## PHY1520H Graduate Quantum Mechanics. Lecture 12: Symmetry (cont.). Taught by Prof. Arun Paramekanti

### Disclaimer

Peeter’s lecture notes from class. These may be incoherent and rough.

These are notes for the UofT course PHY1520, Graduate Quantum Mechanics, taught by Prof. Paramekanti, covering chap. 4 content from [1].

### Parity (review)

\label{eqn:qmLecture12:20}
\hat{\Pi} \hat{x} \hat{\Pi} = – \hat{x}

\label{eqn:qmLecture12:40}
\hat{\Pi} \hat{p} \hat{\Pi} = – \hat{p}

These are polar vectors, in contrast to an axial vector such as $$\BL = \Br \cross \Bp$$.

\label{eqn:qmLecture12:60}
\hat{\Pi}^2 = 1

\label{eqn:qmLecture12:80}
\Psi(x) \rightarrow \Psi(-x)

If $$\antisymmetric{\hat{\Pi}}{\hat{H}} = 0$$ then all the eigenstates are either

• even: $$\hat{\Pi}$$ eigenvalue is $$+ 1$$.
• odd: $$\hat{\Pi}$$ eigenvalue is $$– 1$$.

We are done with discrete symmetry operators for now.

### Translations

Define a (continuous) translation operator

\label{eqn:qmLecture12:100}
\hat{T}_\epsilon \ket{x} = \ket{x + \epsilon}

The action of this operator is sketched in fig. 1.

fig. 1. Translation operation.

This is a unitary operator

\label{eqn:qmLecture12:120}
\hat{T}_{-\epsilon} = \hat{T}_{\epsilon}^\dagger = \hat{T}_{\epsilon}^{-1}

In a position basis, the action of this operator is

\label{eqn:qmLecture12:140}
\bra{x} \hat{T}_{\epsilon} \ket{\psi} = \braket{x-\epsilon}{\psi} = \psi(x – \epsilon)

\label{eqn:qmLecture12:160}
\Psi(x – \epsilon) \approx \Psi(x) – \epsilon \PD{x}{\Psi}

\label{eqn:qmLecture12:180}
\bra{x} \hat{T}_{\epsilon} \ket{\Psi}
= \braket{x}{\Psi} – \frac{\epsilon}{\Hbar} \bra{ x} i \hat{p} \ket{\Psi}

\label{eqn:qmLecture12:200}
\hat{T}_{\epsilon} \approx \lr{ 1 – i \frac{\epsilon}{\Hbar} \hat{p} }

A non-infinitesimal translation can be composed of many small translations, as sketched in fig. 2.

fig. 2. Composition of small translations

For $$\epsilon \rightarrow 0, N \rightarrow \infty, N \epsilon = a$$, the total translation operator is

\label{eqn:qmLecture12:220}
\begin{aligned}
\hat{T}_{a}
&= \hat{T}_{\epsilon}^N \\
&= \lim_{\epsilon \rightarrow 0, N \rightarrow \infty, N \epsilon = a }
\lr{ 1 – \frac{\epsilon}{\Hbar} \hat{p} }^N \\
&= e^{-i a \hat{p}/\Hbar}
\end{aligned}

The momentum $$\hat{p}$$ is called a “Generator” generator of translations. If a Hamiltonian $$H$$ is translationally invariant, then

\label{eqn:qmLecture12:240}
\antisymmetric{\hat{T}_{a}}{H} = 0, \qquad \forall a.

This means that momentum will be a good quantum number

\label{eqn:qmLecture12:260}
\antisymmetric{\hat{p}}{H} = 0.

### Rotations

Rotations form a non-Abelian group, since the order of rotations $$\hatR_1 \hatR_2 \ne \hatR_2 \hatR_1$$.

Given a rotation acting on a ket

\label{eqn:qmLecture12:280}
\hatR \ket{\Br} = \ket{R \Br},

observe that the action of the rotation operator on a wave function is inverted

\label{eqn:qmLecture12:300}
\bra{\Br} \hatR \ket{\Psi}
=
\bra{R^{-1} \Br} \ket{\Psi}
= \Psi(R^{-1} \Br).

## Example: Z axis normal rotation

Consider an infinitesimal rotation about the z-axis as sketched in fig. 3(a),(b)

\label{eqn:qmLecture12:320}
\begin{aligned}
x’ &= x – \epsilon y \\
y’ &= y + \epsilon y \\
z’ &= z
\end{aligned}

The rotated wave function is

\label{eqn:qmLecture12:340}
\tilde{\Psi}(x,y,z)
= \Psi( x + \epsilon y, y – \epsilon x, z )
=
\Psi( x, y, z )
+
\epsilon y \underbrace{\PD{x}{\Psi}}_{i \hat{p}_x/\Hbar}

\epsilon x \underbrace{\PD{y}{\Psi}}_{i \hat{p}_y/\Hbar}.

The state must then transform as

\label{eqn:qmLecture12:360}
\ket{\tilde{\Psi}}
=
\lr{
1
+ i \frac{\epsilon}{\Hbar} \hat{y} \hat{p}_x
– i \frac{\epsilon}{\Hbar} \hat{x} \hat{p}_y
}
\ket{\Psi}.

Observe that the combination $$\hat{x} \hat{p}_y – \hat{y} \hat{p}_x$$ is the $$\hat{L}_z$$ component of angular momentum $$\hat{\BL} = \hat{\Br} \cross \hat{\Bp}$$, so the infinitesimal rotation can be written

\label{eqn:qmLecture12:380}
\boxed{
\hatR_z(\epsilon) \ket{\Psi}
=
\lr{ 1 – i \frac{\epsilon}{\Hbar} \hat{L}_z } \ket{\Psi}.
}

For a finite rotation $$\epsilon \rightarrow 0, N \rightarrow \infty, \phi = \epsilon N$$, the total rotation is

\label{eqn:qmLecture12:420}
\hatR_z(\phi)
=
\lr{ 1 – \frac{i \epsilon}{\Hbar} \hat{L}_z }^N,

or
\label{eqn:qmLecture12:440}
\boxed{
\hatR_z(\phi)
=
e^{-i \frac{\phi}{\Hbar} \hat{L}_z}.
}

Note that $$\antisymmetric{\hat{L}_x}{\hat{L}_y} \ne 0$$.

By construction using Euler angles or any other method, a general rotation will include contributions from components of all the angular momentum operator, and will have the structure

\label{eqn:qmLecture12:480}
\boxed{
\hatR_\ncap(\phi)
=
e^{-i \frac{\phi}{\Hbar} \lr{ \hat{\BL} \cdot \ncap }}.
}

### Rotationally invariant $$\hat{H}$$.

Given a rotationally invariant Hamiltonian

\label{eqn:qmLecture12:520}
\antisymmetric{\hat{R}_\ncap(\phi)}{\hat{H}} = 0 \qquad \forall \ncap, \phi,

then every

\label{eqn:qmLecture12:540}
\antisymmetric{\BL \cdot \ncap}{\hat{H}} = 0,

or
\label{eqn:qmLecture12:560}
\antisymmetric{L_i}{\hat{H}} = 0,

Non-Abelian implies degeneracies in the spectrum.

### Time-reversal

Imagine that we have something moving along a curve at time $$t = 0$$, and ending up at the final position at time $$t = t_f$$.

fig. 4. Time reversal trajectory.

Imagine that we flip the direction of motion (i.e. flipping the velocity) and run time backwards so the final-time state becomes the initial state.

