Hermitian

Dynamics of non-Hermitian Hamiltonian

August 13, 2015 phy1520 No comments , , , , ,

[Click here for a PDF of this post with nicer formatting]

Question: Dynamics of non-Hermitian Hamiltonian ([1] pr. 2.2)

Revisiting an earlier Hamiltonian, but assuming it was entered incorrectly as

\begin{equation}\label{eqn:dynamicsNonHermitian:20}
H = H_{11} \ket{1}\bra{1}
+ H_{22} \ket{2}\bra{2}
+ H_{12} \ket{1}\bra{2}.
\end{equation}

What principle is now violated? Illustrate your point explicitly by attempting to solve the most generaqtl time-dependent problem using an illegal Hamiltonian of this kind. You may assume that \( H_{11} = H_{22} \) for simplicity.

Answer

In matrix form this Hamiltonian is

\begin{equation}\label{eqn:dynamicsNonHermitian:40}
\begin{aligned}
H
&=
\begin{bmatrix}
\bra{1} H \ket{1} & \bra{1} H \ket{2} \\
\bra{2} H \ket{1} & \bra{2} H \ket{2} \\
\end{bmatrix} \\
&=
\begin{bmatrix}
H_{11} & H_{12} \\
0 & H_{22} \\
\end{bmatrix}.
\end{aligned}
\end{equation}

This is not a Hermitian operator. What is the physical implication of this non-Hermicity? Consider the simpler case where \( H_{11} = H_{22} \). Such a Hamiltonian has the form

\begin{equation}\label{eqn:dynamicsNonHermitian:60}
H =
\begin{bmatrix}
a & b \\
0 & a
\end{bmatrix}.
\end{equation}

This has only one unique eigenvector ( \( (1,0) \), but we can still solve the time evolution equation

\begin{equation}\label{eqn:dynamicsNonHermitian:80}
i \Hbar \PD{t}{U} = H U,
\end{equation}

since for constant \( H \), we have

\begin{equation}\label{eqn:dynamicsNonHermitian:100}
U = e^{-i H t/\Hbar}.
\end{equation}

To exponentiate, note that we have

\begin{equation}\label{eqn:dynamicsNonHermitian:120}
{\begin{bmatrix}
a & b \\
0 & a
\end{bmatrix}}^n
=
\begin{bmatrix}
a^n & n a^{n-1} b \\
0 & a^n
\end{bmatrix}.
\end{equation}

To prove the induction, the \( n = 2 \) case follows easily

\begin{equation}\label{eqn:dynamicsNonHermitian:140}
\begin{bmatrix}
a & b \\
0 & a
\end{bmatrix}
\begin{bmatrix}
a & b \\
0 & a
\end{bmatrix}
=
\begin{bmatrix}
a^2 & 2 a b \\
0 & a^2
\end{bmatrix},
\end{equation}

as does the general case

\begin{equation}\label{eqn:dynamicsNonHermitian:160}
\begin{bmatrix}
a^n & n a^{n-1} b \\
0 & a^n
\end{bmatrix}
\begin{bmatrix}
a & b \\
0 & a
\end{bmatrix}
=
\begin{bmatrix}
a^{n+1} & (n +1 ) a^{n} b \\
0 & a^{n+1}
\end{bmatrix}.
\end{equation}

The exponential sum is thus
\begin{equation}\label{eqn:dynamicsNonHermitian:180}
e^{H \tau}
=
\begin{bmatrix}
e^{a \tau} & 0 + \frac{b \tau}{1!} + \frac{2 a b \tau^2}{2!} + \frac{3 a^2 b \tau^3}{3!} + \cdots \\
0 & e^{a \tau}
\end{bmatrix}.
\end{equation}

That sum simplifies to

\begin{equation}\label{eqn:dynamicsNonHermitian:200}
\frac{b \tau}{0!} + \frac{a b \tau^2}{1!} + \frac{a^2 b \tau^3}{2!} + \cdots \\
=
b \tau \lr{ 1 + \frac{a \tau}{1!} + \frac{(a \tau)^2}{2!} + \cdots }
=
b \tau e^{a \tau}.
\end{equation}

