space at the point of evaluation.Furthermore, we designate \( \lrpartial \) as the vector derivative allowed to act bidirectionally, as follows
\begin{equation}\label{eqn:fundamentalTheoremOfGC:260a}
R \lrpartial S
=
R \Bx^\mu \PD{u^\mu}{S}
+
\PD{u^\mu}{R} \Bx^\mu S,
\end{equation}
where \( R, S \) are multivectors, and summation convention is implied. In this bidirectional action,
the vector factors of the vector derivative must stay in place (as they do not neccessarily commute with \( R,S\)), but the derivative operators apply in a chain rule like fashion to both functions.

Noting that \( \Bx_u \cdot \grad = \Bx_u \cdot \partial \), we may rewrite the scalar line integral identity \ref{eqn:fundamentalTheoremOfGC:140} as
\begin{equation}\label{eqn:fundamentalTheoremOfGC:220}
\int_A^B dx \cdot \partial f = f(B) – f(A).
\end{equation}
However, as our example hinted at, the fundamental theorem for line integrals has a multivector generalization that does not rely on a dot product to do the tangent space filtering, and is more powerful. That generalization has the following form.

Theorem 1.1: Fundamental theorem for line integrals.

Given multivector functions \( F, G \), and a single parameter curve \( x(u) \) with line element \( d^1 \Bx = \Bx_u du \), then
\begin{equation}\label{eqn:fundamentalTheoremOfGC:280a}
\int_A^B F d^1\Bx \lrpartial G = F(B) G(B) – F(A) G(A).
\end{equation}

Start proof:

Writing out the integrand explicitly, we find
\begin{equation}\label{eqn:fundamentalTheoremOfGC:340}
\int_A^B F d^1\Bx \lrpartial G
=
\int_A^B \lr{
\PD{\alpha}{F} d\alpha\, \Bx_\alpha \Bx^\alpha G
+
F d\alpha\, \Bx_\alpha \Bx^\alpha \PD{\alpha}{G }
}
\end{equation}
However for a single parameter curve, we have \( \Bx^\alpha = 1/\Bx_\alpha \), so we are left with
\begin{equation}\label{eqn:fundamentalTheoremOfGC:360}
\begin{aligned}
\int_A^B F d^1\Bx \lrpartial G
&=
\int_A^B d\alpha\, \PD{\alpha}{(F G)} \\
&=
\evalbar{F G}{B}

\evalbar{F G}{A}.
\end{aligned}
\end{equation}

End proof.

More to come.

In the next installment we will explore surface integrals in spacetime, and the generalization of the fundamental theorem to multivector space time integrals.

References

[1] Peeter Joot. Geometric Algebra for Electrical Engineers. Kindle Direct Publishing, 2019.

[2] A. Macdonald. Vector and Geometric Calculus. CreateSpace Independent Publishing Platform, 2012.

New version of Geometric Algebra for Electrical Engineers posted.

September 24, 2018 math and physics play No comments , , , , ,

 

A new version of Geometric Algebra for Electrical Engineers (V0.1.8) is now posted.  This fixes a number of issues in Chapter II on geometric calculus.  In particular, I had confused definitions of line, area, and volume integrals that were really the application of the fundamental theorem to such integrals.  This is now fixed, and the whole chapter is generally improved and clarified.

Helmholtz theorem

October 1, 2016 math and physics play No comments , , , , , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

This is a problem from ece1228. I attempted solutions in a number of ways. One using Geometric Algebra, one devoid of that algebra, and then this method, which combined aspects of both. Of the three methods I tried to obtain this result, this is the most compact and elegant. It does however, require a fair bit of Geometric Algebra knowledge, including the Fundamental Theorem of Geometric Calculus, as detailed in [1], [3] and [2].

Question: Helmholtz theorem

Prove the first Helmholtz’s theorem, i.e. if vector \(\BM\) is defined by its divergence

\begin{equation}\label{eqn:helmholtzDerviationMultivector:20}
\spacegrad \cdot \BM = s
\end{equation}

and its curl
\begin{equation}\label{eqn:helmholtzDerviationMultivector:40}
\spacegrad \cross \BM = \BC
\end{equation}

within a region and its normal component \( \BM_{\textrm{n}} \) over the boundary, then \( \BM \) is
uniquely specified.

