## PHY2403H Quantum Field Theory. Lecture 6: Canonical quantization, Simple Harmonic Oscillators, Symmetries. Taught by Prof. Erich Poppitz

### DISCLAIMER: Very rough notes from class, with some additional side notes (QM SHO review, …).

These are notes for the UofT course PHY2403H, Quantum Field Theory I, taught by Prof. Erich Poppitz fall 2018.

## Quantization of Field Theory

We are engaging in the “canonical” or Hamiltonian method of quantization. It is also possible to quantize using path integrals, but it is hard to prove that operators are unitary doing so. In fact, the mechanism used to show unitarity from path integrals is often to find the Lagrangian and show that there is a Hilbert space (i.e. using canonical quantization). Canonical quantization essentially demands that the fields obey a commutator relation of the following form
\label{eqn:qftLecture6:20}
\antisymmetric{\pi(\Bx, t)}{\phi(\By, t)} = -i \delta^3(\Bx – \By).

We assumed that the quantized fields obey the Hamiltonian relations
\label{eqn:qftLecture6:160}
\begin{aligned}
\ddt{\phi} &= i \antisymmetric{H}{\phi} \\
\ddt{\pi} &= i \antisymmetric{H}{\pi}.
\end{aligned}

We were working with the Hamiltonian density
\label{eqn:qftLecture6:40}
\mathcal{H} =
\inv{2} (\pi(\Bx, t))^2
+
+
\frac{m^2}{2} \phi^2
+
\frac{\lambda}{4} \phi^4,

which included a mass term $$m$$ and a potential term ($$\lambda$$). We will expand all quantities in Taylor series in $$\lambda$$ assuming they have a structure such as
\label{eqn:qftLecture6:180}
\begin{aligned}
f(\lambda) =
c_0 \lambda^0
+ c_1 \lambda^1
+ c_2 \lambda^2
+ c_3 \lambda^3
+ \cdots
\end{aligned}

We will stop this \underline{perturbation theory} approach at $$O(\lambda^2)$$, and will ignore functions such as $$e^{-1/\lambda}$$.

Within perturbation theory, to leaving order, set $$\lambda = 0$$, so that $$\phi$$ obeys the Klein-Gordon equation (if $$m = 0$$ we have just a d’Lambertian (wave equation)).

We can write our field as a Fourier transform
\label{eqn:qftLecture6:60}
\phi(\Bx, t) = \int \frac{d^3 p}{(2\pi)^3} e^{i \Bp \cdot \Bx} \tilde{\phi}(\Bp, t),

and due to a Hermitian assumption (i.e. real field) this implies
\label{eqn:qftLecture6:80}
\tilde{\phi}^\conj(\Bp, t) = \tilde{\phi}(-\Bp, t).

We found that the Klein-Gordon equation implied that the momentum space representation obey Harmonic oscillator equations
\label{eqn:qftLecture6:100}
\begin{aligned}
\ddot{\tilde{\phi}}(\Bp, t) &= – \omega_\Bp \tilde{\phi}(\Bp, t) \\
\omega_\Bp &= \sqrt{\Bp^2 + m^2}.
\end{aligned}

We may represent the solution to this equation as
\label{eqn:qftLecture6:120}
\tilde{\phi}(\Bq, t) = \inv{\sqrt{2 \omega_\Bq}} \lr{
e^{-i \omega_\Bq t} a_\Bq
+
e^{i \omega_\Bq t} b_\Bq^\conj
}.

This is a general solution, but imposing $$a_\Bq = b_{-\Bq}$$ ensures \ref{eqn:qftLecture6:80} is satisfied.
This leaves us with
\label{eqn:qftLecture6:140}
\tilde{\phi}(\Bq, t) = \inv{\sqrt{2 \omega_\Bq}} \lr{
e^{-i \omega_\Bq t} a_\Bq
+
e^{i \omega_\Bq t} a_{-\Bq}^\conj
}.

We want to show that iff
\label{eqn:qftLecture6:200}
\antisymmetric{a_\Bq}{a^\dagger_\Bp} = \lr{ 2 \pi }^3 \delta^3(\Bp – \Bq),

then
\label{eqn:qftLecture6:220}
\antisymmetric{\pi(\By, t)}{\phi(\Bx, t)} = -i \delta^3(\Bx – \By)

where everything else commutes (i.e. $$\antisymmetric{a_\Bp}{a_\Bq} = \antisymmetric{a_\Bp^\dagger}{a_\Bq^\dagger} = 0$$).
We will only show one direction, but you can go the other way too.

\label{eqn:qftLecture6:240}
\phi(\Bx, t)
=
\int \frac{d^3 p}{(2\pi)^3 \sqrt{2 \omega_\Bp}} e^{i \Bp \cdot \Bx}
\lr{
e^{-i \omega_\Bp t} a_\Bp
+
e^{i \omega_\Bp t} a_{-\Bp}^\dagger
}

\label{eqn:qftLecture6:260}
\pi(\Bx, t) = \dot{\phi}
=
i \int \frac{d^3 q}{(2\pi)^3 \sqrt{2 \omega_\Bq}} \omega_\Bq e^{i \Bq \cdot \Bx}
\lr{
-e^{-i \omega_\Bq t} a_\Bq
+
e^{i \omega_\Bq t} a_{-\Bq}^\dagger
}

The commutator is
\label{eqn:qftLecture6:280}
\begin{aligned}
\antisymmetric{\pi(\By, t)}{\phi(\Bx, t)}
&=
i \int \frac{d^3 p}{(2\pi)^3
\sqrt{2 \omega_\Bp}}
\frac{d^3 q}{(2\pi)^3 \sqrt{2 \omega_\Bq}}
\omega_\Bq
e^{i \Bp \cdot \By + i \Bq \cdot \Bx}
\antisymmetric
{
-e^{-i \omega_\Bq t} a_\Bq
+
e^{i \omega_\Bq t} a_{-\Bq}^\dagger
}
{
e^{-i \omega_\Bp t} a_\Bp
+
e^{i \omega_\Bp t} a_{-\Bp}^\dagger
} \\
&=
i \int \frac{d^3 p}{(2\pi)^3
\sqrt{2 \omega_\Bp}}
\frac{d^3 q}{(2\pi)^3 \sqrt{2 \omega_\Bq}}
\omega_\Bq
e^{i \Bp \cdot \By + i \Bq \cdot \Bx}
\lr{
– e^{i (\omega_\Bp -\omega_\Bq) t}
\antisymmetric { a_\Bq } { a_{-\Bp}^\dagger }
+
e^{i (\omega_\Bq -\omega_\Bp) t}
\antisymmetric{a_{-\Bq}^\dagger}{ a_\Bp }
} \\
&=
i \int \frac{d^3 p}{(2\pi)^3
\sqrt{2 \omega_\Bp}}
\frac{d^3 q}{(2\pi)^3 \sqrt{2 \omega_\Bq}}
\omega_\Bq (2\pi)^3
e^{i \Bp \cdot \By + i \Bq \cdot \Bx}
\lr{
– e^{i (\omega_\Bp -\omega_\Bq) t} \delta^3(\Bq + \Bp)
– e^{i (\omega_\Bq -\omega_\Bp) t} \delta^3(-\Bq -\Bp)
} \\
&=
– 2 i \int \frac{d^3 p}{(2\pi)^3
2 \omega_\Bp}
\omega_\Bp
e^{i \Bp \cdot (\By – \Bx)} \\
&=
-i \delta^3(\By – \Bx),
\end{aligned}

which is what we wanted to prove.

## Free Hamiltonian

We call the $$\lambda = 0$$ case the “free” Hamiltonian.