If the time reversal operator is designated $$\hat{\Theta}$$, with operation

\label{eqn:qmLecture12:580}
\hat{\Theta} \ket{\Psi} = \ket{\tilde{\Psi}},

so that

\label{eqn:qmLecture12:600}
\hat{\Theta}^{-1} e^{-i \hat{H} t/\Hbar} \hat{\Theta} \ket{\Psi(t)} = \ket{\Psi(0)},

or

\label{eqn:qmLecture12:620}
\hat{\Theta}^{-1} e^{-i \hat{H} t/\Hbar} \hat{\Theta} \ket{\Psi(0)} = \ket{\Psi(-t)}.

# References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

## PHY1520H Graduate Quantum Mechanics. Lecture 5: time evolution of coherent states, and charged particles in a magnetic field. Taught by Prof. Arun Paramekanti

### Disclaimer

Peeter’s lecture notes from class. These may be incoherent and rough.

These are notes for the UofT course PHY1520, Graduate Quantum Mechanics, taught by Prof. Paramekanti, covering \textchapref{{1}} [1] content.

### Coherent states (cont.)

A coherent state for the SHO $$H = \lr{ N + \inv{2} } \Hbar \omega$$ was given by

\label{eqn:qmLecture5:20}
a \ket{z} = z \ket{z},

where we showed that

\label{eqn:qmLecture5:40}
\ket{z} = c_0 e^{ z a^\dagger } \ket{0}.

In the Heisenberg picture we found

\label{eqn:qmLecture5:60}
\begin{aligned}
a_{\textrm{H}}(t) &= e^{i H t/\Hbar} a e^{-i H t/\Hbar} = a e^{-i\omega t} \\
a_{\textrm{H}}^\dagger(t) &= e^{i H t/\Hbar} a^\dagger e^{-i H t/\Hbar} = a^\dagger e^{i\omega t}.
\end{aligned}

Recall that the position and momentum representation of the ladder operators was

\label{eqn:qmLecture5:80}
\begin{aligned}
a &= \inv{\sqrt{2}} \lr{ \hat{x} \sqrt{\frac{m \omega}{\Hbar}} + i \hat{p} \sqrt{\inv{m \Hbar \omega}} } \\
a^\dagger &= \inv{\sqrt{2}} \lr{ \hat{x} \sqrt{\frac{m \omega}{\Hbar}} – i \hat{p} \sqrt{\inv{m \Hbar \omega}} },
\end{aligned}

or equivalently
\label{eqn:qmLecture5:100}
\begin{aligned}
\hat{x} &= \lr{ a + a^\dagger } \sqrt{\frac{\Hbar}{ 2 m \omega}} \\
\hat{p} &= i \lr{ a^\dagger – a } \sqrt{\frac{m \Hbar \omega}{2}}.
\end{aligned}

Given this we can compute expectation value of position operator

\label{eqn:qmLecture5:120}
\begin{aligned}
\bra{z} \hat{x} \ket{z}
&=
\sqrt{\frac{\Hbar}{ 2 m \omega}}
\bra{z}
\lr{ a + a^\dagger }
\ket{z} \\
&=
\lr{ z + z^\conj } \sqrt{\frac{\Hbar}{ 2 m \omega}} \\
&=
2 \textrm{Re} z \sqrt{\frac{\Hbar}{ 2 m \omega}} .
\end{aligned}

Similarly

\label{eqn:qmLecture5:140}
\begin{aligned}
\bra{z} \hat{p} \ket{z}
&=
i \sqrt{\frac{m \Hbar \omega}{2}}
\bra{z}
\lr{ a^\dagger – a }
\ket{z} \\
&=
\sqrt{\frac{m \Hbar \omega}{2}}
2 \textrm{Im} z.
\end{aligned}

How about the expectation of the Heisenberg position operator? That is

\label{eqn:qmLecture5:160}
\begin{aligned}
\bra{z} \hat{x}_{\textrm{H}}(t) \ket{z}
&=
\sqrt{\frac{\Hbar}{2 m \omega}} \bra{z} \lr{ a + a^\dagger } \ket{z} \\
&=
\sqrt{\frac{\Hbar}{2 m \omega}} \lr{ z e^{-i \omega t} + z^\conj e^{i \omega t}} \\
&=
\sqrt{\frac{\Hbar}{2 m \omega}} \lr{ \lr{z + z^\conj} \cos( \omega t ) -i \lr{ z – z^\conj } \sin( \omega t) } \\
&=
\sqrt{\frac{\Hbar}{2 m \omega}} \lr{ \expectation{x(0)} \sqrt{ \frac{2 m \omega}{\Hbar}} \cos( \omega t ) -i \expectation{p(0)} i \sqrt{\frac{2 m \omega}{\Hbar} } \sin( \omega t) } \\
&=
\expectation{x(0)} \cos( \omega t ) + \frac{\expectation{p(0)}}{m \omega} \sin( \omega t) .
\end{aligned}

We find that the average of the Heisenberg position operator evolves in time in exactly the same fashion as position in the classical Harmonic oscillator. This phase space like trajectory is sketched in fig. 1.

fig. 1. phase space like trajectory

In the text it is shown that we have the same structure for the Heisenberg operator itself, before taking expectations

\label{eqn:qmLecture5:220}
\hat{x}_{\textrm{H}}(t)
=
{x(0)} \cos( \omega t ) + \frac{{p(0)}}{m \omega} \sin( \omega t).

Where the coherent states become useful is that we will see that the second moments of position and momentum are not time dependent with respect to the coherent states. Such states remain localized.

### Uncertainty

First note that using the commutator relationship we have

\label{eqn:qmLecture5:180}
\begin{aligned}
\bra{z} a a^\dagger \ket{z}
&=
\bra{z} \lr{ \antisymmetric{a}{a^\dagger} + a^\dagger a } \ket{z} \\
&=
\bra{z} \lr{ 1 + a^\dagger a } \ket{z}.
\end{aligned}

For the second moment we have

\label{eqn:qmLecture5:200}
\begin{aligned}
\bra{z} \hat{x}^2 \ket{z}
&=
\frac{\Hbar}{ 2 m \omega}
\bra{z} \lr{a + a^\dagger } \lr{a + a^\dagger } \ket{z} \\
&=
\frac{\Hbar}{ 2 m \omega}
\bra{z} \lr{
a^2 + {(a^\dagger)}^2 + a a^\dagger + a^\dagger a
} \ket{z} \\
&=
\frac{\Hbar}{ 2 m \omega}
\bra{z} \lr{
a^2 + {(a^\dagger)}^2 + 2 a^\dagger a + 1
} \ket{z} \\
&=
\frac{\Hbar}{ 2 m \omega}
\lr{ z^2 + {(z^\conj)}^2 + 2 z^\conj z + 1} \ket{z} \\
&=
\frac{\Hbar}{ 2 m \omega}
\lr{ z + z^\conj }^2
+
\frac{\Hbar}{ 2 m \omega}.
\end{aligned}

We find

\label{eqn:qmLecture5:240}
\sigma_x^2 = \frac{\Hbar}{ 2 m \omega},

and

\label{eqn:qmLecture5:260}
\sigma_p^2 = \frac{m \Hbar \omega}{2}

so

\label{eqn:qmLecture5:280}
\sigma_x^2 \sigma_p^2 = \frac{\Hbar^2}{4},

or

\label{eqn:qmLecture5:300}
\sigma_x \sigma_p = \frac{\Hbar}{2}.

This is the minimum uncertainty.

### Quantum Field theory

In Quantum Field theory the ideas of isolated oscillators is used to model particle creation. The lowest energy state (a no particle, vacuum state) is given the lowest energy level, with each additional quantum level modeling a new particle creation state as sketched in fig. 2.

fig. 2. QFT energy levels

We have to imagine many oscillators, each with a distinct vacuum energy $$\sim \Bk^2$$ . The Harmonic oscillator can be used to model the creation of particles with $$\Hbar \omega$$ energy differences from that “vacuum energy”.