Answer

The gradient of the vector \( \BM \) can be written as a single even grade multivector

\begin{equation}\label{eqn:helmholtzDerviationMultivector:60}
\spacegrad \BM
= \spacegrad \cdot \BM + I \spacegrad \cross \BM
= s + I \BC.
\end{equation}

We will use this to attempt to discover the relation between the vector \( \BM \) and its divergence and curl. We can express \( \BM \) at the point of interest as a convolution with the delta function at all other points in space

\begin{equation}\label{eqn:helmholtzDerviationMultivector:80}
\BM(\Bx) = \int_V dV’ \delta(\Bx – \Bx’) \BM(\Bx’).
\end{equation}

The Laplacian representation of the delta function in \R{3} is

\begin{equation}\label{eqn:helmholtzDerviationMultivector:100}
\delta(\Bx – \Bx’) = -\inv{4\pi} \spacegrad^2 \inv{\Abs{\Bx – \Bx’}},
\end{equation}

so \( \BM \) can be represented as the following convolution

\begin{equation}\label{eqn:helmholtzDerviationMultivector:120}
\BM(\Bx) = -\inv{4\pi} \int_V dV’ \spacegrad^2 \inv{\Abs{\Bx – \Bx’}} \BM(\Bx’).
\end{equation}

Using this relation and proceeding with a few applications of the chain rule, plus the fact that \( \spacegrad 1/\Abs{\Bx – \Bx’} = -\spacegrad’ 1/\Abs{\Bx – \Bx’} \), we find

\begin{equation}\label{eqn:helmholtzDerviationMultivector:720}
\begin{aligned}
-4 \pi \BM(\Bx)
&= \int_V dV’ \spacegrad^2 \inv{\Abs{\Bx – \Bx’}} \BM(\Bx’) \\
&= \gpgradeone{\int_V dV’ \spacegrad^2 \inv{\Abs{\Bx – \Bx’}} \BM(\Bx’)} \\
&= -\gpgradeone{\int_V dV’ \spacegrad \lr{ \spacegrad’ \inv{\Abs{\Bx – \Bx’}}} \BM(\Bx’)} \\
&= -\gpgradeone{\spacegrad \int_V dV’ \lr{
\spacegrad’ \frac{\BM(\Bx’)}{\Abs{\Bx – \Bx’}}
-\frac{\spacegrad’ \BM(\Bx’)}{\Abs{\Bx – \Bx’}}
} } \\
&=
-\gpgradeone{\spacegrad \int_{\partial V} dA’
\ncap \frac{\BM(\Bx’)}{\Abs{\Bx – \Bx’}}
}
+\gpgradeone{\spacegrad \int_V dV’
\frac{s(\Bx’) + I\BC(\Bx’)}{\Abs{\Bx – \Bx’}}
} \\
&=
-\gpgradeone{\spacegrad \int_{\partial V} dA’
\ncap \frac{\BM(\Bx’)}{\Abs{\Bx – \Bx’}}
}
+\spacegrad \int_V dV’
\frac{s(\Bx’)}{\Abs{\Bx – \Bx’}}
+\spacegrad \cdot \int_V dV’
\frac{I\BC(\Bx’)}{\Abs{\Bx – \Bx’}}.
\end{aligned}
\end{equation}

By inserting a no-op grade selection operation in the second step, the trivector terms that would show up in subsequent steps are automatically filtered out. This leaves us with a boundary term dependent on the surface and the normal and tangential components of \( \BM \). Added to that is a pair of volume integrals that provide the unique dependence of \( \BM \) on its divergence and curl. When the surface is taken to infinity, which requires \( \Abs{\BM}/\Abs{\Bx – \Bx’} \rightarrow 0 \), then the dependence of \( \BM \) on its divergence and curl is unique.

In order to express final result in traditional vector algebra form, a couple transformations are required. The first is that

\begin{equation}\label{eqn:helmholtzDerviationMultivector:800}
\gpgradeone{ \Ba I \Bb } = I^2 \Ba \cross \Bb = -\Ba \cross \Bb.
\end{equation}

For the grade selection in the boundary integral, note that

\begin{equation}\label{eqn:helmholtzDerviationMultivector:740}
\begin{aligned}
\gpgradeone{ \spacegrad \ncap \BX }
&=
\gpgradeone{ \spacegrad (\ncap \cdot \BX) }
+
\gpgradeone{ \spacegrad (\ncap \wedge \BX) } \\
&=
\spacegrad (\ncap \cdot \BX)
+
\gpgradeone{ \spacegrad I (\ncap \cross \BX) } \\
&=
\spacegrad (\ncap \cdot \BX)