\label{eqn:qftLecture6:300}
\begin{aligned}
H
&= \int d^3 x \lr{ \inv{2} \pi^2 + \inv{2} (\spacegrad \phi)^2 + \frac{m^2}{2} \phi^2 } \\
&=
\inv{2} \int d^3 x
\frac{d^3 p}{(2\pi)^3}
\frac{d^3 q}{(2\pi)^3}
\frac{
e^{i (\Bp + \Bq)\cdot \Bx}
}{\sqrt{2 \omega_\Bp}
\sqrt{2 \omega_\Bq}}
\lr{

(\omega_\Bp)
(\omega_\Bq)
\lr{
-e^{-i \omega_\Bp t} a_\Bp
+
e^{i \omega_\Bp t} a_{-\Bp}^\dagger
}
\lr{
-e^{-i \omega_\Bq t} a_\Bq
+
e^{i \omega_\Bq t} a_{-\Bq}^\dagger
}
}

\Bp \cdot \Bq
\lr{
e^{-i \omega_\Bp t} a_\Bp
+
e^{i \omega_\Bp t} a_{-\Bp}^\dagger
}
\lr{
e^{-i \omega_\Bq t} a_\Bq
+
e^{i \omega_\Bq t} a_{-\Bq}^\dagger
}
+
m^2
\lr{
e^{-i \omega_\Bp t} a_\Bp
+
e^{i \omega_\Bp t} a_{-\Bp}^\dagger
}
\lr{
e^{-i \omega_\Bq t} a_\Bq
+
e^{i \omega_\Bq t} a_{-\Bq}^\dagger
}.
\end{aligned}

An immediate simplification is possible by identifying a delta function factor $$\int d^3 x e^{i(\Bp + \Bq) \cdot \Bx}/(2\pi)^3 = \delta^3(\Bp + \Bq)$$, so
\label{eqn:qftLecture6:1060}
\begin{aligned}
H
&=
\inv{2}
\int
\frac{d^3 p}{(2\pi)^3}
\frac{1
}{2 \omega_\Bp}
\lr{

(\omega_\Bp)^2
\lr{
-e^{-i \omega_\Bp t} a_\Bp
+
e^{i \omega_\Bp t} a_{-\Bp}^\dagger
}
\lr{
-e^{-i \omega_\Bp t} a_{-\Bp}
+
e^{i \omega_\Bp t} a_{\Bp}^\dagger
}
}
+
(\Bp^2 + m^2)
\lr{
e^{-i \omega_\Bp t} a_\Bp
+
e^{i \omega_\Bp t} a_{-\Bp}^\dagger
}
\lr{
e^{-i \omega_\Bp t} a_{-\Bp}
+
e^{i \omega_\Bp t} a_{\Bp}^\dagger
} \\
&=
\inv{2} \int \frac{d^3 p}{(2 \pi)^3} \inv{2 \omega_\Bp}
\lr{
a_\Bp a_{-\Bp}
\lr{
{-\omega_\Bp^2 e^{-2 i \omega_\Bp t}}
+
{\omega_\Bp^2 e^{-2 i \omega_\Bp t}}
}
+
a_{-\Bp}^\dagger a_{\Bp}^\dagger
\lr{
-{\omega_\Bp^2 e^{2 i \omega_\Bp t}}
+
{\omega_\Bp^2 e^{2 i \omega_\Bp t}}
}
+
a_\Bp a^\dagger_{\Bp} \omega^2_\Bp(1 + 1)
+
a^\dagger_{-\Bp} a_{-\Bp} \omega^2_\Bp(1 + 1)
}
\end{aligned}

When all is said and done we are left with
\label{eqn:qftLecture6:320}
H =
\int \frac{d^3 p}{(2 \pi)^3} \frac{\omega_\Bp}{2} \lr{
a^\dagger_{-\Bp}
a_{-\Bp}
+
a_{\Bp}
a^\dagger_{\Bp}
}

and finally with a $$\Bp \rightarrow -\Bp$$ transformation ($$\iiint_{-R}^R d^3 p \rightarrow (-1)^3 \iiint_R^{-R} d^3 p’ = (-1)^6 \iiint_{-R}^R d^3 p’$$) in the first integral our free Hamiltonian ($$\lambda = 0$$) is
\label{eqn:qftLecture6:340}
\boxed{
H_0 =
\int \frac{d^3 p}{(2 \pi)^3} \frac{\omega_\Bp}{2} \lr{
a^\dagger_{\Bp}
a_{\Bp}
+
a_{\Bp}
a^\dagger_{\Bp}
}
}

From the commutator relationship \ref{eqn:qftLecture6:200} we can write
\label{eqn:qftLecture6:360}
a_\Bp a^\dagger_\Bq
=
a^\dagger_\Bq
a_\Bp
+ (2 \pi)^3 \delta^3(\Bp – \Bq),

so

\label{eqn:qftLecture6:380}
H_0 =
\int \frac{d^3 p}{(2 \pi)^3} \omega_\Bp
\lr{
a^\dagger_{\Bp}
a_{\Bp}
+
\inv{2} (2 \pi)^3 \delta^3(0)
}

The delta function term can be interpreted using
\label{eqn:qftLecture6:400}
(2 \pi)^3 \delta^3(\Bq)
= \int d^3 x e^{i \Bq \cdot \Bx},

so when $$\Bq = 0$$
\label{eqn:qftLecture6:420}
(2 \pi)^3 \delta^3(0) = \int d^3 x = V.

We can write the Hamiltonian now in terms of the volume
\label{eqn:qftLecture6:440}
\boxed{
H_0 =
\int \frac{d^3 p}{(2 \pi)^3} \omega_\Bp
a^\dagger_{\Bp}
a_{\Bp}
+ V_3
\int \frac{d^3 p}{(2 \pi)^3} \frac{\omega_\Bp }{2} \times 1
}

## QM SHO review

In units with $$m = 1$$ the non-relativistic QM SHO has the Hamiltonian
\label{eqn:qftLecture6:460}
H
= \inv{2} p^2 + \frac{\omega^2}{2} q^2.

If we define a position operator with a time-domain Fourier representation given by
\label{eqn:qftLecture6:480}
q = \inv{\sqrt{2\omega}} \lr{ a e^{-i \omega t} + a^\dagger e^{i \omega t} },

where the Fourier coefficients $$a, a^\dagger$$ are operator valued, then the momentum operator is
\label{eqn:qftLecture6:500}
p = \dot{q} =
\frac{i\omega}{\sqrt{2\omega}} \lr{ -a e^{-i \omega t} + a^\dagger e^{i \omega t} },

or inverting for $$a, a^\dagger$$
\label{eqn:qftLecture6:1080}
\begin{aligned}
a &= \sqrt{\frac{\omega}{2}} \lr{ q – \inv{i \omega} p } e^{-i \omega t} \\
a^\dagger &= \sqrt{\frac{\omega}{2}} \lr{ q + \inv{i \omega} p } e^{i \omega t}.
\end{aligned}

By inspection it is apparent that the product $$a^\dagger a$$ will be related to the Hamiltonian (i.e. a difference of squares). That product is
\label{eqn:qftLecture6:1120}
\begin{aligned}
a^\dagger a
&=
\frac{\omega}{2}
\lr{ q + \inv{i \omega} p }
\lr{ q – \inv{i \omega} p } \\
&=
\frac{\omega}{2} \lr{ q^2 + \inv{\omega^2} p^2 – \inv{i \omega} \antisymmetric{q}{p} } \\
&= \inv{2 \omega} \lr{ p^2 + \omega^2 q^2 – \omega },
\end{aligned}

or
\label{eqn:qftLecture6:1140}
H = \omega \lr{ a^\dagger a + \inv{2} }.