### Charged particle in a magnetic field

In the classical case ( with SI units or $$c = 1$$ ) we have

\label{eqn:qmLecture5:320}
\BF = q \BE + q \Bv \cross \BB.

Alternately, we can look at the Hamiltonian view of the system, written in terms of potentials

\label{eqn:qmLecture5:340}

\label{eqn:qmLecture5:360}
\BE = – \spacegrad \phi – \PD{t}{\BA}.

Note that the curl form for the magnetic field implies one of the required Maxwell’s equations $$\spacegrad \cdot \BB = 0$$.

Ignoring time dependence of the potentials, the Hamiltonian can be expressed as

\label{eqn:qmLecture5:380}
H = \inv{2 m} \lr{ \Bp – q \BA }^2 + q \phi.

In this Hamiltonian the vector $$\Bp$$ is called the canonical momentum, the momentum conjugate to position in phase space.

It is left as an exercise to show that the Lorentz force equation results from application of the Hamiltonian equations of motion, and that the velocity is given by $$\Bv = (\Bp – q \BA)/m$$.

For quantum mechanics, we use the same Hamiltonian, but promote our position, momentum and potentials to operators.

\label{eqn:qmLecture5:400}
\hat{H} = \inv{2 m} \lr{ \hat{\Bp} – q \hat{\BA}(\Br, t) }^2 + q \hat{\phi}(\Br, t).

### Gauge invariance

Can we say anything about this before looking at the question of a particle in a magnetic field?

Recall that the we can make a gauge transformation of the form

\label{eqn:qmLecture5:420a}
\label{eqn:qmLecture5:420}
\BA \rightarrow \BA + \spacegrad \chi

\label{eqn:qmLecture5:440}
\phi \rightarrow \phi – \PD{t}{\chi}

Does this notion of gauge invariance also carry over to the Quantum Hamiltonian. After gauge transformation we have

\label{eqn:qmLecture5:460}
\hat{H}’
= \inv{2 m} \lr{ \hat{\Bp} – q \BA – q \spacegrad \chi }^2 + q \lr{ \phi – \PD{t}{\chi} }

Now we are in a mess, since this function $$\chi$$ can make the Hamiltonian horribly complicated. We don’t see how gauge invariance can easily be applied to the quantum problem. Next time we will introduce a transformation that resolves some of this mess.

## Question: Lorentz force from classical electrodynamic Hamiltonian

Given the classical Hamiltonian

\label{eqn:qmLecture5:381}
H = \inv{2 m} \lr{ \Bp – q \BA }^2 + q \phi.

apply the Hamiltonian equations of motion

\label{eqn:qmLecture5:480}
\begin{aligned}
\ddt{\Bp} &= – \PD{\Bq}{H} \\
\ddt{\Bq} &= \PD{\Bp}{H},
\end{aligned}

to show that this is the Hamiltonian that describes the Lorentz force equation, and to find the velocity in terms of the canonical momentum and vector potential.

The particle velocity follows easily

\label{eqn:qmLecture5:500}
\begin{aligned}
\Bv
&= \ddt{\Br} \\
&= \PD{\Bp}{H} \\
&= \inv{m} \lr{ \Bp – a \BA }.
\end{aligned}

For the Lorentz force we can proceed in the coordinate representation

\label{eqn:qmLecture5:520}
\begin{aligned}
\ddt{p_k}
&= – \PD{x_k}{H} \\
&= – \frac{2}{2m} \lr{ p_m – q A_m } \PD{x_k}{}\lr{ p_m – q A_m } – q \PD{x_k}{\phi} \\
&= q v_m \PD{x_k}{A_m} – q \PD{x_k}{\phi},
\end{aligned}

We also have

\label{eqn:qmLecture5:540}
\begin{aligned}
\ddt{p_k}
&=
\ddt{} \lr{m x_k + q A_k } \\
&=
m \frac{d^2 x_k}{dt^2} + q \PD{x_m}{A_k} \frac{d x_m}{dt} + q \PD{t}{A_k}.
\end{aligned}

Putting these together we’ve got

\label{eqn:qmLecture5:560}
\begin{aligned}
m \frac{d^2 x_k}{dt^2}
&= q v_m \PD{x_k}{A_m} – q \PD{x_k}{\phi},
– q \PD{x_m}{A_k} \frac{d x_m}{dt} – q \PD{t}{A_k} \\
&=
q v_m \lr{ \PD{x_k}{A_m} – \PD{x_m}{A_k} } + q E_k \\
&=
q v_m \epsilon_{k m s} B_s + q E_k,
\end{aligned}

or

\label{eqn:qmLecture5:580}
\begin{aligned}
m \frac{d^2 \Bx}{dt^2}
&=
q \Be_k v_m \epsilon_{k m s} B_s + q E_k \\
&= q \Bv \cross \BB + q \BE.
\end{aligned}

## Question: Show gauge invariance of the magnetic and electric fields

After the gauge transformation of \ref{eqn:qmLecture5:420} show that the electric and magnetic fields are unaltered.

For the magnetic field the transformed field is

\label{eqn:qmLecture5:600}
\begin{aligned}
\BB’
&= \BB.
\end{aligned}

\label{eqn:qmLecture5:620}
\begin{aligned}
\BE’
&=
– \PD{t}{\BA’} – \spacegrad \phi’ \\
&=
– \PD{t}{}\lr{\BA + \spacegrad \chi} – \spacegrad \lr{ \phi – \PD{t}{\chi}} \\
&=
– \PD{t}{\BA} – \spacegrad \phi \\
&=
\BE.
\end{aligned}

# References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

## Commutators of angular momentum and a central force Hamiltonian

September 30, 2015 phy1520 No comments , , , ,

In problem 1.17 of [1] we are to show that non-commuting operators that both commute with the Hamiltonian, have, in general, degenerate energy eigenvalues. It suggests considering $$L_x, L_z$$ and a central force Hamiltonian $$H = \Bp^2/2m + V(r)$$ as examples.

Let’s just demonstrate these commutators act as expected in these cases.

With $$\BL = \Bx \cross \Bp$$, we have

\label{eqn:angularMomentumAndCentralForceCommutators:20}
\begin{aligned}
L_x &= y p_z – z p_y \\
L_y &= z p_x – x p_z \\
L_z &= x p_y – y p_x.
\end{aligned}

The $$L_x, L_z$$ commutator is

\label{eqn:angularMomentumAndCentralForceCommutators:40}
\begin{aligned}
\antisymmetric{L_x}{L_z}
&=
\antisymmetric{y p_z – z p_y }{x p_y – y p_x} \\
&=
\antisymmetric{y p_z}{x p_y}
-\antisymmetric{y p_z}{y p_x}
-\antisymmetric{z p_y }{x p_y}
+\antisymmetric{z p_y }{y p_x} \\
&=
x p_z \antisymmetric{y}{p_y}
+ z p_x \antisymmetric{p_y }{y} \\
&=
i \Hbar \lr{ x p_z – z p_x } \\
&=
– i \Hbar L_y
\end{aligned}

cyclicly permuting the indexes shows that no pairs of different $$\BL$$ components commute. For $$L_y, L_x$$ that is

\label{eqn:angularMomentumAndCentralForceCommutators:60}
\begin{aligned}
\antisymmetric{L_y}{L_x}
&=
\antisymmetric{z p_x – x p_z }{y p_z – z p_y} \\
&=
\antisymmetric{z p_x}{y p_z}
-\antisymmetric{z p_x}{z p_y}
-\antisymmetric{x p_z }{y p_z}
+\antisymmetric{x p_z }{z p_y} \\
&=
y p_x \antisymmetric{z}{p_z}
+ x p_y \antisymmetric{p_z }{z} \\
&=
i \Hbar \lr{ y p_x – x p_y } \\
&=
– i \Hbar L_z,
\end{aligned}

and for $$L_z, L_y$$

\label{eqn:angularMomentumAndCentralForceCommutators:80}
\begin{aligned}
\antisymmetric{L_z}{L_y}
&=
\antisymmetric{x p_y – y p_x }{z p_x – x p_z} \\
&=
\antisymmetric{x p_y}{z p_x}
-\antisymmetric{x p_y}{x p_z}
-\antisymmetric{y p_x }{z p_x}
+\antisymmetric{y p_x }{x p_z} \\
&=
z p_y \antisymmetric{x}{p_x}
+ y p_z \antisymmetric{p_x }{x} \\
&=
i \Hbar \lr{ z p_y – y p_z } \\
&=
– i \Hbar L_x.
\end{aligned}

If these angular momentum components are also shown to commute with themselves (which they do), the commutator relations above can be summarized as

\label{eqn:angularMomentumAndCentralForceCommutators:100}
\antisymmetric{L_a}{L_b} = i \Hbar \epsilon_{a b c} L_c.