\spacegrad \cross (\ncap \cross \BX).
\end{aligned}
\end{equation}

These give

\begin{equation}\label{eqn:helmholtzDerviationMultivector:721}
\boxed{
\begin{aligned}
\BM(\Bx)
&=
\spacegrad \inv{4\pi} \int_{\partial V} dA’ \ncap \cdot \frac{\BM(\Bx’)}{\Abs{\Bx – \Bx’}}

\spacegrad \cross \inv{4\pi} \int_{\partial V} dA’ \ncap \cross \frac{\BM(\Bx’)}{\Abs{\Bx – \Bx’}} \\
&-\spacegrad \inv{4\pi} \int_V dV’
\frac{s(\Bx’)}{\Abs{\Bx – \Bx’}}
+\spacegrad \cross \inv{4\pi} \int_V dV’
\frac{\BC(\Bx’)}{\Abs{\Bx – \Bx’}}.
\end{aligned}
}
\end{equation}

References

[1] C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University Press New York, Cambridge, UK, 1st edition, 2003.

[2] A. Macdonald. Vector and Geometric Calculus. CreateSpace Independent Publishing Platform, 2012.

[3] Garret Sobczyk and Omar Le’on S’anchez. Fundamental theorem of calculus. Advances in Applied Clifford Algebras, 21:221–231, 2011. URL https://arxiv.org/abs/0809.4526.

Does the divergence and curl uniquely determine the vector?

September 30, 2016 math and physics play No comments , , , , , , , , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

A problem posed in the ece1228 problem set was the following

Helmholtz theorem.

Prove the first Helmholtz’s theorem, i.e. if vector \(\BM\) is defined by its divergence

\begin{equation}\label{eqn:emtProblemSet1Problem5:20}
\spacegrad \cdot \BM = s
\end{equation}

and its curl
\begin{equation}\label{eqn:emtProblemSet1Problem5:40}
\spacegrad \cross \BM = \BC
\end{equation}

within a region and its normal component \( \BM_{\textrm{n}} \) over the boundary, then \( \BM \) is uniquely specified.

Solution.

This problem screams for an attempt using Geometric Algebra techniques, since
the gradient of this vector can be written as a single even grade multivector

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:60}
\begin{aligned}
\spacegrad \BM
&= \spacegrad \cdot \BM + I \spacegrad \cross \BM \\
&= s + I \BC.
\end{aligned}
\end{equation}

Observe that the Laplacian of \( \BM \) is vector valued

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:400}
\spacegrad^2 \BM
= \spacegrad s + I \spacegrad \BC.
\end{equation}

This means that \( \spacegrad \BC \) must be a bivector \( \spacegrad \BC = \spacegrad \wedge \BC \), or that \( \BC \) has zero divergence

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:420}
\spacegrad \cdot \BC = 0.
\end{equation}

This required constraint on \( \BC \) will show up in subsequent analysis. An equivalent problem to the one posed
is to show that the even grade multivector equation \( \spacegrad \BM = s + I \BC \) has an inverse given the constraint
specified by \ref{eqn:emtProblemSet1Problem5AppendixGA:420}.

Inverting the gradient equation.

The Green’s function for the gradient can be found in [1], where it is used to generalize the Cauchy integral equations to higher dimensions.

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:80}
\begin{aligned}
G(\Bx ; \Bx’) &= \inv{4 \pi} \frac{ \Bx – \Bx’ }{\Abs{\Bx – \Bx’}^3} \\
\spacegrad \BG(\Bx, \Bx’) &= \spacegrad \cdot \BG(\Bx, \Bx’) = \delta(\Bx – \Bx’) = -\spacegrad’ \BG(\Bx, \Bx’).
\end{aligned}
\end{equation}

The inversion equation is an application of the Fundamental Theorem of (Geometric) Calculus, with the gradient operating bidirectionally on the Green’s function and the vector function

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:100}
\begin{aligned}
\oint_{\partial V} G(\Bx, \Bx’) d^2 \Bx’ \BM(\Bx’)
&=
\int_V G(\Bx, \Bx’) d^3 \Bx \lrspacegrad’ \BM(\Bx’) \\
&=
\int_V d^3 \Bx (G(\Bx, \Bx’) \lspacegrad’) \BM(\Bx’)
+
\int_V d^3 \Bx G(\Bx, \Bx’) (\spacegrad’ \BM(\Bx’)) \\
&=
-\int_V d^3 \Bx \delta(\Bx – \By) \BM(\Bx’)
+
\int_V d^3 \Bx G(\Bx, \Bx’) \lr{ s(\Bx’) + I \BC(\Bx’) } \\
&=
-I \BM(\Bx)
+
\inv{4 \pi} \int_V d^3 \Bx \frac{ \Bx – \Bx’}{ \Abs{\Bx – \Bx’}^3 } \lr{ s(\Bx’) + I \BC(\Bx’) }.
\end{aligned}
\end{equation}