We can glean some of the properties of $$a, a^\dagger$$ by computing the commutator of $$p, q$$, since that has a well known value
\label{eqn:qftLecture6:520}
\begin{aligned}
i
&= \antisymmetric{q}{p} \\
&=
\frac{i\omega}{2 \omega} \antisymmetric
{ a e^{-i \omega t} + a^\dagger e^{i \omega t} }
{ -a e^{-i \omega t} + a^\dagger e^{i \omega t} } \\
&=
\frac{i}{2} \lr{
\antisymmetric{a}{a^\dagger} –
\antisymmetric{a^\dagger}{a} } \\
&=
i
\antisymmetric{a}{a^\dagger},
\end{aligned}

so
\label{eqn:qftLecture6:1100}
\antisymmetric{a}{a^\dagger} = 1.

The operator $$a^\dagger a$$ is the workhorse of the Hamiltonian and worth studying independently. In particular, assume that we have a set of states $$\ket{n}$$ that are eigenstates of $$a^\dagger a$$ with eigenvalues $$\lambda_n$$, that is
\label{eqn:qftLecture6:1160}
a^\dagger a \ket{n} = \lambda_n \ket{n}.

The action of $$a^\dagger a$$ on $$a^\dagger \ket{n}$$ is easy to compute
\label{eqn:qftLecture6:1180}
\begin{aligned}
a^\dagger a a^\dagger \ket{n}
&=
a^\dagger \lr{ a^\dagger a + 1 } \ket{n} \\
&=
\lr{ \lambda_n + 1 } a^\dagger \ket{n},
\end{aligned}

so $$\lambda_n + 1$$ is an eigenvalue of $$a^\dagger \ket{n}$$. The state $$a^\dagger \ket{n}$$ has an energy eigenstate that is one unit of energy larger than $$\ket{n}$$. For this reason we called $$a^\dagger$$ the raising (or creation) operator.
Similarly,
\label{eqn:qftLecture6:1200}
\begin{aligned}
a^\dagger a a \ket{n}
&=
\lr{ a a^\dagger – 1 } a \ket{n} \\
&=
(\lambda_n – 1) a \ket{n},
\end{aligned}

so $$\lambda_n – 1$$ is the energy eigenvalue of $$a \ket{n}$$, having one less unit of energy than $$\ket{n}$$.
We call $$a$$ the annihilation (or lowering) operator.
If we argue that there is a lowest energy state, perhaps designated as $$\ket{0}$$ then we must have
\label{eqn:qftLecture6:560}
a\ket{0} = 0,

by the assumption that there are no energy eigenstates with less energy than $$\ket{0}$$.
We can think of higher order states being constructed from the ground state from using the raising operator $$a^\dagger$$
\label{eqn:qftLecture6:580}
\ket{n} = \frac{(a^\dagger)^n}{\sqrt{n!}} \ket{0}

## Discussion

We’ve diagonalized in the Fourier representation for the momentum space fields. For every value of momentum $$\Bp$$ we have a quantum SHO.

For our field space we call our space the Fock vacuum and
\label{eqn:qftLecture6:620}
a_\Bp\ket{0} = 0,

and call $$a_\Bp$$ the “annihilation operator”, and
call $$a^\dagger_\Bp$$ the “creation operator”.
We say that $$a^\dagger_\Bp \ket{0}$$ is the creation of a state of a single particle of momentum $$\Bp$$ by $$a^\dagger_\Bp$$.

We are discarding the volume term, a procedure called “normal ordering”. We define
\label{eqn:qftLecture6:640}
\frac{a^\dagger a + a a^\dagger}{2}
:\equiv
a^\dagger a

We are essentially forgetting the vacuum energy as some sort of unobservable quantity, leaving us with the free Hamiltonian of
\label{eqn:qftLecture6:660}
H_0 =
\int \frac{d^3 p}{(2 \pi)^3} \omega_\Bp
a^\dagger_{\Bp}
a_{\Bp}

Consider
\label{eqn:qftLecture6:680}
\begin{aligned}
H_0
a^\dagger_\Bq \ket{0}
&=
\int \frac{d^3 p}{(2 \pi)^3} \omega_\Bp
a^\dagger_{\Bp}
a_{\Bp}
a^\dagger_\Bq
\ket{0} \\
&=
\int \frac{d^3 p}{(2 \pi)^3} \omega_\Bp
a^\dagger_{\Bp}
\lr{
a^\dagger_\Bq a_\Bp + (2 \pi)^3 \delta^3(\Bp – \Bq)
}
\ket{0} \\
&=
\int \frac{d^3 p}{(2 \pi)^3} \omega_\Bp
a^\dagger_{\Bp} \lr{
a^\dagger_\Bq {a_\Bp \ket{0}}
+ (2 \pi)^3 \delta^3(\Bp – \Bq) \ket{0}
} \\
&=
\omega_\Bq a^\dagger_\Bq \ket{0}.
\end{aligned}

### Question:

Is it possible to modify the Lagrangian or Hamiltonian that we start with so that this vacuum ground state is eliminated? Answer: Only by imposing super-symmetric constraints (that pairs this (Bosonic) Hamiltonian to a Fermonic system in a way that there is exact cancellation).

We will see that the momentum operator has the form
\label{eqn:qftLecture6:700}
\mathcal{P}
=
\int \frac{d^3 p}{(2 \pi)^3} \Bp a^\dagger_\Bp a_\Bp.

We say that $$a^\dagger_\Bp a^\dagger_\Bq \ket{0}$$ a two particle space with energy $$\omega_\Bp + \omega_q$$, and $$(a^\dagger_\Bp)^m (a^\dagger_\Bq)^n \ket{0} \equiv (a^\dagger_\Bp)^m \ket{0} \otimes (a^\dagger_\Bq)^n \ket{0}$$, a $$m + n$$ particle space.

There is a connection to statistical mechanics that is of interest

\label{eqn:qftLecture6:720}
\begin{aligned}
\expectation{E}
&= \inv{Z} \sum_n E_n e^{-E_n/\kB T} \\
&= \inv{Z} \sum_n \bra{n} e^{-\hat{H}/\kB T} \hat{H} \ket{n},
\end{aligned}

so for a SHO Hamiltonian system
\label{eqn:qftLecture6:740}
\begin{aligned}
\expectation{E}
&= \inv{Z} \sum_n e^{-E_n/\kB T} \bra{n} \hat{H} \ket{n} \\
&= \inv{Z} \sum_n e^{-E_n/\kB T} \bra{n} \omega a^\dagger a \ket{n} \\
&= \frac{\omega}{e^{\omega/\kB T} – 1 } \\ \\
&= \expectation{ \omega a^\dagger a }_{\kB T}
\end{aligned}

the $$\kB T$$ ensemble average energy for a SHO system. Note that this sum was evaluated by noting that $$\bra{n} a^\dagger a \ket{n} = n$$ which leaves sums of the form
\label{eqn:qftLecture6:1220}
\begin{aligned}
\frac{\sum_{n = 0}^\infty n a^n }{\sum_{n = 0}^\infty a^n}
&=
a \frac{\sum_{n = 1}^\infty n a^{n-1} }{\sum_{n = 0}^\infty a^n} \\
&=
a (1 – a) \frac{d}{da} \lr{ \inv{1 – a} } \\
&=
\frac{a}{1 – a}.
\end{aligned}

If we consider a real scalar field of mass $$m$$ we have $$\omega_\Bp = \sqrt{ \Bp^2 + m^2 }$$, but for a Maxwell field $$\BE, \BB$$ where $$m = 0$$, our dispersion relation is $$\omega_\Bp = \Abs{\Bp}$$.