In the example to consider, we’ll have to consider the commutators with $$\Bp^2$$ and $$V(r)$$. Picking any one component of $$\BL$$ is sufficent due to the symmetries of the problem. For example

\label{eqn:angularMomentumAndCentralForceCommutators:120}
\begin{aligned}
\antisymmetric{L_x}{\Bp^2}
&=
\antisymmetric{y p_z – z p_y}{p_x^2 + p_y^2 + p_z^2} \\
&=
\antisymmetric{y p_z}{{p_x^2} + p_y^2 + {p_z^2}}
-\antisymmetric{z p_y}{{p_x^2} + {p_y^2} + p_z^2} \\
&=
p_z \antisymmetric{y}{p_y^2}
-p_y \antisymmetric{z}{p_z^2} \\
&=
p_z 2 i \Hbar p_y
2 i \Hbar p_y
-p_y 2 i \Hbar p_z \\
&=
0.
\end{aligned}

How about the commutator of $$\BL$$ with the potential? It is sufficient to consider one component again, for example

\label{eqn:angularMomentumAndCentralForceCommutators:140}
\begin{aligned}
\antisymmetric{L_x}{V}
&=
\antisymmetric{y p_z – z p_y}{V} \\
&=
y \antisymmetric{p_z}{V} – z \antisymmetric{p_y}{V} \\
&=
-i \Hbar y \PD{z}{V(r)} + i \Hbar z \PD{y}{V(r)} \\
&=
-i \Hbar y \PD{r}{V}\PD{z}{r} + i \Hbar z \PD{r}{V}\PD{y}{r} \\
&=
-i \Hbar y \PD{r}{V} \frac{z}{r} + i \Hbar z \PD{r}{V}\frac{y}{r} \\
&=
0.
\end{aligned}

We’ve shown that all the components of $$\BL$$ commute with a central force Hamiltonian, and each different component of $$\BL$$ do not commute.

The next step will be figuring out how to use this to show that there are energy degeneracies.

# References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

## Question: Quantum Virial Theorem ([1] pr. 2.7)

Consider a particle with Hamiltonian

\label{eqn:qmVirialTheorem:20}
H = \frac{\Bp^2}{2 m} + V(\Bx),

By calculating the time evolution of $$\antisymmetric{\Bx \cdot \Bp}{H}$$, identify the quantum virial theorem and show the conditions where it is satisfied.

\label{eqn:qmVirialTheorem:40}
\begin{aligned}
\antisymmetric{\Bx \cdot \Bp}{H}
&=
\inv{2 m} \antisymmetric{\Bx \cdot \Bp}{\Bp^2} + \antisymmetric{\Bx \cdot \Bp}{V(\Bx)} \\
&=
\inv{2 m} \lr{ x_r p_r \Bp^2 – \Bp^2 x_r p_r}
+
\lr{ x_r p_r V(\Bx) – V(\Bx) x_r p_r } \\
&=
\inv{2 m} \antisymmetric{ x_r }{\Bp^2} p_r
+
x_r \antisymmetric{ p_r}{ V(\Bx)},
\end{aligned}

Evaluating those commutators separately, gives

\label{eqn:qmVirialTheorem:60}
\begin{aligned}
\antisymmetric{ x_r }{\Bp^2}
&=
\antisymmetric{ x_r }{p_r^2}\qquad \text{no sum} \\
&=
2 i \Hbar p_r,
\end{aligned}

and

\label{eqn:qmVirialTheorem:80}
\antisymmetric{ p_r}{ V(\Bx)}
= -i \Hbar \PD{x_r}{V(\Bx)},

so
\label{eqn:qmVirialTheorem:100}
\begin{aligned}
\ddt{}\lr{\Bx \cdot \Bp}
&=
\inv{i \Hbar}
\antisymmetric{\Bx \cdot \Bp}{H} \\
&=
\inv{2 m} 2 p_r p_r – x_r \PD{x_r}{V(\Bx)} \\
&=
\frac{\Bp^2}{m} – \Bx \cdot \spacegrad V(\Bx).
\end{aligned}

Taking expectation values, assuming that the states are independent of time, we have

\label{eqn:qmVirialTheorem:120}
\begin{aligned}
0
&= \ddt{} \expectation{ \Bx \cdot \Bp } \\
&= \expectation{\frac{\Bp^2}{m}} – \expectation{\Bx \cdot \spacegrad V(\Bx)}.
\end{aligned}

Note that taking the expectation with respect to stationary states was required to reverse the order of the time derivative with the expectation operation.

The right hand side is the quantum equivalent of the virial theorem, relating the average kinetic energy to the potential

\label{eqn:qmVirialTheorem:140}
2 \expectation{T} = \expectation{\Bx \cdot \spacegrad V(\Bx)}

# References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

## A symmetric real Hamiltonian

August 31, 2015 phy1520 No comments , ,

## Question: A symmetric real Hamiltonian ([1] pr. 2.9)

Find the time evolution for the state $$\ket{a’}$$ for a Hamiltian of the form

\label{eqn:symmetricHamiltonianEvolution:20}
H = \delta \lr{ \ket{a’}\bra{a’} + \ket{a”}\bra{a”} }

This Hamiltonian has the matrix representation

\label{eqn:symmetricHamiltonianEvolution:40}
H =
\begin{bmatrix}
0 & \delta \\
\delta & 0
\end{bmatrix},

which has a characteristic equation of

\label{eqn:symmetricHamiltonianEvolution:60}
\lambda^2 -\delta^2 = 0,

so the energy eigenvalues are $$\pm \delta$$.

The diagonal basis states are respectively

\label{eqn:symmetricHamiltonianEvolution:80}
\ket{\pm\delta} =
\inv{\sqrt{2}}
\begin{bmatrix}
\pm 1 \\
1
\end{bmatrix}.