The integrals are in terms of the primed coordinates so that the end result is a function of \( \Bx \). To rearrange for \( \BM \), let \( d^3 \Bx’ = I dV’ \), and \( d^2 \Bx’ \ncap(\Bx’) = I dA’ \), then right multiply with the pseudoscalar \( I \), noting that in \R{3} the pseudoscalar commutes with any grades

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:440}
\begin{aligned}
\BM(\Bx)
&=
I \oint_{\partial V} G(\Bx, \Bx’) I dA’ \ncap \BM(\Bx’)

I \inv{4 \pi} \int_V I dV’ \frac{ \Bx – \Bx’}{ \Abs{\Bx – \Bx’}^3 } \lr{ s(\Bx’) + I \BC(\Bx’) } \\
&=
-\oint_{\partial V} dA’ G(\Bx, \Bx’) \ncap \BM(\Bx’)
+
\inv{4 \pi} \int_V dV’ \frac{ \Bx – \Bx’}{ \Abs{\Bx – \Bx’}^3 } \lr{ s(\Bx’) + I \BC(\Bx’) }.
\end{aligned}
\end{equation}

This can be decomposed into a vector and a trivector equation. Let \( \Br = \Bx – \Bx’ = r \rcap \), and note that

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:500}
\begin{aligned}
\gpgradeone{ \rcap I \BC }
&=
\gpgradeone{ I \rcap \BC } \\
&=
I \rcap \wedge \BC \\
&=
-\rcap \cross \BC,
\end{aligned}
\end{equation}

so this pair of equations can be written as

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:520}
\begin{aligned}
\BM(\Bx)
&=
-\inv{4 \pi} \oint_{\partial V} dA’ \frac{\gpgradeone{ \rcap \ncap \BM(\Bx’) }}{r^2}
+
\inv{4 \pi} \int_V dV’ \lr{
\frac{\rcap}{r^2} s(\Bx’) –
\frac{\rcap}{r^2} \cross \BC(\Bx’) } \\
0
&=
-\inv{4 \pi} \oint_{\partial V} dA’ \frac{\rcap}{r^2} \wedge \ncap \wedge \BM(\Bx’)
+
\frac{I}{4 \pi} \int_V dV’ \frac{ \rcap \cdot \BC(\Bx’) }{r^2}.
\end{aligned}
\end{equation}

Trivector grades.

Consider the last integral in the pseudoscalar equation above. Since we expect no pseudoscalar components, this must be zero, or cancel perfectly. It’s not obvious that this is the case, but a transformation to a surface integral shows the constraints required for that to be the case. To do so note

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:540}
\begin{aligned}
\spacegrad \inv{\Bx – \Bx’}
&= -\spacegrad’ \inv{\Bx – \Bx’} \\
&=
-\frac{\Bx – \Bx’}{\Abs{\Bx – \Bx’}^3} \\
&= -\frac{\rcap}{r^2}.
\end{aligned}
\end{equation}

Using this and the chain rule we have

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:560}
\begin{aligned}
\frac{I}{4 \pi} \int_V dV’ \frac{ \rcap \cdot \BC(\Bx’) }{r^2}
&=
\frac{I}{4 \pi} \int_V dV’ \lr{ \spacegrad’ \inv{ r } } \cdot \BC(\Bx’) \\
&=
\frac{I}{4 \pi} \int_V dV’ \spacegrad’ \cdot \frac{\BC(\Bx’)}{r}

\frac{I}{4 \pi} \int_V dV’ \frac{ \spacegrad’ \cdot \BC(\Bx’) }{r} \\
&=
\frac{I}{4 \pi} \int_V dV’ \spacegrad’ \cdot \frac{\BC(\Bx’)}{r} \\
&=
\frac{I}{4 \pi} \int_{\partial V} dA’ \ncap(\Bx’) \cdot \frac{\BC(\Bx’)}{r}.
\end{aligned}
\end{equation}

The divergence of \( \BC \) above was killed by recalling the constraint \ref{eqn:emtProblemSet1Problem5AppendixGA:420}. This means that we can rewrite entirely as surface integral and eventually reduced to a single triple product