The exponential is thus
\begin{equation}\label{eqn:dynamicsNonHermitian:220}
e^{H \tau}
=
\begin{bmatrix}
e^{a\tau} & b \tau e^{a\tau} \\
0 & e^{a\tau}
\end{bmatrix}
=
\begin{bmatrix}
1 & b \tau \\
0 & 1
\end{bmatrix}
e^{a\tau}.
\end{equation}

In particular

\begin{equation}\label{eqn:dynamicsNonHermitian:240}
U = e^{-i H t/\Hbar} =
\begin{bmatrix}
1 & -i b t/\Hbar \\
0 & 1
\end{bmatrix}
e^{-i a t /\Hbar }.
\end{equation}

We can verify that this is a solution to \ref{eqn:dynamicsNonHermitian:80}. The left hand side is

\begin{equation}\label{eqn:dynamicsNonHermitian:260}
\begin{aligned}
i \Hbar \PD{t}{U}
&=
i \Hbar
\begin{bmatrix}
-i a/\Hbar & -i b /\Hbar + (-i b t/\Hbar)(-i a/\Hbar) \\
0 & -i a /\Hbar
\end{bmatrix}
e^{-i a t /\Hbar } \\
&=
\begin{bmatrix}
a & b – i a b t/\Hbar \\
0 & a
\end{bmatrix}
e^{-i a t /\Hbar },
\end{aligned}
\end{equation}

and for the right hand side
\begin{equation}\label{eqn:dynamicsNonHermitian:280}
\begin{aligned}
H U
&=
\begin{bmatrix}
a & b \\
0 & a
\end{bmatrix}
\begin{bmatrix}
1 & -i b t/\Hbar \\
0 & 1
\end{bmatrix}
e^{-i a t /\Hbar } \\
&=
\begin{bmatrix}
a & b – i a b t/\Hbar \\
0 & a
\end{bmatrix}
e^{-i a t /\Hbar } \\
&=
i \Hbar \PD{t}{U}.
\end{aligned}
\end{equation}

While the Schr\”{o}dinger is satisfied, we don’t have the unitary invertion physical property that is desired for the time evolution operator \( U \). Namely

\begin{equation}\label{eqn:dynamicsNonHermitian:300}
\begin{aligned}
U^\dagger U
&=
\begin{bmatrix}
1 & 0 \\
i b t/\Hbar & 1
\end{bmatrix}
e^{i a t /\Hbar }
\begin{bmatrix}
1 & -i b t/\Hbar \\
0 & 1
\end{bmatrix}
e^{-i a t /\Hbar } \\
&=
\begin{bmatrix}
1 & -i b t/\Hbar \\
i b t/\Hbar & (b t)^2/\Hbar^2
\end{bmatrix} \\
&\ne I.
\end{aligned}
\end{equation}

We required \( U^\dagger U = I \) for the time evolution operator, but don’t have that property for this non-Hermitian Hamiltonian.

References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

Update to old phy356 (Quantum Mechanics I) notes.

February 12, 2015 math and physics play No comments , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

It’s been a long time since I took QM I. My notes from that class were pretty rough, but I’ve cleaned them up a bit.

The main value to these notes is that I worked a number of introductory Quantum Mechanics problems.

These were my personal lecture notes for the Fall 2010, University of Toronto Quantum mechanics I course (PHY356H1F), taught by Prof. Vatche Deyirmenjian.

The official description of this course was:

The general structure of wave mechanics; eigenfunctions and eigenvalues; operators; orbital angular momentum; spherical harmonics; central potential; separation of variables, hydrogen atom; Dirac notation; operator methods; harmonic oscillator and spin.

This document contains a few things

• My lecture notes.
Typos, if any, are probably mine(Peeter), and no claim nor attempt of spelling or grammar correctness will be made. The first four lectures had chosen not to take notes for since they followed the text very closely.
• Notes from reading of the text. This includes observations, notes on what seem like errors, and some solved problems. None of these problems have been graded. Note that my informal errata sheet for the text has been separated out from this document.
• Some assigned problems. I have corrected some the errors after receiving grading feedback, and where I have not done so I at least recorded some of the grading comments as a reference.
• Some worked problems associated with exam preparation.