The time evolution operator is

\label{eqn:symmetricHamiltonianEvolution:100}
\begin{aligned}
U
&= e^{-i H t/\Hbar} \\
&=
e^{-i \delta t/\Hbar} \ket{+\delta}\bra{+\delta}
+ e^{i \delta t/\Hbar} \ket{-\delta}\bra{-\delta} \\
&=
\frac{e^{-i \delta t/\Hbar} }{2}
\begin{bmatrix}
1 & 1
\end{bmatrix}
\begin{bmatrix}
1 \\
1
\end{bmatrix}
+ \frac{e^{i \delta t/\Hbar} }{2}
\begin{bmatrix}
-1 & 1
\end{bmatrix}
\begin{bmatrix}
-1 \\
1
\end{bmatrix} \\
&=
\frac{e^{-i \delta t/\Hbar} }{2}
\begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix}
+\frac{e^{i \delta t/\Hbar} }{2}
\begin{bmatrix}
1 & -1 \\
-1 & 1
\end{bmatrix} \\
&=
\begin{bmatrix}
\cos(\delta t/\Hbar) & -i\sin(\delta t/\Hbar) \\
-i \sin(\delta t/\Hbar) & \cos(\delta t/\Hbar) \\
\end{bmatrix}.
\end{aligned}

The desired time evolution in the original basis is

\label{eqn:symmetricHamiltonianEvolution:140}
\begin{aligned}
\ket{a’, t}
&=
e^{-i H t/\Hbar}
\ket{a’, 0} \\
&=
\begin{bmatrix}
\cos(\delta t/\Hbar) & -i\sin(\delta t/\Hbar) \\
-i \sin(\delta t/\Hbar) & \cos(\delta t/\Hbar) \\
\end{bmatrix}
\begin{bmatrix}
1 \\
0
\end{bmatrix} \\
&=
\begin{bmatrix}
\cos(\delta t/\Hbar) \\
-i \sin(\delta t/\Hbar)
\end{bmatrix} \\
&=
\cos(\delta t/\Hbar) \ket{a’,0} -i \sin(\delta t/\Hbar) \ket{a”,0}.
\end{aligned}

This evolution has the same structure as left circularly polarized light.

The probability of finding the system in state $$\ket{a”}$$ given an initial state of $$\ket{a’,0}$$ is

\label{eqn:symmetricHamiltonianEvolution:160}
P
=
\Abs{\braket{a”}{a’,t}}^2
=
\sin^2 \lr{ \delta t/\Hbar }.

# References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

## Quantum SHO ladder operators as a diagonal change of basis for the Heisenberg EOMs

Many authors pull the definitions of the raising and lowering (or ladder) operators out of their butt with no attempt at motivation. This is pointed out nicely in [1] by Eli along with one justification based on factoring the Hamiltonian.

In [2] is a small exception to the usual presentation. In that text, these operators are defined as usual with no motivation. However, after the utility of these operators has been shown, the raising and lowering operators show up in a context that does provide that missing motivation as a side effect.
It doesn’t look like the author was trying to provide a motivation, but it can be interpreted that way.

When seeking the time evolution of Heisenberg-picture position and momentum operators, we will see that those solutions can be trivially expressed using the raising and lowering operators. No special tools nor black magic is required to find the structure of these operators. Unfortunately, we must first switch to both the Heisenberg picture representation of the position and momentum operators, and also employ the Heisenberg equations of motion. Neither of these last two fit into standard narrative of most introductory quantum mechanics treatments. We will also see that these raising and lowering “operators” could also be introduced in classical mechanics, provided we were attempting to solve the SHO system using the Hamiltonian equations of motion.

I’ll outline this route to finding the structure of the ladder operators below. Because these are encountered trying to solve the time evolution problem, I’ll first show a simpler way to solve that problem. Because that simpler method depends a bit on lucky observation and is somewhat unstructured, I’ll then outline a more structured procedure that leads to the ladder operators directly, also providing the solution to the time evolution problem as a side effect.

The starting point is the Heisenberg equations of motion. For a time independent Hamiltonian $$H$$, and a Heisenberg operator $$A^{(H)}$$, those equations are

\label{eqn:harmonicOscDiagonalize:20}
\ddt{A^{(H)}} = \inv{i \Hbar} \antisymmetric{A^{(H)}}{H}.

Here the Heisenberg operator $$A^{(H)}$$ is related to the Schrodinger operator $$A^{(S)}$$ by

\label{eqn:harmonicOscDiagonalize:60}
A^{(H)} = U^\dagger A^{(S)} U,

where $$U$$ is the time evolution operator. For this discussion, we need only know that $$U$$ commutes with $$H$$, and do not need to know the specific structure of that operator. In particular, the Heisenberg equations of motion take the form

\label{eqn:harmonicOscDiagonalize:80}
\begin{aligned}
\ddt{A^{(H)}}
&= \inv{i \Hbar}
\antisymmetric{A^{(H)}}{H} \\
&= \inv{i \Hbar}
\antisymmetric{U^\dagger A^{(S)} U}{H} \\
&= \inv{i \Hbar}
\lr{
U^\dagger A^{(S)} U H
– H U^\dagger A^{(S)} U
} \\
&= \inv{i \Hbar}
\lr{
U^\dagger A^{(S)} H U
– U^\dagger H A^{(S)} U
} \\
&= \inv{i \Hbar} U^\dagger \antisymmetric{A^{(S)}}{H} U.
\end{aligned}

The Hamiltonian for the harmonic oscillator, with Schrodinger-picture position and momentum operators $$x, p$$ is

\label{eqn:harmonicOscDiagonalize:40}
H = \frac{p^2}{2m} + \inv{2} m \omega^2 x^2,

so the equations of motions are

\label{eqn:harmonicOscDiagonalize:100}
\begin{aligned}
\ddt{x^{(H)}}
&= \inv{i \Hbar} U^\dagger \antisymmetric{x}{H} U \\
&= \inv{i \Hbar} U^\dagger \antisymmetric{x}{\frac{p^2}{2m}} U \\
&= \inv{2 m i \Hbar} U^\dagger \lr{ i \Hbar \PD{p}{p^2} } U \\
&= \inv{m } U^\dagger p U \\
&= \inv{m } p^{(H)},
\end{aligned}

and
\label{eqn:harmonicOscDiagonalize:120}
\begin{aligned}
\ddt{p^{(H)}}
&= \inv{i \Hbar} U^\dagger \antisymmetric{p}{H} U \\
&= \inv{i \Hbar} U^\dagger \antisymmetric{p}{\inv{2} m \omega^2 x^2 } U \\
&= \frac{m \omega^2}{2 i \Hbar} U^\dagger \lr{ -i \Hbar \PD{x}{x^2} } U \\
&= -m \omega^2 U^\dagger x U \\
&= -m \omega^2 x^{(H)}.
\end{aligned}

In the Heisenberg picture the equations of motion are precisely those of classical Hamiltonian mechanics, except that we are dealing with operators instead of scalars

\label{eqn:harmonicOscDiagonalize:140}
\begin{aligned}
\ddt{p^{(H)}} &= -m \omega^2 x^{(H)} \\
\ddt{x^{(H)}} &= \inv{m } p^{(H)}.
\end{aligned}

In the text the ladder operators are used to simplify the solution of these coupled equations, since they can decouple them. That’s not really required since we can solve them directly in matrix form with little work

\label{eqn:harmonicOscDiagonalize:160}
\ddt{}
\begin{bmatrix}
p^{(H)} \\
x^{(H)}
\end{bmatrix}
=
\begin{bmatrix}
0 & -m \omega^2 \\
\inv{m} & 0
\end{bmatrix}
\begin{bmatrix}
p^{(H)} \\
x^{(H)}
\end{bmatrix},

or, with length scaled variables

\label{eqn:harmonicOscDiagonalize:180}
\begin{aligned}
\ddt{}
\begin{bmatrix}
\frac{p^{(H)}}{m \omega} \\
x^{(H)}
\end{bmatrix}
&=
\begin{bmatrix}
0 & -\omega \\
\omega & 0
\end{bmatrix}
\begin{bmatrix}
\frac{p^{(H)}}{m \omega} \\
x^{(H)}
\end{bmatrix} \\
&=
-i \omega
\begin{bmatrix} 0 & -i \\ i & 0 \\ \end{bmatrix}
\begin{bmatrix}
\frac{p^{(H)}}{m \omega} \\
x^{(H)}
\end{bmatrix} \\
&=
-i \omega
\sigma_y
\begin{bmatrix}
\frac{p^{(H)}}{m \omega} \\
x^{(H)}
\end{bmatrix}.
\end{aligned}