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:580}
\begin{aligned}
0
&=
-\frac{I}{4 \pi} \oint_{\partial V} dA’ \lr{
\frac{\rcap}{r^2} \cdot (\ncap \cross \BM(\Bx’))
-\ncap \cdot \frac{\BC(\Bx’)}{r}
} \\
&=
\frac{I}{4 \pi} \oint_{\partial V} dA’ \ncap \cdot \lr{
\frac{\rcap}{r^2} \cross \BM(\Bx’)
+ \frac{\BC(\Bx’)}{r}
} \\
&=
\frac{I}{4 \pi} \oint_{\partial V} dA’ \ncap \cdot \lr{
\lr{ \spacegrad’ \inv{r}} \cross \BM(\Bx’)
+ \frac{\BC(\Bx’)}{r}
} \\
&=
\frac{I}{4 \pi} \oint_{\partial V} dA’ \ncap \cdot \lr{
\spacegrad’ \cross \frac{\BM(\Bx’)}{r}
} \\
&=
\frac{I}{4 \pi} \oint_{\partial V} dA’
\spacegrad’ \cdot
\frac{\BM(\Bx’) \cross \ncap}{r}
&=
\frac{I}{4 \pi} \oint_{\partial V} dA’
\spacegrad’ \cdot
\frac{\BM(\Bx’) \cross \ncap}{r}.
\end{aligned}
\end{equation}

Final results.

Assembling things back into a single multivector equation, the complete inversion integral for \( \BM \) is

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:600}
\BM(\Bx)
=
\inv{4 \pi} \oint_{\partial V} dA’
\lr{
\spacegrad’ \wedge
\frac{\BM(\Bx’) \wedge \ncap}{r}
-\frac{\gpgradeone{ \rcap \ncap \BM(\Bx’) }}{r^2}
}
+
\inv{4 \pi} \int_V dV’ \lr{
\frac{\rcap}{r^2} s(\Bx’) –
\frac{\rcap}{r^2} \cross \BC(\Bx’) }.
\end{equation}

This shows that vector \( \BM \) can be recovered uniquely from \( s, \BC \) when \( \Abs{\BM}/r^2 \) vanishes on an infinite surface. If we restrict attention to a finite surface, we have to add to the fixed solution a specific solution that depends on the value of \( \BM \) on that surface. The vector portion of that surface integrand contains

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:640}
\begin{aligned}
\gpgradeone{ \rcap \ncap \BM }
&=
\rcap (\ncap \cdot \BM )
+
\rcap \cdot (\ncap \wedge \BM ) \\
&=
\rcap (\ncap \cdot \BM )
+
(\rcap \cdot \ncap) \BM

(\rcap \cdot \BM ) \ncap.
\end{aligned}
\end{equation}

The constraints required by a zero triple product \( \spacegrad’ \cdot (\BM(\Bx’) \cross \ncap(\Bx’)) \) are complicated on a such a general finite surface. Consider instead, for simplicity, the case of a spherical surface, which can be analyzed more easily. In that case the outward normal of the surface centred on the test charge point \( \Bx \) is \( \ncap = -\rcap \). The pseudoscalar integrand is not generally killed unless the divergence of its tangential component on this surface is zero. One way that this can occur is for \( \BM \cross \ncap = 0 \), so that \( -\gpgradeone{ \rcap \ncap \BM } = \BM = (\BM \cdot \ncap) \ncap = \BM_{\textrm{n}} \).

This gives

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:620}
\BM(\Bx)
=
\inv{4 \pi} \oint_{\Abs{\Bx – \Bx’} = r} dA’ \frac{\BM_{\textrm{n}}(\Bx’)}{r^2}
+
\inv{4 \pi} \int_V dV’ \lr{
\frac{\rcap}{r^2} s(\Bx’) +
\BC(\Bx’) \cross \frac{\rcap}{r^2} },
\end{equation}

or, in terms of potential functions, which is arguably tidier

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:300}
\boxed{
\BM(\Bx)
=
\inv{4 \pi} \oint_{\Abs{\Bx – \Bx’} = r} dA’ \frac{\BM_{\textrm{n}}(\Bx’)}{r^2}
-\spacegrad \int_V dV’ \frac{ s(\Bx’)}{ 4 \pi r }
+\spacegrad \cross \int_V dV’ \frac{ \BC(\Bx’) }{ 4 \pi r }.
}
\end{equation}

Commentary

I attempted this problem in three different ways. My first approach (above) assembled the divergence and curl relations above into a single (Geometric Algebra) multivector gradient equation and applied the vector valued Green’s function for the gradient to invert that equation. That approach logically led from the differential equation for \( \BM \) to the solution for \( \BM \) in terms of \( s \) and \( \BC \). However, this strategy introduced some complexities that make me doubt the correctness of the associated boundary analysis.