We will see that for a free Maxwell field (no charges or currents) the Hamiltonian is
\label{eqn:qftLecture6:760}
H_{\text{Maxwell}} =
\sum_{i = 1}^2
\int \frac{d^3 p}{(2 \pi)^3} \omega_\Bp {a^i}^\dagger_\Bp {a^i}_\Bp,

where $$i$$ is a polarization index.

We expect that we can evaluate an average such as \ref{eqn:qftLecture6:740} for our field, and operate using the analogy

\label{eqn:qftLecture6:780}
\begin{aligned}
a a^\dagger &= a^\dagger a + 1 \\
a_\Bp a_\Bp^\dagger &= a_\Bp^\dagger a_\Bp + V_3.
\end{aligned}

so if we rescale by $$\sqrt{V_3}$$
\label{eqn:qftLecture6:800}
a_\Bp = \sqrt{V_3} \tilde{a}_\Bp

Then we have commutator relations like standard QM
\label{eqn:qftLecture6:820}
\tilde{a} \tilde{a}^\dagger = \tilde{a}^\dagger \tilde{a} + 1.

So we can immediately evaluate the energy expectation for our quantized fields
\label{eqn:qftLecture6:840}
\begin{aligned}
\expectation{H_0}
&=
\expectation{
\int \frac{d^3 p}{(2 \pi)^3} \omega_\Bp a_\Bp^\dagger a_\Bp
} \\
&=
\int \frac{d^3 p}{(2 \pi)^3} \omega_\Bp V_3 \expectation{ \tilde{a}^\dagger_\Bp a_\Bp } \\
&=
V_3
\int \frac{d^3 p}{(2 \pi)^3} \frac{\omega_\Bp}{e^{\omega_\Bp/\kB T} – 1}.
\end{aligned}

Using this with the Maxwell field, we have a factor of two from polarization
\label{eqn:qftLecture6:860}
U^{\text{Maxwell}} = 2 V_3
\int \frac{d^3 p}{(2 \pi)^3} \frac{\Abs{\Bp}}{e^{\omega_\Bp/\kB T} – 1},

which is Planck’s law describing the blackbody energy spectrum.

## Switching gears: Symmetries.

The question is how to apply the CCR results to moving frames, which is done using Lorentz transformations. Just like we know that the exponential of the Hamiltonian (times time) represents time translations, we will examine symmetries that relate results in different frames.

### Examples.

For scalar field(s) with action
\label{eqn:qftLecture6:880}
S = \int d^d x \LL(\phi^i, \partial_\mu \phi^i).

For example, we’ve been using our massive (Boson) real scalar field with Lagrangian density
\label{eqn:qftLecture6:900}
\LL = \inv{2} \partial_\mu \phi\partial^\mu \phi – \frac{m^2}{2} \phi^2 – V(\phi).

Internal symmetry example

\label{eqn:qftLecture6:920}
H = J \sum_{\expectation{n, n’}} \BS_n \cdot \BS_{n’},

where the sum means the sum over neighbouring indexes $$n, n’$$ as sketched in

fig. 1. Neighbouring spin cells.

Such a Hamiltonian is left invariant by the transformation $$\BS_n \rightarrow -\BS_n$$ since the Hamiltonian is quadratic.

Suppose that $$\phi \rightarrow -\phi$$ is a symmetry (it leaves the Lagrangian unchanged). Example

\label{eqn:qftLecture6:940}
\phi =
\begin{bmatrix}
\phi^1 \\
\phi^2 \\
\vdots
\phi^n \\
\end{bmatrix}

the Lagrangian
\label{eqn:qftLecture6:960}
\LL = \inv{2} \partial_\mu \phi^\T \partial^\mu \phi – \frac{m^2}{2} \phi^\T \phi – V(\phi^\T \phi).

If $$O$$ is any $$n \times n$$ orthogonal matrix, then it is symmetry since
\label{eqn:qftLecture6:980}
\phi^\T \phi \rightarrow \phi^\T O^\T O \phi = \phi^\T \phi.

O(2) model, HW, problem 2. Example for complex $$\phi$$
\label{eqn:qftLecture6:1000}
\phi \rightarrow e^{i \phi} \phi,

\label{eqn:qftLecture6:1020}
\phi = \frac{\psi_1 + i \psi_2}{\sqrt{2}}

\label{eqn:qftLecture6:1040}
\begin{bmatrix}
\psi_1 \\
\psi_2
\end{bmatrix}
\rightarrow
\begin{bmatrix}
\cos\alpha & \sin\alpha \\
-\sin\alpha & \cos\alpha
\end{bmatrix}
\begin{bmatrix}
\psi_1 \\
\psi_2
\end{bmatrix}

## 2D SHO xy perturbation

### Q: [1] pr. 5.4

Given a 2D SHO with Hamiltonian

\label{eqn:2dHarmonicOscillatorXYPerturbation:20}
H_0 = \inv{2m} \lr{ p_x^2 + p_y^2 } + \frac{m \omega^2}{2} \lr{ x^2 + y^2 },

• (a)
What are the energies and degeneracies of the three lowest states?

• (b)
With perturbation

\label{eqn:2dHarmonicOscillatorXYPerturbation:40}
V = m \omega^2 x y,

calculate the first order energy perturbations and the zeroth order perturbed states.

• (c)
Solve the $$H_0 + \delta V$$ problem exactly, and compare.

### A: part (a)

Recall that we have

\label{eqn:2dHarmonicOscillatorXYPerturbation:60}
H \ket{n_1, n_2} =
\Hbar\omega
\lr{
n_1 + n_2 + 1
}
\ket{n_1, n_2},

So the three lowest energy states are $$\ket{0,0}, \ket{1,0}, \ket{0,1}$$ with energies $$\Hbar \omega, 2 \Hbar \omega, 2 \Hbar \omega$$ respectively (with a two fold degeneracy for the second two energy eigenkets).

### A: part (b)

Consider the action of $$x y$$ on the $$\beta = \setlr{ \ket{0,0}, \ket{1,0}, \ket{0,1} }$$ subspace. Those are

\label{eqn:2dHarmonicOscillatorXYPerturbation:200}
\begin{aligned}
x y \ket{0,0}
&=
\frac{x_0^2}{2} \lr{ a + a^\dagger } \lr{ b + b^\dagger } \ket{0,0} \\
&=
\frac{x_0^2}{2} \lr{ b + b^\dagger } \ket{1,0} \\
&=
\frac{x_0^2}{2} \ket{1,1}.
\end{aligned}

\label{eqn:2dHarmonicOscillatorXYPerturbation:220}
\begin{aligned}
x y \ket{1, 0}
&=
\frac{x_0^2}{2} \lr{ a + a^\dagger } \lr{ b + b^\dagger } \ket{1,0} \\
&=
\frac{x_0^2}{2} \lr{ a + a^\dagger } \ket{1,1} \\
&=
\frac{x_0^2}{2} \lr{ \ket{0,1} + \sqrt{2} \ket{2,1} } .
\end{aligned}

\label{eqn:2dHarmonicOscillatorXYPerturbation:240}
\begin{aligned}
x y \ket{0, 1}
&=
\frac{x_0^2}{2} \lr{ a + a^\dagger } \lr{ b + b^\dagger } \ket{0,1} \\
&=
\frac{x_0^2}{2} \lr{ b + b^\dagger } \ket{1,1} \\
&=
\frac{x_0^2}{2} \lr{ \ket{1,0} + \sqrt{2} \ket{1,2} }.
\end{aligned}

The matrix representation of $$m \omega^2 x y$$ with respect to the subspace spanned by basis $$\beta$$ above is

\label{eqn:2dHarmonicOscillatorXYPerturbation:260}
x y
\sim
\inv{2} \Hbar \omega
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
\end{bmatrix}.