Writing $$y = \begin{bmatrix} \frac{p^{(H)}}{m \omega} \\ x^{(H)} \end{bmatrix}$$, the solution can then be written immediately as

\label{eqn:harmonicOscDiagonalize:200}
\begin{aligned}
y(t)
&=
\exp\lr{ -i \omega \sigma_y t } y(0) \\
&=
\lr{ \cos \lr{ \omega t } I – i \sigma_y \sin\lr{ \omega t } } y(0) \\
&=
\begin{bmatrix}
\cos\lr{ \omega t } & \sin\lr{ \omega t } \\
-\sin\lr{ \omega t } & \cos\lr{ \omega t }
\end{bmatrix}
y(0),
\end{aligned}

or

\label{eqn:harmonicOscDiagonalize:220}
\begin{aligned}
\frac{p^{(H)}(t)}{m \omega} &= \cos\lr{ \omega t } \frac{p^{(H)}(0)}{m \omega} + \sin\lr{ \omega t } x^{(H)}(0) \\
x^{(H)}(t) &= -\sin\lr{ \omega t } \frac{p^{(H)}(0)}{m \omega} + \cos\lr{ \omega t } x^{(H)}(0).
\end{aligned}

This solution depends on being lucky enough to recognize that the matrix has a Pauli matrix as a factor (which squares to unity, and allows the exponential to be evaluated easily.)

If we hadn’t been that observant, then the first tool we’d have used instead would have been to diagonalize the matrix. For such diagonalization, it’s natural to work in completely dimensionless variables. Such a non-dimensionalisation can be had by defining

\label{eqn:harmonicOscDiagonalize:240}
x_0 = \sqrt{\frac{\Hbar}{m \omega}},

and dividing the working (operator) variables through by those values. Let $$z = \inv{x_0} y$$, and $$\tau = \omega t$$ so that the equations of motion are

\label{eqn:harmonicOscDiagonalize:260}
\frac{dz}{d\tau}
=
\begin{bmatrix}
0 & -1 \\
1 & 0
\end{bmatrix}
z.

This matrix can be diagonalized as

\label{eqn:harmonicOscDiagonalize:280}
A
=
\begin{bmatrix}
0 & -1 \\
1 & 0
\end{bmatrix}
=
V
\begin{bmatrix}
i & 0 \\
0 & -i
\end{bmatrix}
V^{-1},

where

\label{eqn:harmonicOscDiagonalize:300}
V =
\inv{\sqrt{2}}
\begin{bmatrix}
i & -i \\
1 & 1
\end{bmatrix}.

The equations of motion can now be written

\label{eqn:harmonicOscDiagonalize:320}
\frac{d}{d\tau} \lr{ V^{-1} z } =
\begin{bmatrix}
i & 0 \\
0 & -i
\end{bmatrix}
\lr{ V^{-1} z }.

This final change of variables $$V^{-1} z$$ decouples the system as desired. Expanding that gives

\label{eqn:harmonicOscDiagonalize:340}
\begin{aligned}
V^{-1} z
&=
\inv{\sqrt{2}}
\begin{bmatrix}
-i & 1 \\
i & 1
\end{bmatrix}
\begin{bmatrix}
\frac{p^{(H)}}{x_0 m \omega} \\
\frac{x^{(H)}}{x_0}
\end{bmatrix} \\
&=
\inv{\sqrt{2} x_0}
\begin{bmatrix}
-i \frac{p^{(H)}}{m \omega} + x^{(H)} \\
i \frac{p^{(H)}}{m \omega} + x^{(H)}
\end{bmatrix} \\
&=
\begin{bmatrix}
a^\dagger \\
a
\end{bmatrix},
\end{aligned}

where
\label{eqn:harmonicOscDiagonalize:n}
\begin{aligned}
a^\dagger &= \sqrt{\frac{m \omega}{2 \Hbar}} \lr{ -i \frac{p^{(H)}}{m \omega} + x^{(H)} } \\
a &= \sqrt{\frac{m \omega}{2 \Hbar}} \lr{ i \frac{p^{(H)}}{m \omega} + x^{(H)} }.
\end{aligned}

Lo and behold, we have the standard form of the raising and lowering operators, and can write the system equations as

\label{eqn:harmonicOscDiagonalize:360}
\begin{aligned}
\ddt{a^\dagger} &= i \omega a^\dagger \\
\ddt{a} &= -i \omega a.
\end{aligned}

It is actually a bit fluky that this matched exactly, since we could have chosen eigenvectors that differ by constant phase factors, like

\label{eqn:harmonicOscDiagonalize:380}
V = \inv{\sqrt{2}}
\begin{bmatrix}
i e^{i\phi} & -i e^{i \psi} \\
1 e^{i\phi} & e^{i \psi}
\end{bmatrix},

so

\label{eqn:harmonicOscDiagonalize:341}
\begin{aligned}
V^{-1} z
&=
\frac{e^{-i(\phi + \psi)}}{\sqrt{2}}
\begin{bmatrix}
-i e^{i\psi} & e^{i \psi} \\
i e^{i\phi} & e^{i \phi}
\end{bmatrix}
\begin{bmatrix}
\frac{p^{(H)}}{x_0 m \omega} \\
\frac{x^{(H)}}{x_0}
\end{bmatrix} \\
&=
\inv{\sqrt{2} x_0}
\begin{bmatrix}
-i e^{i\phi} \frac{p^{(H)}}{m \omega} + e^{i\phi} x^{(H)} \\
i e^{i\psi} \frac{p^{(H)}}{m \omega} + e^{i\psi} x^{(H)}
\end{bmatrix} \\
&=
\begin{bmatrix}
e^{i\phi} a^\dagger \\
e^{i\psi} a
\end{bmatrix}.
\end{aligned}

To make the resulting pairs of operators Hermitian conjugates, we’d want to constrain those constant phase factors by setting $$\phi = -\psi$$. If we were only interested in solving the time evolution problem no such additional constraints are required.

The raising and lowering operators are seen to naturally occur when seeking the solution of the Heisenberg equations of motion. This is found using the standard technique of non-dimensionalisation and then seeking a change of basis that diagonalizes the system matrix. Because the Heisenberg equations of motion are identical to the classical Hamiltonian equations of motion in this case, what we call the raising and lowering operators in quantum mechanics could also be utilized in the classical simple harmonic oscillator problem. However, in a classical context we wouldn’t have a justification to call this more than a change of basis.

# References

[1] Eli Lansey. The Quantum Harmonic Oscillator Ladder Operators, 2009. URL http://behindtheguesses.blogspot.ca/2009/03/quantum-harmonic-oscillator-ladder.html. [Online; accessed 18-August-2015].

[2] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics, chapter {Time Development of the Oscillator}. Pearson Higher Ed, 2014.

## Question: Heisenberg picture position commutator ([1] pr. 2.5)

Evaluate

\label{eqn:positionCommutator:20}
\antisymmetric{x(t)}{x(0)},

for a Heisenberg picture operator $$x(t)$$ for a free particle.

The free particle Hamiltonian is

\label{eqn:positionCommutator:40}
H = \frac{p^2}{2m},

so the time evolution operator is

\label{eqn:positionCommutator:60}
U(t) = e^{-i p^2 t/(2 m \Hbar)}.