Even if the details of the boundary handling in my multivector approach is not correct, I thought that approach was interesting enough to share.

References

[1] C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University Press New York, Cambridge, UK, 1st edition, 2003.

Fundamental Theorem of Geometric Calculus

September 20, 2016 math and physics play No comments , , , , , , , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

Stokes Theorem

The Fundamental Theorem of (Geometric) Calculus is a generalization of Stokes theorem to multivector integrals. Notationally, it looks like Stokes theorem with all the dot and wedge products removed. It is worth restating Stokes theorem and all the definitions associated with it for reference

Stokes’ Theorem

For blades \(F \in \bigwedge^{s}\), and \(m\) volume element \(d^k \Bx, s < k\), \begin{equation*} \int_V d^k \Bx \cdot (\boldpartial \wedge F) = \oint_{\partial V} d^{k-1} \Bx \cdot F. \end{equation*} This is a loaded and abstract statement, and requires many definitions to make it useful

  • The volume integral is over a \(m\) dimensional surface (manifold).
  • Integration over the boundary of the manifold \(V\) is indicated by \( \partial V \).
  • This manifold is assumed to be spanned by a parameterized vector \( \Bx(u^1, u^2, \cdots, u^k) \).
  • A curvilinear coordinate basis \( \setlr{ \Bx_i } \) can be defined on the manifold by
    \begin{equation}\label{eqn:fundamentalTheoremOfCalculus:40}
    \Bx_i \equiv \PD{u^i}{\Bx} \equiv \partial_i \Bx.
    \end{equation}

  • A dual basis \( \setlr{\Bx^i} \) reciprocal to the tangent vector basis \( \Bx_i \) can be calculated subject to the requirement \( \Bx_i \cdot \Bx^j = \delta_i^j \).
  • The vector derivative \(\boldpartial\), the projection of the gradient onto the tangent space of the manifold, is defined by
    \begin{equation}\label{eqn:fundamentalTheoremOfCalculus:100}
    \boldpartial = \Bx^i \partial_i = \sum_{i=1}^k \Bx_i \PD{u^i}{}.
    \end{equation}

  • The volume element is defined by
    \begin{equation}\label{eqn:fundamentalTheoremOfCalculus:60}
    d^k \Bx = d\Bx_1 \wedge d\Bx_2 \cdots \wedge d\Bx_k,
    \end{equation}

    where

    \begin{equation}\label{eqn:fundamentalTheoremOfCalculus:80}
    d\Bx_k = \Bx_k du^k,\qquad \text{(no sum)}.
    \end{equation}

  • The volume element is non-zero on the manifold, or \( \Bx_1 \wedge \cdots \wedge \Bx_k \ne 0 \).
  • The surface area element \( d^{k-1} \Bx \), is defined by
    \begin{equation}\label{eqn:fundamentalTheoremOfCalculus:120}
    d^{k-1} \Bx = \sum_{i = 1}^k (-1)^{k-i} d\Bx_1 \wedge d\Bx_2 \cdots \widehat{d\Bx_i} \cdots \wedge d\Bx_k,
    \end{equation}

    where \( \widehat{d\Bx_i} \) indicates the omission of \( d\Bx_i \).

  • My proof for this theorem was restricted to a simple “rectangular” volume parameterized by the ranges
    \(
    [u^1(0), u^1(1) ] \otimes
    [u^2(0), u^2(1) ] \otimes \cdots \otimes
    [u^k(0), u^k(1) ] \)

  • The precise meaning that should be given to oriented area integral is
    \begin{equation}\label{eqn:fundamentalTheoremOfCalculus:140}
    \oint_{\partial V} d^{k-1} \Bx \cdot F
    =
    \sum_{i = 1}^k (-1)^{k-i} \int \evalrange{
    \lr{ \lr{ d\Bx_1 \wedge d\Bx_2 \cdots \widehat{d\Bx_i} \cdots \wedge d\Bx_k } \cdot F }
    }{u^i = u^i(0)}{u^i(1)},
    \end{equation}

    where both the a area form and the blade \( F \) are evaluated at the end points of the parameterization range.