This diagonalizes with

\label{eqn:2dHarmonicOscillatorXYPerturbation:300}
U
=
\begin{bmatrix}
1 & 0 \\
0 & \tilde{U}
\end{bmatrix}

\label{eqn:2dHarmonicOscillatorXYPerturbation:320}
\tilde{U}
=
\inv{\sqrt{2}}
\begin{bmatrix}
1 & 1 \\
1 & -1 \\
\end{bmatrix}

\label{eqn:2dHarmonicOscillatorXYPerturbation:340}
D =
\inv{2} \Hbar \omega
\begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1 \\
\end{bmatrix}

\label{eqn:2dHarmonicOscillatorXYPerturbation:360}
x y = U D U^\dagger = U D U.

The unperturbed Hamiltonian in the original basis is

\label{eqn:2dHarmonicOscillatorXYPerturbation:380}
H_0
=
\Hbar \omega
\begin{bmatrix}
1 & 0 \\
0 & 2 I
\end{bmatrix},

So the transformation to the diagonal $$x y$$ basis leaves the initial Hamiltonian unaltered

\label{eqn:2dHarmonicOscillatorXYPerturbation:400}
\begin{aligned}
H_0′
&= U^\dagger H_0 U \\
&=
\Hbar \omega
\begin{bmatrix}
1 & 0 \\
0 & \tilde{U} 2 I \tilde{U}
\end{bmatrix} \\
&=
\Hbar \omega
\begin{bmatrix}
1 & 0 \\
0 & 2 I
\end{bmatrix}.
\end{aligned}

Now we can compute the first order energy shifts almost by inspection. Writing the new basis as $$\beta’ = \setlr{ \ket{0}, \ket{1}, \ket{2} }$$ those energy shifts are just the diagonal elements from the $$x y$$ operators matrix representation

\label{eqn:2dHarmonicOscillatorXYPerturbation:420}
\begin{aligned}
E^{{(1)}}_0 &= \bra{0} V \ket{0} = 0 \\
E^{{(1)}}_1 &= \bra{1} V \ket{1} = \inv{2} \Hbar \omega \\
E^{{(1)}}_2 &= \bra{2} V \ket{2} = -\inv{2} \Hbar \omega.
\end{aligned}

The new energies are

\label{eqn:2dHarmonicOscillatorXYPerturbation:440}
\begin{aligned}
E_0 &\rightarrow \Hbar \omega \\
E_1 &\rightarrow \Hbar \omega \lr{ 2 + \delta/2 } \\
E_2 &\rightarrow \Hbar \omega \lr{ 2 – \delta/2 }.
\end{aligned}

### A: part (c)

For the exact solution, it’s possible to rotate the coordinate system in a way that kills the explicit $$x y$$ term of the perturbation. That we could do this for $$x, y$$ operators wasn’t obvious to me, but after doing so (and rotating the momentum operators the same way) the new operators still have the required commutators. Let

\label{eqn:2dHarmonicOscillatorXYPerturbation:80}
\begin{aligned}
\begin{bmatrix}
u \\
v
\end{bmatrix}
&=
\begin{bmatrix}
\cos\theta & \sin\theta \\
-\sin\theta & \cos\theta
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix} \\
&=
\begin{bmatrix}
x \cos\theta + y \sin\theta \\
-x \sin\theta + y \cos\theta
\end{bmatrix}.
\end{aligned}

Similarly, for the momentum operators, let
\label{eqn:2dHarmonicOscillatorXYPerturbation:100}
\begin{aligned}
\begin{bmatrix}
p_u \\
p_v
\end{bmatrix}
&=
\begin{bmatrix}
\cos\theta & \sin\theta \\
-\sin\theta & \cos\theta
\end{bmatrix}
\begin{bmatrix}
p_x \\
p_y
\end{bmatrix} \\
&=
\begin{bmatrix}
p_x \cos\theta + p_y \sin\theta \\
-p_x \sin\theta + p_y \cos\theta
\end{bmatrix}.
\end{aligned}

For the commutators of the new operators we have

\label{eqn:2dHarmonicOscillatorXYPerturbation:120}
\begin{aligned}
\antisymmetric{u}{p_u}
&=
\antisymmetric{x \cos\theta + y \sin\theta}{p_x \cos\theta + p_y \sin\theta} \\
&=
\antisymmetric{x}{p_x} \cos^2\theta + \antisymmetric{y}{p_y} \sin^2\theta \\
&=
i \Hbar \lr{ \cos^2\theta + \sin^2\theta } \\
&=
i\Hbar.
\end{aligned}

\label{eqn:2dHarmonicOscillatorXYPerturbation:140}
\begin{aligned}
\antisymmetric{v}{p_v}
&=
\antisymmetric{-x \sin\theta + y \cos\theta}{-p_x \sin\theta + p_y \cos\theta} \\
&=
\antisymmetric{x}{p_x} \sin^2\theta + \antisymmetric{y}{p_y} \cos^2\theta \\
&=
i \Hbar.
\end{aligned}

\label{eqn:2dHarmonicOscillatorXYPerturbation:160}
\begin{aligned}
\antisymmetric{u}{p_v}
&=
\antisymmetric{x \cos\theta + y \sin\theta}{-p_x \sin\theta + p_y \cos\theta} \\
&= \cos\theta \sin\theta \lr{ -\antisymmetric{x}{p_x} + \antisymmetric{y}{p_p} } \\
&=
0.
\end{aligned}

\label{eqn:2dHarmonicOscillatorXYPerturbation:180}
\begin{aligned}
\antisymmetric{v}{p_u}
&=
\antisymmetric{-x \sin\theta + y \cos\theta}{p_x \cos\theta + p_y \sin\theta} \\
&= \cos\theta \sin\theta \lr{ -\antisymmetric{x}{p_x} + \antisymmetric{y}{p_p} } \\
&=
0.
\end{aligned}

We see that the new operators are canonical conjugate as required. For this problem, we just want a 45 degree rotation, with

\label{eqn:2dHarmonicOscillatorXYPerturbation:460}
\begin{aligned}
x &= \inv{\sqrt{2}} \lr{ u + v } \\
y &= \inv{\sqrt{2}} \lr{ u – v }.
\end{aligned}

We have
\label{eqn:2dHarmonicOscillatorXYPerturbation:480}
\begin{aligned}
x^2 + y^2
&=
\inv{2} \lr{ (u+v)^2 + (u-v)^2 } \\
&=
\inv{2} \lr{ 2 u^2 + 2 v^2 + 2 u v – 2 u v } \\
&=
u^2 + v^2,
\end{aligned}

\label{eqn:2dHarmonicOscillatorXYPerturbation:500}
\begin{aligned}
p_x^2 + p_y^2
&=
\inv{2} \lr{ (p_u+p_v)^2 + (p_u-p_v)^2 } \\
&=
\inv{2} \lr{ 2 p_u^2 + 2 p_v^2 + 2 p_u p_v – 2 p_u p_v } \\
&=
p_u^2 + p_v^2,
\end{aligned}

and
\label{eqn:2dHarmonicOscillatorXYPerturbation:520}
\begin{aligned}
x y
&=
\inv{2} \lr{ (u+v)(u-v) } \\
&=
\inv{2} \lr{ u^2 – v^2 }.
\end{aligned}

The perturbed Hamiltonian is

\label{eqn:2dHarmonicOscillatorXYPerturbation:540}
\begin{aligned}
H_0 + \delta V
&=
\inv{2m} \lr{ p_u^2 + p_v^2 }
+ \inv{2} m \omega^2 \lr{ u^2 + v^2 + \delta u^2 – \delta v^2 } \\
&=
\inv{2m} \lr{ p_u^2 + p_v^2 }
+ \inv{2} m \omega^2 \lr{ u^2(1 + \delta) + v^2 (1 – \delta) }.
\end{aligned}

In this coordinate system, the corresponding eigensystem is

\label{eqn:2dHarmonicOscillatorXYPerturbation:560}
H \ket{n_1, n_2}
= \Hbar \omega \lr{ 1 + n_1 \sqrt{1 + \delta} + n_2 \sqrt{ 1 – \delta } } \ket{n_1, n_2}.

For small $$\delta$$

\label{eqn:2dHarmonicOscillatorXYPerturbation:580}
n_1 \sqrt{1 + \delta} + n_2 \sqrt{ 1 – \delta }
\approx
n_1 + n_2
+ \inv{2} n_1 \delta
– \inv{2} n_2 \delta,

so
\label{eqn:2dHarmonicOscillatorXYPerturbation:600}
H \ket{n_1, n_2}
\approx \Hbar \omega \lr{ 1 + n_1 + n_2 + \inv{2} n_1 \delta – \inv{2} n_2 \delta
} \ket{n_1, n_2}.

The lowest order perturbed energy levels are

\label{eqn:2dHarmonicOscillatorXYPerturbation:620}
\ket{0,0} \rightarrow \Hbar \omega

\label{eqn:2dHarmonicOscillatorXYPerturbation:640}
\ket{1,0} \rightarrow \Hbar \omega \lr{ 2 + \inv{2} \delta }

\label{eqn:2dHarmonicOscillatorXYPerturbation:660}
\ket{0,1} \rightarrow \Hbar \omega \lr{ 2 – \inv{2} \delta }

The degeneracy of the $$\ket{0,1}, \ket{1,0}$$ states has been split, and to first order match the zeroth order perturbation result.

# References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

## Harmonic oscillator with energy shift

December 5, 2015 phy1520 , ,

### Q: [1] pr 5.1

Given a perturbed 1D SHO Hamiltonian

\label{eqn:harmonicOscillatorEnergyShiftPertubation:20}
H = \inv{2m} p^2 + \inv{2} m \omega^2 x^2 + \lambda b x,

calculate the first non-zero perturbation to the ground state energy. Then solve for that energy directly and compare.

### A:

The first order energy shift is seen to be zero

\label{eqn:harmonicOscillatorEnergyShiftPertubation:40}
\begin{aligned}
\Delta_0^{(0)}
&= V_{00} \\
&= \bra{0} b x \ket{0} \\
&= \frac{x_0}{\sqrt{2}} \bra{0} a + a^\dagger \ket{0} \\
&= \frac{x_0}{\sqrt{2}} \braket{0}{1} \\
&= 0.
\end{aligned}

The first order perturbation to the ground state is

\label{eqn:harmonicOscillatorEnergyShiftPertubation:60}
\begin{aligned}
\ket{0^{(1)}}
&= \sum_{m \ne 0} \frac{ \ket{m} \bra{m} b x \ket{0} }{ \Hbar \omega/2 – \Hbar
\omega (m – 1/2) } \\
&= -b \frac{x_0}{\sqrt{2} \Hbar \omega} \sum_{m \ne 0} \frac{ \ket{m}
\braket{m}{1} }{ m } \\
&= -b \frac{x_0}{\sqrt{2} \Hbar \omega} \ket{1}.
\end{aligned}

The second order ground state energy perturbation is

\label{eqn:harmonicOscillatorEnergyShiftPertubation:80}
\begin{aligned}
\Delta_0^{(2)}
&=
\bra{0} b x \ket{0^{(1)}} \\
&=
\frac{b x_0}{\sqrt{2}} \bra{0} a + a^\dagger \lr{ -b \frac{x_0}{\sqrt{2} \Hbar \omega} \ket{1} } \\
&=
\frac{b x_0}{\sqrt{2}} \lr{ -b \frac{x_0}{\sqrt{2} \Hbar \omega} } \\
&=
-\frac{b^2 x_0^2}{ 2 \Hbar \omega } \\
&=
-\frac{b^2 }{ 2 \Hbar \omega } \frac{\Hbar}{m \omega} \\
&=
-\frac{b^2 }{ 2 m \omega^2 },
\end{aligned}

so the total energy perturbation up to second order is

\label{eqn:harmonicOscillatorEnergyShiftPertubation:100}
\Delta_0 = -\lambda^2 \frac{b^2 }{ 2 m \omega^2 }.

To compare to the exact result, rewrite the Hamiltonian as

\label{eqn:harmonicOscillatorEnergyShiftPertubation:120}
\begin{aligned}
H
&= \inv{2m} p^2 + \inv{2} m \omega^2 \lr{ x^2 + \frac{2 \lambda b x}{m \omega^2} } \\
&= \inv{2m} p^2 + \inv{2} m \omega^2 \lr{ x + \frac{\lambda b }{m \omega^2} }^2 – \inv{2} m \omega^2 \lr{ \frac{\lambda b }{m \omega^2} }^2.
\end{aligned}

The Hamiltonian is subject to a constant energy shift

\label{eqn:harmonicOscillatorEnergyShiftPertubation:140}
\begin{aligned}
\Delta E
&=
– \inv{2} m \omega^2 \frac{\lambda^2 b^2 }{m^2 \omega^4} \\
&=
– \frac{\lambda^2 b^2 }{2 m \omega^2}.
\end{aligned}

This is an exact match with the second order perturbation result of \ref{eqn:harmonicOscillatorEnergyShiftPertubation:100}.

# References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

## Plane wave ground state expectation for SHO

Problem [1] 2.18 is, for a 1D SHO, show that

\label{eqn:exponentialExpectationGroundState:20}
\bra{0} e^{i k x} \ket{0} = \exp\lr{ -k^2 \bra{0} x^2 \ket{0}/2 }.

Despite the simple appearance of this problem, I found this quite involved to show. To do so, start with a series expansion of the expectation

\label{eqn:exponentialExpectationGroundState:40}
\bra{0} e^{i k x} \ket{0}
=
\sum_{m=0}^\infty \frac{(i k)^m}{m!} \bra{0} x^m \ket{0}.

Let

\label{eqn:exponentialExpectationGroundState:60}
X = \lr{ a + a^\dagger },

so that

\label{eqn:exponentialExpectationGroundState:80}
x
= \sqrt{\frac{\Hbar}{2 \omega m}} X
= \frac{x_0}{\sqrt{2}} X.

Consider the first few values of $$\bra{0} X^n \ket{0}$$

\label{eqn:exponentialExpectationGroundState:100}
\begin{aligned}
\bra{0} X \ket{0}
&=
\bra{0} \lr{ a + a^\dagger } \ket{0} \\
&=
\braket{0}{1} \\
&=
0,
\end{aligned}

\label{eqn:exponentialExpectationGroundState:120}
\begin{aligned}
\bra{0} X^2 \ket{0}
&=
\bra{0} \lr{ a + a^\dagger }^2 \ket{0} \\
&=
\braket{1}{1} \\
&=
1,
\end{aligned}

\label{eqn:exponentialExpectationGroundState:140}
\begin{aligned}
\bra{0} X^3 \ket{0}
&=
\bra{0} \lr{ a + a^\dagger }^3 \ket{0} \\
&=
\bra{1} \lr{ \sqrt{2} \ket{2} + \ket{0} } \\
&=
0.
\end{aligned}

Whenever the power $$n$$ in $$X^n$$ is even, the braket can be split into a bra that has only contributions from odd eigenstates and a ket with even eigenstates. We conclude that $$\bra{0} X^n \ket{0} = 0$$ when $$n$$ is odd.

Noting that $$\bra{0} x^2 \ket{0} = \ifrac{x_0^2}{2}$$, this leaves

\label{eqn:exponentialExpectationGroundState:160}
\begin{aligned}
\bra{0} e^{i k x} \ket{0}
&=
\sum_{m=0}^\infty \frac{(i k)^{2 m}}{(2 m)!} \bra{0} x^{2m} \ket{0} \\
&=
\sum_{m=0}^\infty \frac{(i k)^{2 m}}{(2 m)!} \lr{ \frac{x_0^2}{2} }^m \bra{0} X^{2m} \ket{0} \\
&=
\sum_{m=0}^\infty \frac{1}{(2 m)!} \lr{ -k^2 \bra{0} x^2 \ket{0} }^m \bra{0} X^{2m} \ket{0}.
\end{aligned}

This problem is now reduced to showing that

\label{eqn:exponentialExpectationGroundState:180}
\frac{1}{(2 m)!} \bra{0} X^{2m} \ket{0} = \inv{m! 2^m},

or

\label{eqn:exponentialExpectationGroundState:200}
\begin{aligned}
\bra{0} X^{2m} \ket{0}
&= \frac{(2m)!}{m! 2^m} \\
&= \frac{ (2m)(2m-1)(2m-2) \cdots (2)(1) }{2^m m!} \\
&= \frac{ 2^m (m)(2m-1)(m-1)(2m-3)(m-2) \cdots (2)(3)(1)(1) }{2^m m!} \\
&= (2m-1)!!,
\end{aligned}

where $$n!! = n(n-2)(n-4)\cdots$$.

It looks like $$\bra{0} X^{2m} \ket{0}$$ can be expanded by inserting an identity operator and proceeding recursively, like

\label{eqn:exponentialExpectationGroundState:220}
\begin{aligned}
\bra{0} X^{2m} \ket{0}
&=
\bra{0} X^2 \lr{ \sum_{n=0}^\infty \ket{n}\bra{n} } X^{2m-2} \ket{0} \\
&=
\bra{0} X^2 \lr{ \ket{0}\bra{0} + \ket{2}\bra{2} } X^{2m-2} \ket{0} \\
&=
\bra{0} X^{2m-2} \ket{0} + \bra{0} X^2 \ket{2} \bra{2} X^{2m-2} \ket{0}.
\end{aligned}

This has made use of the observation that $$\bra{0} X^2 \ket{n} = 0$$ for all $$n \ne 0,2$$. The remaining term includes the factor

\label{eqn:exponentialExpectationGroundState:240}
\begin{aligned}
\bra{0} X^2 \ket{2}
&=
\bra{0} \lr{a + a^\dagger}^2 \ket{2} \\
&=
\lr{ \bra{0} + \sqrt{2} \bra{2} } \ket{2} \\
&=
\sqrt{2},
\end{aligned}

Since $$\sqrt{2} \ket{2} = \lr{a^\dagger}^2 \ket{0}$$, the expectation of interest can be written

\label{eqn:exponentialExpectationGroundState:260}
\bra{0} X^{2m} \ket{0}
=
\bra{0} X^{2m-2} \ket{0} + \bra{0} a^2 X^{2m-2} \ket{0}.

How do we expand the second term. Let’s look at how $$a$$ and $$X$$ commute

\label{eqn:exponentialExpectationGroundState:280}
\begin{aligned}
a X
&=
\antisymmetric{a}{X} + X a \\
&=
\antisymmetric{a}{a + a^\dagger} + X a \\
&=
\antisymmetric{a}{a^\dagger} + X a \\
&=
1 + X a,
\end{aligned}

\label{eqn:exponentialExpectationGroundState:300}
\begin{aligned}
a^2 X
&=
a \lr{ a X } \\
&=
a \lr{ 1 + X a } \\
&=
a + a X a \\
&=
a + \lr{ 1 + X a } a \\
&=
2 a + X a^2.
\end{aligned}

Proceeding to expand $$a^2 X^n$$ we find
\label{eqn:exponentialExpectationGroundState:320}
\begin{aligned}
a^2 X^3 &= 6 X + 6 X^2 a + X^3 a^2 \\
a^2 X^4 &= 12 X^2 + 8 X^3 a + X^4 a^2 \\
a^2 X^5 &= 20 X^3 + 10 X^4 a + X^5 a^2 \\
a^2 X^6 &= 30 X^4 + 12 X^5 a + X^6 a^2.
\end{aligned}

It appears that we have
\label{eqn:exponentialExpectationGroundState:340}
\antisymmetric{a^2 X^n}{X^n a^2} = \beta_n X^{n-2} + 2 n X^{n-1} a,

where

\label{eqn:exponentialExpectationGroundState:360}
\beta_n = \beta_{n-1} + 2 (n-1),

and $$\beta_2 = 2$$. Some goofing around shows that $$\beta_n = n(n-1)$$, so the induction hypothesis is

\label{eqn:exponentialExpectationGroundState:380}
\antisymmetric{a^2 X^n}{X^n a^2} = n(n-1) X^{n-2} + 2 n X^{n-1} a.

Let’s check the induction
\label{eqn:exponentialExpectationGroundState:400}
\begin{aligned}
a^2 X^{n+1}
&=
a^2 X^{n} X \\
&=
\lr{ n(n-1) X^{n-2} + 2 n X^{n-1} a + X^n a^2 } X \\
&=
n(n-1) X^{n-1} + 2 n X^{n-1} a X + X^n a^2 X \\
&=
n(n-1) X^{n-1} + 2 n X^{n-1} \lr{ 1 + X a } + X^n \lr{ 2 a + X a^2 } \\
&=
n(n-1) X^{n-1} + 2 n X^{n-1} + 2 n X^{n} a
+ 2 X^n a
+ X^{n+1} a^2 \\
&=
X^{n+1} a^2 + (2 + 2 n) X^{n} a + \lr{ 2 n + n(n-1) } X^{n-1} \\
&=
X^{n+1} a^2 + 2(n + 1) X^{n} a + (n+1) n X^{n-1},
\end{aligned}

which concludes the induction, giving

\label{eqn:exponentialExpectationGroundState:420}
\bra{ 0 } a^2 X^{n} \ket{0 } = n(n-1) \bra{0} X^{n-2} \ket{0},

and

\label{eqn:exponentialExpectationGroundState:440}
\bra{0} X^{2m} \ket{0}
=
\bra{0} X^{2m-2} \ket{0} + (2m-2)(2m-3) \bra{0} X^{2m-4} \ket{0}.

Let

\label{eqn:exponentialExpectationGroundState:460}
\sigma_{n} = \bra{0} X^n \ket{0},

so that the recurrence relation, for $$2n \ge 4$$ is

\label{eqn:exponentialExpectationGroundState:480}
\sigma_{2n} = \sigma_{2n -2} + (2n-2)(2n-3) \sigma_{2n -4}

We want to show that this simplifies to

\label{eqn:exponentialExpectationGroundState:500}
\sigma_{2n} = (2n-1)!!

The first values are

\label{eqn:exponentialExpectationGroundState:540}
\sigma_0 = \bra{0} X^0 \ket{0} = 1

\label{eqn:exponentialExpectationGroundState:560}
\sigma_2 = \bra{0} X^2 \ket{0} = 1

which gives us the right result for the first term in the induction

\label{eqn:exponentialExpectationGroundState:580}
\begin{aligned}
\sigma_4
&= \sigma_2 + 2 \times 1 \times \sigma_0 \\
&= 1 + 2 \\
&= 3!!
\end{aligned}

For the general induction term, consider

\label{eqn:exponentialExpectationGroundState:600}
\begin{aligned}
\sigma_{2n + 2}
&= \sigma_{2n} + 2 n (2n – 1) \sigma_{2n -2} \\
&= (2n-1)!! + 2n ( 2n – 1) (2n -3)!! \\
&= (2n + 1) (2n -1)!! \\
&= (2n + 1)!!,
\end{aligned}

which completes the final induction. That was also the last thing required to complete the proof, so we are done!

# References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

## (a)

For a 1D SHO, compute $$\bra{m} x \ket{n}, \bra{m} x^2 \ket{n}, \bra{m} p \ket{n}, \bra{m} p^2 \ket{n}$$ and $$\bra{m} \symmetric{x}{p} \ket{n}$$.

## (b)

Verify the virial theorem is satisfied for energy eigenstates.

## (a)

Using

\label{eqn:shoExpectations:20}
\begin{aligned}
x &= \frac{x_0}{\sqrt{2}} \lr{ a + a^\dagger } \\
p &= \frac{i\Hbar}{x_0 \sqrt{2}} \lr{ a^\dagger – a} \\
a(t) &= a(0) e^{-i \omega t} \\
a(0) \ket{n} &= \sqrt{n} \ket{n-1} \\
a^\dagger(0) \ket{n} &= \sqrt{n+1} \ket{n+1} \\
x_0^2 &= \frac{\Hbar}{\omega m},
\end{aligned}

we have

\label{eqn:shoExpectations:40}
\begin{aligned}
\bra{m} x \ket{n}
&=
\frac{x_0}{\sqrt{2}} \bra{m} \lr{ a + a^\dagger } \ket{n} \\
&=
\frac{x_0}{\sqrt{2}} \bra{m}
\lr{
e^{-i \omega t} \sqrt{n} \ket{n-1}
+
e^{i \omega t} \sqrt{n+1} \ket{n+1}
} \\
&=
\frac{x_0}{\sqrt{2}} \lr{
\delta_{m, n-1} e^{-i \omega t} \sqrt{n}
+
\delta_{m, n+1} e^{i \omega t} \sqrt{n+1}
},
\end{aligned}

\label{eqn:shoExpectations:60}
\begin{aligned}
\bra{m} x^2 \ket{n}
&=
\frac{x_0^2}{2} \bra{m} \lr{ a + a^\dagger }^2 \ket{n} \\
&=
\frac{x_0^2}{2}
\lr{
e^{i \omega t} \sqrt{m} \bra{m-1}
+
e^{-i \omega t} \sqrt{m+1} \bra{m+1}
}
\lr{
e^{-i \omega t} \sqrt{n} \ket{n-1}
+
e^{i \omega t} \sqrt{n+1} \ket{n+1}
} \\
&=
\frac{x_0^2}{2}
\lr{
\delta_{m+1,n+1} \sqrt{(m+1)(n+1)}
+\delta_{m+1,n-1} \sqrt{(m+1)n} e^{-2 i \omega t}
+\delta_{m-1,n+1} \sqrt{m(n+1)} e^{2 i \omega t}
+\delta_{m-1,n-1} \sqrt{m n}
},
\end{aligned}

\label{eqn:shoExpectations:80}
\begin{aligned}
\bra{m} p \ket{n}
&=
\frac{i\Hbar}{\sqrt{2} x_0} \bra{m} \lr{ a^\dagger – a} \ket{n} \\
&=
\frac{i\Hbar}{\sqrt{2} x_0} \bra{m} \lr{
e^{i \omega t} \sqrt{n+1} \ket{n+1}

e^{-i \omega t} \sqrt{n} \ket{n-1}
} \\
&=
\frac{i\Hbar}{\sqrt{2} x_0} \lr{
\delta_{m,n+1} e^{i \omega t} \sqrt{n+1}

\delta_{m,n-1} e^{-i \omega t} \sqrt{n}
},
\end{aligned}

\label{eqn:shoExpectations:100}
\begin{aligned}
\bra{m} p^2 \ket{n}
&=
\frac{\Hbar^2}{2 x_0^2} \ket{m} \lr{ a – a^\dagger } \lr{ a^\dagger – a}
\ket{n} \\
&=
\frac{\Hbar^2}{2 x_0^2}
\lr{
-e^{-i \omega t} \sqrt{m+1} \bra{m+1}
+
e^{i \omega t} \sqrt{m} \bra{m-1}
}
\lr{
e^{i \omega t} \sqrt{n+1} \ket{n+1}

e^{-i \omega t} \sqrt{n} \ket{n-1}
} \\
&=
\frac{\Hbar^2}{2 x_0^2}
\lr{
\delta_{m+1,n+1} \sqrt{(m+1)(n+1)}
+\delta_{m+1,n-1} \sqrt{(m+1)n} e^{-2 i \omega t}
+\delta_{m-1,n+1} \sqrt{m(n+1)} e^{2 i \omega t}
+\delta_{m-1,n-1} \sqrt{m n}
}.
\end{aligned}

For the anticommutator $$\symmetric{x}{p}$$, we have

\label{eqn:shoExpectations:120}
\begin{aligned}
\symmetric{x}{p}
&=
\frac{i\Hbar}{2}
\lr{
\lr{ a e^{-i \omega t} + a^\dagger e^{i \omega t} } \lr{ a^\dagger e^{i \omega t} – a e^{-i \omega t} }

\lr{ a^\dagger e^{i \omega t} – a e^{-i \omega t} }
\lr{ a e^{-i \omega t} + a^\dagger e^{i \omega t} }
} \\
&=
\frac{i\Hbar}{2}
\lr{
– a^2 e^{- 2 i \omega t}
+ (a^\dagger)^2 e^{ 2 i \omega t}
+ a a^\dagger
– a^\dagger a
+ a^2 e^{- 2 i \omega t}
– (a^\dagger)^2 e^{ 2 i \omega t}
– a^\dagger a
+ a a^\dagger
} \\
&=
i\Hbar
\lr{
a a^\dagger – a^\dagger a
},
\end{aligned}

so

\label{eqn:shoExpectations:140}
\begin{aligned}
\bra{m} \symmetric{x}{p} \ket{n}
&=
i\Hbar
\bra{m}
\lr{
a a^\dagger – a^\dagger a
}
\ket{n} \\
&=
i\Hbar
\bra{m}
\lr{
\sqrt{(n+1)^2}\ket{n}
-\sqrt{n^2}\ket{n}
} \\
&=
i\Hbar
\bra{m}
\lr{
2 n + 1
}
\ket{n}.
\end{aligned}

## (b)

For the SHO, the virial theorem requires $$\expectation{p^2/m} = \expectation{m \omega x^2}$$. That momentum expectation with respect to the eigenstate $$\ket{n}$$ is

\label{eqn:shoExpectations:160}
\begin{aligned}
\expectation{p^2/m}
&=
\frac{\Hbar^2}{2 x_0^2 m}
\lr{
\sqrt{(n+1)(n+1)}
+
\sqrt{n n}
} \\
&=
\frac{\Hbar^2 m \omega}{2 \Hbar m} \lr{ 2 n + 1 } \\
&=
\Hbar \omega \lr{ n + \inv{2} }.
\end{aligned}

For the position expectation we’ve got

\label{eqn:shoExpectations:180}
\begin{aligned}
\expectation{m \omega x^2}
&=
\frac{m \omega^2 x_0^2}{2}
\lr{
\sqrt{(n+1)(n+1)}
+ \sqrt{n n}
} \\
&=
\frac{m \omega^2 \Hbar}{2 m \omega}
\lr{
\sqrt{(n+1)(n+1)}
+ \sqrt{n n}
} \\
&=
\frac{\omega \Hbar}{2 }
\lr{ 2 n + 1 } \\
&=
\omega \Hbar
\lr{ n + \inv{2} }.
\end{aligned}

This shows that the virial theorem holds for the SHO Hamiltonian for eigenstates.

# References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.