The Heisenberg picture position operator is

\label{eqn:positionCommutator:80}
\begin{aligned}
x^\textrm{H}
&= U^\dagger x U \\
&= e^{i p^2 t/(2 m \Hbar)} x e^{-i p^2 t/(2 m \Hbar)} \\
&= \sum_{k = 0}^\infty \inv{k!} \lr{ \frac{i p^2 t}{2 m \Hbar} }^k
x
e^{-i p^2 t/(2 m \Hbar)} \\
&= \sum_{k = 0}^\infty \inv{k!} \lr{ \frac{i t}{2 m \Hbar} }^k p^{2k} x
e^{-i p^2 t/(2 m \Hbar)} \\
&=
\sum_{k = 0}^\infty \inv{k!} \lr{ \frac{i t}{2 m \Hbar} }^k \lr{ \antisymmetric{p^{2k}}{x} + x p^{2k} }
e^{-i p^2 t/(2 m \Hbar)} \\
&= x +
\sum_{k = 0}^\infty \inv{k!} \lr{ \frac{i t}{2 m \Hbar} }^k \antisymmetric{p^{2k}}{x}
e^{-i p^2 t/(2 m \Hbar)} \\
&= x +
\sum_{k = 0}^\infty \inv{k!} \lr{ \frac{i t}{2 m \Hbar} }^k \lr{ -i \Hbar \PD{p}{p^{2k}} }
e^{-i p^2 t/(2 m \Hbar)} \\
&= x +
\sum_{k = 0}^\infty \inv{k!} \lr{ \frac{i t}{2 m \Hbar} }^k \lr{ -i \Hbar 2 k p^{2 k -1} }
e^{-i p^2 t/(2 m \Hbar)} \\
&= x +
-2 i \Hbar p \frac{i t}{2 m \Hbar} \sum_{k = 1}^\infty \inv{(k-1)!} \lr{ \frac{i t}{2 m \Hbar} }^{k-1} p^{2(k – 1)}
e^{-i p^2 t/(2 m \Hbar)} \\
&= x + t \frac{p}{m}.
\end{aligned}

This has the structure of a classical free particle $$x(t) = x + v t$$, but in this case $$x,p$$ are operators.

The evolved position commutator is
\label{eqn:positionCommutator:100}
\begin{aligned}
\antisymmetric{x(t)}{x(0)}
&=
\antisymmetric{x + t p/m}{x} \\
&=
\frac{t}{m} \antisymmetric{p}{x} \\
&=
-i \Hbar \frac{t}{m}.
\end{aligned}

Compare this to the classical Poisson bracket
\label{eqn:positionCommutator:120}
\antisymmetric{x(t)}{x(0)}_{\textrm{classical}}
=
\PD{x}{}\lr{x + p t/m} \PD{p}{x} – \PD{p}{}\lr{x + p t/m} \PD{x}{x}
=
– \frac{t}{m}.

This has the expected relation $$\antisymmetric{x(t)}{x(0)} = i \Hbar \antisymmetric{x(t)}{x(0)}_{\textrm{classical}}$$.

# References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

## Question: Heisenberg picture spin precession ([1] pr. 2.1)

For the spin Hamiltonian

\label{eqn:heisenbergSpinPrecession:20}
H = -\frac{e B}{m c} S_z = \omega S_z,

express and solve the Heisenberg equations of motion for $$S_x(t), S_y(t)$$, and $$S_z(t)$$.

The equations of motion are of the form

\label{eqn:heisenbergSpinPrecession:40}
\begin{aligned}
\frac{dS_i^\textrm{H}}{dt}
&= \inv{i \Hbar} \antisymmetric{S_i^\textrm{H}}{H} \\
&= \inv{i \Hbar} \antisymmetric{U^\dagger S_i U}{H} \\
&= \inv{i \Hbar} \lr{U^\dagger S_i U H – H U^\dagger S_i U } \\
&= \inv{i \Hbar} U^\dagger \lr{ S_i H – H S_i } U \\
&= \frac{\omega}{i \Hbar} U^\dagger \antisymmetric{ S_i}{S_z } U.
\end{aligned}

These are

\label{eqn:heisenbergSpinPrecession:60}
\begin{aligned}
\frac{dS_x^\textrm{H}}{dt} &= -\omega U^\dagger S_y U \\
\frac{dS_y^\textrm{H}}{dt} &= \omega U^\dagger S_x U \\
\frac{dS_z^\textrm{H}}{dt} &= 0.
\end{aligned}

To completely specify these equations, we need to expand $$U(t)$$, which is

\label{eqn:heisenbergSpinPrecession:80}
\begin{aligned}
U(t)
&= e^{-i H t /\Hbar} \\
&= e^{-i \omega S_z t /\Hbar} \\
&= e^{-i \omega \sigma_z t /2} \\
&= \cos\lr{ \omega t/2 } -i \sigma_z \sin\lr{ \omega t/2 } \\
&=
\begin{bmatrix}
\cos\lr{ \omega t/2 } -i \sin\lr{ \omega t/2 } & 0 \\
0 & \cos\lr{ \omega t/2 } + i \sin\lr{ \omega t/2 }
\end{bmatrix} \\
&=
\begin{bmatrix}
e^{-i\omega t/2} & 0 \\
0 & e^{i\omega t/2}
\end{bmatrix}.
\end{aligned}

The equations of motion can now be written out in full. To do so seems a bit silly since we also know that $$S_x^\textrm{H} = U^\dagger S_x U, S_y^\textrm{H} U^\dagger S_x U$$. However, if that is temporarily forgotten, we can show that the Heisenberg equations of motion can be solved for these too.

\label{eqn:heisenbergSpinPrecession:100}
\begin{aligned}
U^\dagger S_x U
&=
\frac{\Hbar}{2}
\begin{bmatrix}
e^{i\omega t/2} & 0 \\
0 & e^{-i\omega t/2}
\end{bmatrix}
\begin{bmatrix} 0 & 1 \\ 1 & 0 \\ \end{bmatrix}
\begin{bmatrix}
e^{-i\omega t/2} & 0 \\
0 & e^{i\omega t/2}
\end{bmatrix} \\
&=
\frac{\Hbar}{2}
\begin{bmatrix}
0 & e^{i\omega t/2} \\
e^{-i\omega t/2} & 0
\end{bmatrix}
\begin{bmatrix}
e^{-i\omega t/2} & 0 \\
0 & e^{i\omega t/2}
\end{bmatrix} \\
&=
\frac{\Hbar}{2}
\begin{bmatrix}
0 & e^{i\omega t} \\
e^{-i\omega t} & 0
\end{bmatrix},
\end{aligned}

and
\label{eqn:heisenbergSpinPrecession:120}
\begin{aligned}
U^\dagger S_y U
&=
\frac{\Hbar}{2}
\begin{bmatrix}
e^{i\omega t/2} & 0 \\
0 & e^{-i\omega t/2}
\end{bmatrix}
\begin{bmatrix} 0 & -i \\ i & 0 \\ \end{bmatrix}
\begin{bmatrix}
e^{-i\omega t/2} & 0 \\
0 & e^{i\omega t/2}
\end{bmatrix} \\
&=
\frac{i\Hbar}{2}
\begin{bmatrix}
0 & -e^{i\omega t/2} \\
e^{-i\omega t/2} & 0
\end{bmatrix}
\begin{bmatrix}
e^{-i\omega t/2} & 0 \\
0 & e^{i\omega t/2}
\end{bmatrix} \\
&=
\frac{i \Hbar}{2}
\begin{bmatrix}
0 & -e^{i\omega t} \\
e^{-i\omega t} & 0
\end{bmatrix}.
\end{aligned}

The equations of motion are now fully specified

\label{eqn:heisenbergSpinPrecession:140}
\begin{aligned}
\frac{dS_x^\textrm{H}}{dt} &=
-\frac{i \Hbar \omega}{2}
\begin{bmatrix}
0 & -e^{i\omega t} \\
e^{-i\omega t} & 0
\end{bmatrix} \\
\frac{dS_y^\textrm{H}}{dt} &=
\frac{\Hbar \omega}{2}
\begin{bmatrix}
0 & e^{i\omega t} \\
e^{-i\omega t} & 0
\end{bmatrix} \\
\frac{dS_z^\textrm{H}}{dt} &= 0.
\end{aligned}