After the work of stating exactly what is meant by this theorem, most of the proof follows from the fact that for \( s < k \) the volume curl dot product can be expanded as \begin{equation}\label{eqn:fundamentalTheoremOfCalculus:160} \int_V d^k \Bx \cdot (\boldpartial \wedge F) = \int_V d^k \Bx \cdot (\Bx^i \wedge \partial_i F) = \int_V \lr{ d^k \Bx \cdot \Bx^i } \cdot \partial_i F. \end{equation} Each of the \(du^i\) integrals can be evaluated directly, since each of the remaining \(d\Bx_j = du^j \PDi{u^j}{}, i \ne j \) is calculated with \( u^i \) held fixed. This allows for the integration over a ``rectangular'' parameterization region, proving the theorem for such a volume parameterization. A more general proof requires a triangulation of the volume and surface, but the basic principle of the theorem is evident, without that additional work.

Fundamental Theorem of Calculus

There is a Geometric Algebra generalization of Stokes theorem that does not have the blade grade restriction of Stokes theorem. In [2] this is stated as

\begin{equation}\label{eqn:fundamentalTheoremOfCalculus:180}
\int_V d^k \Bx \boldpartial F = \oint_{\partial V} d^{k-1} \Bx F.
\end{equation}

A similar expression is used in [1] where it is also pointed out there is a variant with the vector derivative acting to the left

\begin{equation}\label{eqn:fundamentalTheoremOfCalculus:200}
\int_V F d^k \Bx \boldpartial = \oint_{\partial V} F d^{k-1} \Bx.
\end{equation}

In [3] it is pointed out that a bidirectional formulation is possible, providing the most general expression of the Fundamental Theorem of (Geometric) Calculus

\begin{equation}\label{eqn:fundamentalTheoremOfCalculus:220}
\boxed{
\int_V F d^k \Bx \boldpartial G = \oint_{\partial V} F d^{k-1} \Bx G.
}
\end{equation}

Here the vector derivative acts both to the left and right on \( F \) and \( G \). The specific action of this operator is
\begin{equation}\label{eqn:fundamentalTheoremOfCalculus:240}
\begin{aligned}
F \boldpartial G
&=
(F \boldpartial) G
+
F (\boldpartial G) \\
&=
(\partial_i F) \Bx^i G
+
F \Bx^i (\partial_i G).
\end{aligned}
\end{equation}

The fundamental theorem can be demonstrated by direct expansion. With the vector derivative \( \boldpartial \) and its partials \( \partial_i \) acting bidirectionally, that is

\begin{equation}\label{eqn:fundamentalTheoremOfCalculus:260}
\begin{aligned}
\int_V F d^k \Bx \boldpartial G
&=
\int_V F d^k \Bx \Bx^i \partial_i G \\
&=
\int_V F \lr{ d^k \Bx \cdot \Bx^i + d^k \Bx \wedge \Bx^i } \partial_i G.
\end{aligned}
\end{equation}

Both the reciprocal frame vectors and the curvilinear basis span the tangent space of the manifold, since we can write any reciprocal frame vector as a set of projections in the curvilinear basis

\begin{equation}\label{eqn:fundamentalTheoremOfCalculus:280}
\Bx^i = \sum_j \lr{ \Bx^i \cdot \Bx^j } \Bx_j,
\end{equation}

so \( \Bx^i \in sectionpan \setlr{ \Bx_j, j \in [1,k] } \).
This means that \( d^k \Bx \wedge \Bx^i = 0 \), and

\begin{equation}\label{eqn:fundamentalTheoremOfCalculus:300}
\begin{aligned}
\int_V F d^k \Bx \boldpartial G
&=
\int_V F \lr{ d^k \Bx \cdot \Bx^i } \partial_i G \\
&=
\sum_{i = 1}^{k}
\int_V
du^1 du^2 \cdots \widehat{ du^i} \cdots du^k
F \lr{
(-1)^{k-i}
\Bx_1 \wedge \Bx_2 \cdots \widehat{\Bx_i} \cdots \wedge \Bx_k } \partial_i G du^i \\
&=
\sum_{i = 1}^{k}
(-1)^{k-i}
\int_{u^1}
\int_{u^2}
\cdots
\int_{u^{i-1}}
\int_{u^{i+1}}
\cdots
\int_{u^k}
\evalrange{ \lr{
F d\Bx_1 \wedge d\Bx_2 \cdots \widehat{d\Bx_i} \cdots \wedge d\Bx_k G
}
}{u^i = u^i(0)}{u^i(1)}.
\end{aligned}
\end{equation}

Adding in the same notational sugar that we used in Stokes theorem, this proves the Fundamental theorem \ref{eqn:fundamentalTheoremOfCalculus:220} for “rectangular” parameterizations. Note that such a parameterization need not actually be rectangular.