Integration gives

\label{eqn:heisenbergSpinPrecession:160}
\begin{aligned}
S_x^\textrm{H} &=
\frac{\Hbar}{2}
\begin{bmatrix}
0 & e^{i\omega t} \\
e^{-i\omega t} & 0
\end{bmatrix} + C \\
S_y^\textrm{H} &=
\frac{\Hbar}{2}
\begin{bmatrix}
0 & -i e^{i\omega t} \\
i e^{-i\omega t} & 0
\end{bmatrix} + C \\
S_z^\textrm{H} &= C.
\end{aligned}

The integration constants are fixed by the boundary condition $$S_i^\textrm{H}(0) = S_i$$, so

\label{eqn:heisenbergSpinPrecession:180}
\begin{aligned}
S_x^\textrm{H} &=
\frac{\Hbar}{2}
\begin{bmatrix}
0 & e^{i\omega t} \\
e^{-i\omega t} & 0
\end{bmatrix} \\
S_y^\textrm{H} &=
\frac{i \Hbar}{2}
\begin{bmatrix}
0 & – e^{i\omega t} \\
e^{-i\omega t} & 0
\end{bmatrix} \\
S_z^\textrm{H} &= S_z.
\end{aligned}

Observe that these integrated values $$S_x^\textrm{H}, S_y^\textrm{H}$$ match \ref{eqn:heisenbergSpinPrecession:100}, and \ref{eqn:heisenbergSpinPrecession:120} as expected.

# References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

## Question: Dynamics of non-Hermitian Hamiltonian ([1] pr. 2.2)

Revisiting an earlier Hamiltonian, but assuming it was entered incorrectly as

\label{eqn:dynamicsNonHermitian:20}
H = H_{11} \ket{1}\bra{1}
+ H_{22} \ket{2}\bra{2}
+ H_{12} \ket{1}\bra{2}.

What principle is now violated? Illustrate your point explicitly by attempting to solve the most generaqtl time-dependent problem using an illegal Hamiltonian of this kind. You may assume that $$H_{11} = H_{22}$$ for simplicity.

In matrix form this Hamiltonian is

\label{eqn:dynamicsNonHermitian:40}
\begin{aligned}
H
&=
\begin{bmatrix}
\bra{1} H \ket{1} & \bra{1} H \ket{2} \\
\bra{2} H \ket{1} & \bra{2} H \ket{2} \\
\end{bmatrix} \\
&=
\begin{bmatrix}
H_{11} & H_{12} \\
0 & H_{22} \\
\end{bmatrix}.
\end{aligned}

This is not a Hermitian operator. What is the physical implication of this non-Hermicity? Consider the simpler case where $$H_{11} = H_{22}$$. Such a Hamiltonian has the form

\label{eqn:dynamicsNonHermitian:60}
H =
\begin{bmatrix}
a & b \\
0 & a
\end{bmatrix}.

This has only one unique eigenvector ( $$(1,0)$$, but we can still solve the time evolution equation

\label{eqn:dynamicsNonHermitian:80}
i \Hbar \PD{t}{U} = H U,

since for constant $$H$$, we have

\label{eqn:dynamicsNonHermitian:100}
U = e^{-i H t/\Hbar}.

To exponentiate, note that we have

\label{eqn:dynamicsNonHermitian:120}
{\begin{bmatrix}
a & b \\
0 & a
\end{bmatrix}}^n
=
\begin{bmatrix}
a^n & n a^{n-1} b \\
0 & a^n
\end{bmatrix}.

To prove the induction, the $$n = 2$$ case follows easily

\label{eqn:dynamicsNonHermitian:140}
\begin{bmatrix}
a & b \\
0 & a
\end{bmatrix}
\begin{bmatrix}
a & b \\
0 & a
\end{bmatrix}
=
\begin{bmatrix}
a^2 & 2 a b \\
0 & a^2
\end{bmatrix},

as does the general case

\label{eqn:dynamicsNonHermitian:160}
\begin{bmatrix}
a^n & n a^{n-1} b \\
0 & a^n
\end{bmatrix}
\begin{bmatrix}
a & b \\
0 & a
\end{bmatrix}
=
\begin{bmatrix}
a^{n+1} & (n +1 ) a^{n} b \\
0 & a^{n+1}
\end{bmatrix}.

The exponential sum is thus
\label{eqn:dynamicsNonHermitian:180}
e^{H \tau}
=
\begin{bmatrix}
e^{a \tau} & 0 + \frac{b \tau}{1!} + \frac{2 a b \tau^2}{2!} + \frac{3 a^2 b \tau^3}{3!} + \cdots \\
0 & e^{a \tau}
\end{bmatrix}.

That sum simplifies to

\label{eqn:dynamicsNonHermitian:200}
\frac{b \tau}{0!} + \frac{a b \tau^2}{1!} + \frac{a^2 b \tau^3}{2!} + \cdots \\
=
b \tau \lr{ 1 + \frac{a \tau}{1!} + \frac{(a \tau)^2}{2!} + \cdots }
=
b \tau e^{a \tau}.

The exponential is thus
\label{eqn:dynamicsNonHermitian:220}
e^{H \tau}
=
\begin{bmatrix}
e^{a\tau} & b \tau e^{a\tau} \\
0 & e^{a\tau}
\end{bmatrix}
=
\begin{bmatrix}
1 & b \tau \\
0 & 1
\end{bmatrix}
e^{a\tau}.

In particular

\label{eqn:dynamicsNonHermitian:240}
U = e^{-i H t/\Hbar} =
\begin{bmatrix}
1 & -i b t/\Hbar \\
0 & 1
\end{bmatrix}
e^{-i a t /\Hbar }.

We can verify that this is a solution to \ref{eqn:dynamicsNonHermitian:80}. The left hand side is

\label{eqn:dynamicsNonHermitian:260}
\begin{aligned}
i \Hbar \PD{t}{U}
&=
i \Hbar
\begin{bmatrix}
-i a/\Hbar & -i b /\Hbar + (-i b t/\Hbar)(-i a/\Hbar) \\
0 & -i a /\Hbar
\end{bmatrix}
e^{-i a t /\Hbar } \\
&=
\begin{bmatrix}
a & b – i a b t/\Hbar \\
0 & a
\end{bmatrix}
e^{-i a t /\Hbar },
\end{aligned}

and for the right hand side
\label{eqn:dynamicsNonHermitian:280}
\begin{aligned}
H U
&=
\begin{bmatrix}
a & b \\
0 & a
\end{bmatrix}
\begin{bmatrix}
1 & -i b t/\Hbar \\
0 & 1
\end{bmatrix}
e^{-i a t /\Hbar } \\
&=
\begin{bmatrix}
a & b – i a b t/\Hbar \\
0 & a
\end{bmatrix}
e^{-i a t /\Hbar } \\
&=
i \Hbar \PD{t}{U}.
\end{aligned}

While the Schr\”{o}dinger is satisfied, we don’t have the unitary invertion physical property that is desired for the time evolution operator $$U$$. Namely

\label{eqn:dynamicsNonHermitian:300}
\begin{aligned}
U^\dagger U
&=
\begin{bmatrix}
1 & 0 \\
i b t/\Hbar & 1
\end{bmatrix}
e^{i a t /\Hbar }
\begin{bmatrix}
1 & -i b t/\Hbar \\
0 & 1
\end{bmatrix}
e^{-i a t /\Hbar } \\
&=
\begin{bmatrix}
1 & -i b t/\Hbar \\
i b t/\Hbar & (b t)^2/\Hbar^2
\end{bmatrix} \\
&\ne I.
\end{aligned}

We required $$U^\dagger U = I$$ for the time evolution operator, but don’t have that property for this non-Hermitian Hamiltonian.

# References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.