Example: Application to Maxwell’s equation

{example:fundamentalTheoremOfCalculus:1}

Maxwell’s equation is an example of a first order gradient equation

\begin{equation}\label{eqn:fundamentalTheoremOfCalculus:320}
\grad F = \inv{\epsilon_0 c} J.
\end{equation}

Integrating over a four-volume (where the vector derivative equals the gradient), and applying the Fundamental theorem, we have

\begin{equation}\label{eqn:fundamentalTheoremOfCalculus:340}
\inv{\epsilon_0 c} \int d^4 x J = \oint d^3 x F.
\end{equation}

Observe that the surface area element product with \( F \) has both vector and trivector terms. This can be demonstrated by considering some examples

\begin{equation}\label{eqn:fundamentalTheoremOfCalculus:360}
\begin{aligned}
\gamma_{012} \gamma_{01} &\propto \gamma_2 \\
\gamma_{012} \gamma_{23} &\propto \gamma_{023}.
\end{aligned}
\end{equation}

On the other hand, the four volume integral of \( J \) has only trivector parts. This means that the integral can be split into a pair of same-grade equations

\begin{equation}\label{eqn:fundamentalTheoremOfCalculus:380}
\begin{aligned}
\inv{\epsilon_0 c} \int d^4 x \cdot J &=
\oint \gpgradethree{ d^3 x F} \\
0 &=
\oint d^3 x \cdot F.
\end{aligned}
\end{equation}

The first can be put into a slightly tidier form using a duality transformation
\begin{equation}\label{eqn:fundamentalTheoremOfCalculus:400}
\begin{aligned}
\gpgradethree{ d^3 x F}
&=
-\gpgradethree{ d^3 x I^2 F} \\
&=
\gpgradethree{ I d^3 x I F} \\
&=
(I d^3 x) \wedge (I F).
\end{aligned}
\end{equation}

Letting \( n \Abs{d^3 x} = I d^3 x \), this gives

\begin{equation}\label{eqn:fundamentalTheoremOfCalculus:420}
\oint \Abs{d^3 x} n \wedge (I F) = \inv{\epsilon_0 c} \int d^4 x \cdot J.
\end{equation}

Note that this normal is normal to a three-volume subspace of the spacetime volume. For example, if one component of that spacetime surface area element is \( \gamma_{012} c dt dx dy \), then the normal to that area component is \( \gamma_3 \).

A second set of duality transformations

\begin{equation}\label{eqn:fundamentalTheoremOfCalculus:440}
\begin{aligned}
n \wedge (IF)
&=
\gpgradethree{ n I F} \\
&=
-\gpgradethree{ I n F} \\
&=
-\gpgradethree{ I (n \cdot F)} \\
&=
-I (n \cdot F),
\end{aligned}
\end{equation}

and
\begin{equation}\label{eqn:fundamentalTheoremOfCalculus:460}
\begin{aligned}
I d^4 x \cdot J
&=
\gpgradeone{ I d^4 x \cdot J } \\
&=
\gpgradeone{ I d^4 x J } \\
&=
\gpgradeone{ (I d^4 x) J } \\
&=
(I d^4 x) J,
\end{aligned}
\end{equation}

can further tidy things up, leaving us with

\begin{equation}\label{eqn:fundamentalTheoremOfCalculus:500}
\boxed{
\begin{aligned}
\oint \Abs{d^3 x} n \cdot F &= \inv{\epsilon_0 c} \int (I d^4 x) J \\
\oint d^3 x \cdot F &= 0.
\end{aligned}
}
\end{equation}

The Fundamental theorem of calculus immediately provides relations between the Faraday bivector \( F \) and the four-current \( J \).

References

[1] C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University Press New York, Cambridge, UK, 1st edition, 2003.

[2] A. Macdonald. Vector and Geometric Calculus. CreateSpace Independent Publishing Platform, 2012.

[3] Garret Sobczyk and Omar Le\’on S\’anchez. Fundamental theorem of calculus. Advances in Applied Clifford Algebras, 21\penalty0 (1):\penalty0 221–231, 2011. URL https://arxiv.org/abs/0809.4526.

%d bloggers like this: