Jackson electrodynamics

Dipole field from multipole moment sum

November 12, 2016 math and physics play , , , , ,

[Click here for a PDF of this post with nicer formatting]

As indicated in Jackson [1], the components of the electric field can be obtained directly from the multipole moments

\begin{equation}\label{eqn:dipoleFromSphericalMoments:20}
\Phi(\Bx)
= \inv{4 \pi \epsilon_0} \sum \frac{4 \pi}{ (2 l + 1) r^{l + 1} } q_{l m} Y_{l m},
\end{equation}

so for the \( l,m \) contribution to this sum the components of the electric field are

\begin{equation}\label{eqn:dipoleFromSphericalMoments:40}
E_r
=
\inv{\epsilon_0} \sum \frac{l+1}{ (2 l + 1) r^{l + 2} } q_{l m} Y_{l m},
\end{equation}

\begin{equation}\label{eqn:dipoleFromSphericalMoments:60}
E_\theta
= -\inv{\epsilon_0} \sum \frac{1}{ (2 l + 1) r^{l + 2} } q_{l m} \partial_\theta Y_{l m}
\end{equation}

\begin{equation}\label{eqn:dipoleFromSphericalMoments:80}
\begin{aligned}
E_\phi
&= -\inv{\epsilon_0} \sum \frac{1}{ (2 l + 1) r^{l + 2} \sin\theta } q_{l m} \partial_\phi Y_{l m} \\
&= -\inv{\epsilon_0} \sum \frac{j m}{ (2 l + 1) r^{l + 2} \sin\theta } q_{l m} Y_{l m}.
\end{aligned}
\end{equation}

Here I’ve translated from CGS to SI. Let’s calculate the \( l = 1 \) electric field components directly from these expressions and check against the previously calculated results.

\begin{equation}\label{eqn:dipoleFromSphericalMoments:100}
\begin{aligned}
E_r
&=
\inv{\epsilon_0} \frac{2}{ 3 r^{3} }
\lr{
2 \lr{ -\sqrt{\frac{3}{8\pi}} }^2 \textrm{Re} \lr{
(p_x – j p_y) \sin\theta e^{j\phi}
}
+
\lr{ \sqrt{\frac{3}{4\pi}} }^2 p_z \cos\theta
} \\
&=
\frac{2}{4 \pi \epsilon_0 r^3}
\lr{
p_x \sin\theta \cos\phi + p_y \sin\theta \sin\phi + p_z \cos\theta
} \\
&=
\frac{1}{4 \pi \epsilon_0 r^3} 2 \Bp \cdot \rcap.
\end{aligned}
\end{equation}

Note that

\begin{equation}\label{eqn:dipoleFromSphericalMoments:120}
\partial_\theta Y_{11} = -\sqrt{\frac{3}{8\pi}} \cos\theta e^{j \phi},
\end{equation}

and

\begin{equation}\label{eqn:dipoleFromSphericalMoments:140}
\partial_\theta Y_{1,-1} = \sqrt{\frac{3}{8\pi}} \cos\theta e^{-j \phi},
\end{equation}

so

\begin{equation}\label{eqn:dipoleFromSphericalMoments:160}
\begin{aligned}
E_\theta
&=
-\inv{\epsilon_0} \frac{1}{ 3 r^{3} }
\lr{
2 \lr{ -\sqrt{\frac{3}{8\pi}} }^2 \textrm{Re} \lr{
(p_x – j p_y) \cos\theta e^{j\phi}
}

\lr{ \sqrt{\frac{3}{4\pi}} }^2 p_z \sin\theta
} \\
&=
-\frac{1}{4 \pi \epsilon_0 r^3}
\lr{
p_x \cos\theta \cos\phi + p_y \cos\theta \sin\phi – p_z \sin\theta
} \\
&=
-\frac{1}{4 \pi \epsilon_0 r^3} \Bp \cdot \thetacap.
\end{aligned}
\end{equation}

For the \(\phicap\) component, the \( m = 0 \) term is killed. This leaves

\begin{equation}\label{eqn:dipoleFromSphericalMoments:180}
\begin{aligned}
E_\phi
&=
-\frac{1}{\epsilon_0} \frac{1}{ 3 r^{3} \sin\theta }
\lr{
j q_{11} Y_{11} – j q_{1,-1} Y_{1,-1}
} \\
&=
-\frac{1}{3 \epsilon_0 r^{3} \sin\theta }
\lr{
j q_{11} Y_{11} – j (-1)^{2m} q_{11}^\conj Y_{11}^\conj
} \\
&=
\frac{2}{\epsilon_0} \frac{1}{ 3 r^{3} \sin\theta }
\textrm{Im} q_{11} Y_{11} \\
&=
\frac{2}{3 \epsilon_0 r^{3} \sin\theta }
\textrm{Im} \lr{
\lr{ -\sqrt{\frac{3}{8\pi}} }^2 (p_x – j p_y) \sin\theta e^{j \phi}
} \\
&=
\frac{1}{ 4 \pi \epsilon_0 r^{3} }
\textrm{Im} \lr{
(p_x – j p_y) e^{j \phi}
} \\
&=
\frac{1}{ 4 \pi \epsilon_0 r^{3} }
\lr{
p_x \sin\phi – p_y \cos\phi
} \\
&=
-\frac{\Bp \cdot \phicap}{ 4 \pi \epsilon_0 r^3}.
\end{aligned}
\end{equation}

That is
\begin{equation}\label{eqn:dipoleFromSphericalMoments:200}
\boxed{
\begin{aligned}
E_r &=
\frac{2}{4 \pi \epsilon_0 r^3}
\Bp \cdot \rcap \\
E_\theta &= –
\frac{1}{4 \pi \epsilon_0 r^3}
\Bp \cdot \thetacap \\
E_\phi &= –
\frac{1}{4 \pi \epsilon_0 r^3}
\Bp \cdot \phicap.
\end{aligned}
}
\end{equation}

These are consistent with equations (4.12) from the text for when \( \Bp \) is aligned with the z-axis.

Observe that we can sum each of the projections of \( \BE \) to construct the total electric field due to this \( l = 1 \) term of the multipole moment sum

\begin{equation}\label{eqn:dipoleFromSphericalMoments:n}
\begin{aligned}
\BE
&=
\frac{1}{4 \pi \epsilon_0 r^3}
\lr{
2 \rcap (\Bp \cdot \rcap)

\phicap ( \Bp \cdot \phicap)

\thetacap ( \Bp \cdot \thetacap)
} \\
&=
\frac{1}{4 \pi \epsilon_0 r^3}
\lr{
3 \rcap (\Bp \cdot \rcap)

\Bp
},
\end{aligned}
\end{equation}

which recovers the expected dipole moment approximation.

References

[1] JD Jackson. Classical Electrodynamics. John Wiley and Sons, 2nd edition, 1975.

Magnetostatic force and torque

October 18, 2016 math and physics play , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

In Jackson [1], the following equations for the vector potential, magnetostatic force and torque are derived

\begin{equation}\label{eqn:magnetostaticsJacksonNotesForceAndTorque:20}
\Bm = \inv{2} \int \Bx’ \cross \BJ(\Bx’) d^3 x’
\end{equation}
\begin{equation}\label{eqn:magnetostaticsJacksonNotesForceAndTorque:40}
\BF = \spacegrad( \Bm \cdot \BB ),
\end{equation}
\begin{equation}\label{eqn:magnetostaticsJacksonNotesForceAndTorque:60}
\BN = \Bm \cross \BB,
\end{equation}

where \( \BB \) is an applied external magnetic field and \( \Bm \) is the magnetic dipole for the current in question. These results (and a similar one derived earlier for the vector potential \( \BA \)) all follow from
an analysis of localized current densities \( \BJ \), evaluated far enough away from the current sources.

For the force and torque, the starting point for the force is one that had me puzzled a bit. Namely

\begin{equation}\label{eqn:magnetostaticsJacksonNotesForceAndTorque:80}
\BF = \int \BJ(\Bx) \cross \BB(\Bx) d^3 x
\end{equation}

This is clearly the continuum generalization of the point particle Lorentz force equation, which for \( \BE = 0 \) is:

\begin{equation}\label{eqn:magnetostaticsJacksonNotesForceAndTorque:100}
\BF = q \Bv \cross \BB
\end{equation}

For the point particle, this is the force on the particle when it is in the external field \( BB \). i.e. this is the force at the position of the particle. My question is what does it mean to sum all the forces on the charge distribution over all space.
How can a force be applied over all, as opposed to a force applied at a single point, or against a surface?

In the special case of a localized current density, this makes some sense. Considering the other half of the force equation \( \BF = \ddt{}\int \rho_m \Bv dV \), where \( \rho_m \) here is mass density of the charged particles making up the continuous current distribution. The other half of this \( \BF = m\Ba \) equation is also an average phenomena, so we have an average of sorts on both the field contribution to the force equation and the mass contribution to the force equation. There is probably a centre-of-mass and centre-of-current density interpretation that would make a bit more sense of this continuum force description.

It’s kind of funny how you can work through all the detailed mathematical steps in a book like Jackson, but then go right back to the beginning and say “Hey, what does that even mean”?

Force

Moving on from the pondering of the meaning of the equation being manipulated, let’s do the easy part, the derivation of the results that Jackson comes up with.

Writing out \ref{eqn:magnetostaticsJacksonNotesForceAndTorque:80} in coordinates

\begin{equation}\label{eqn:magnetostaticsJacksonNotesForceAndTorque:320}
\BF = \epsilon_{ijk} \Be_i \int J_j B_k d^3 x.
\end{equation}

To first order, a slowly varying (external) magnetic field can be expanded around a point of interest

\begin{equation}\label{eqn:magnetostaticsJacksonNotesForceAndTorque:120}
\BB(\Bx) = \BB(\Bx_0) + \lr{ \Bx – \Bx_0 } \cdot \spacegrad \BB,
\end{equation}

where the directional derivative is evaluated at the point \( \Bx_0 \) after the gradient operation. Setting the origin at this point \( \Bx_0 \) gives

\begin{equation}\label{eqn:magnetostaticsJacksonNotesForceAndTorque:340}
\begin{aligned}
\BF
&= \epsilon_{ijk} \Be_i
\lr{
\int J_j(\Bx’) B_k(0) d^3 x’
+
\int J_j(\Bx’) (\Bx’ \cdot \spacegrad) B_k(0) d^3 x’
} \\
&=
\epsilon_{ijk} \Be_i
\Bk_0 \int J_j(\Bx’) d^3 x’
+
\epsilon_{ijk} \Be_i
\int J_j(\Bx’) (\Bx’ \cdot \spacegrad) B_k(0) d^3 x’.
\end{aligned}
\end{equation}

We found

earlier
that the first integral can be written as a divergence

\begin{equation}\label{eqn:magnetostaticsJacksonNotesForceAndTorque:140}
\int J_j(\Bx’) d^3 x’
=
\int \spacegrad’ \cdot \lr{ \BJ(\Bx’) x_j’ } dV’,
\end{equation}

which is zero when the integration surface is outside of the current localization region. We also found

that

\begin{equation}\label{eqn:magnetostaticsJacksonNotesForceAndTorque:160}
\int (\Bx \cdot \Bx’) \BJ
= -\inv{2} \Bx \cross \int \Bx’ \cross \BJ = \Bm \cross \Bx.
\end{equation}

so
\begin{equation}\label{eqn:magnetostaticsJacksonNotesForceAndTorque:180}
\begin{aligned}
\int (\spacegrad B_k(0) \cdot \Bx’) J_j
&= -\inv{2} \lr{ \spacegrad B_k(0) \cross \int \Bx’ \cross \BJ}_j \\
&= \lr{ \Bm \cross (\spacegrad B_k(0)) }_j.
\end{aligned}
\end{equation}

This gives

\begin{equation}\label{eqn:magnetostaticsJacksonNotesForceAndTorque:200}
\begin{aligned}
\BF
&= \epsilon_{ijk} \Be_i \lr{ \Bm \cross (\spacegrad B_k(0)) }_j \\
&= \epsilon_{ijk} \Be_i \lr{ \Bm \cross \spacegrad }_j B_k(0) \\
&= (\Bm \cross \spacegrad) \cross \BB(0) \\
&= -\BB(0) \cross (\Bm \cross \lspacegrad) \\
&= (\BB(0) \cdot \Bm) \lspacegrad – (\BB \cdot \lspacegrad) \Bm \\
&= \spacegrad (\BB(0) \cdot \Bm) – \Bm (\spacegrad \cdot \BB(0)).
\end{aligned}
\end{equation}

The second term is killed by the magnetic Gauss’s law, leaving to first order

\begin{equation}\label{eqn:magnetostaticsJacksonNotesForceAndTorque:220}
\BF = \spacegrad \lr{\Bm \cdot \BB}.
\end{equation}

Torque

For the torque we have a similar quandary at the starting point. About what point is a continuum torque integral of the following form

\begin{equation}\label{eqn:magnetostaticsJacksonNotesForceAndTorque:240}
\BN = \int \Bx’ \cross (\BJ(\Bx’) \cross \BB(\Bx’)) d^3 x’?
\end{equation}

Ignoring that detail again, assuming the answer has something to do with the centre of mass and parallel axis theorem, we can proceed with a constant approximation of the magnetic field

\begin{equation}\label{eqn:magnetostaticsJacksonNotesForceAndTorque:260}
\begin{aligned}
\BN
&= \int \Bx’ \cross (\BJ(\Bx’) \cross \BB(0)) d^3 x’ \\
&=
-\int (\Bx’ \cdot \BJ(\Bx’)) \BB(0) d^3 x’
+\int (\Bx’ \cdot \BB(0)) \BJ(\Bx’) d^3 x’ \\
&=
-\BB(0) \int (\Bx’ \cdot \BJ(\Bx’)) d^3 x’
+\int (\Bx’ \cdot \BB(0)) \BJ(\Bx’) d^3 x’.
\end{aligned}
\end{equation}

Jackson’s trick for killing the first integral is to transform it into a divergence by evaluating

\begin{equation}\label{eqn:magnetostaticsJacksonNotesForceAndTorque:280}
\begin{aligned}
\spacegrad \cdot \lr{ \BJ \Abs{\Bx}^2 }
&=
(\spacegrad \cdot \BJ) \Abs{\Bx}^2
+
\BJ \cdot \spacegrad \Abs{\Bx}^2 \\
&=
\BJ \cdot \Be_i \partial_i x_m x_m \\
&=
2 \BJ \cdot \Be_i \delta_{im} x_m \\
&=
2 \BJ \cdot \Bx,
\end{aligned}
\end{equation}

so

\begin{equation}\label{eqn:magnetostaticsJacksonNotesForceAndTorque:300}
\begin{aligned}
\BN
&=
-\inv{2} \BB(0) \int \spacegrad’ \cdot \lr{ \BJ(\Bx’) \Abs{\Bx’}^2 } d^3 x’
+\int (\Bx’ \cdot \BB(0)) \BJ(\Bx’) d^3 x’ \\
&=
-\inv{2} \BB(0) \oint \Bn \cdot \lr{ \BJ(\Bx’) \Abs{\Bx’}^2 } d^3 x’
+\int (\Bx’ \cdot \BB(0)) \BJ(\Bx’) d^3 x’.
\end{aligned}
\end{equation}

Again, the localized current density assumption kills the surface integral. The second integral can be evaluated with \ref{eqn:magnetostaticsJacksonNotesForceAndTorque:160}, so to first order we have

\begin{equation}\label{eqn:magnetostaticsJacksonNotesForceAndTorque:360}
\BN
=
\Bm \cross \BB.
\end{equation}

References

[1] JD Jackson. Classical Electrodynamics. John Wiley and Sons, 2nd edition, 1975.

Magnetic moment for a localized magnetostatic current

October 13, 2016 math and physics play , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

Motivation.

I was once again reading my Jackson [2]. This time I found that his presentation of magnetic moment didn’t really make sense to me. Here’s my own pass through it, filling in a number of details. As I did last time, I’ll also translate into SI units as I go.

Vector potential.

The Biot-Savart expression for the magnetic field can be factored into a curl expression using the usual tricks

\begin{equation}\label{eqn:magneticMomentJackson:20}
\begin{aligned}
\BB
&= \frac{\mu_0}{4\pi} \int \frac{\BJ(\Bx’) \cross (\Bx – \Bx’)}{\Abs{\Bx – \Bx’}^3} d^3 x’ \\
&= -\frac{\mu_0}{4\pi} \int \BJ(\Bx’) \cross \spacegrad \inv{\Abs{\Bx – \Bx’}} d^3 x’ \\
&= \frac{\mu_0}{4\pi} \spacegrad \cross \int \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’,
\end{aligned}
\end{equation}

so the vector potential, through its curl, defines the magnetic field \( \BB = \spacegrad \cross \BA \) is given by

\begin{equation}\label{eqn:magneticMomentJackson:40}
\BA(\Bx) = \frac{\mu_0}{4 \pi} \int \frac{J(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’.
\end{equation}

If the current source is localized (zero outside of some finite region), then there will always be a region for which \( \Abs{\Bx} \gg \Abs{\Bx’} \), so the denominator yields to Taylor expansion

\begin{equation}\label{eqn:magneticMomentJackson:60}
\begin{aligned}
\inv{\Abs{\Bx – \Bx’}}
&=
\inv{\Abs{\Bx}} \lr{1 + \frac{\Abs{\Bx’}^2}{\Abs{\Bx}^2} – 2 \frac{\Bx \cdot \Bx’}{\Abs{\Bx}^2} }^{-1/2} \\
&\approx
\inv{\Abs{\Bx}} \lr{ 1 + \frac{\Bx \cdot \Bx’}{\Abs{\Bx}^2} } \\
&=
\inv{\Abs{\Bx}} + \frac{\Bx \cdot \Bx’}{\Abs{\Bx}^3}.
\end{aligned}
\end{equation}

so the vector potential, far enough away from the current source is
\begin{equation}\label{eqn:magneticMomentJackson:80}
\BA(\Bx)
=
\frac{\mu_0}{4 \pi} \int \frac{J(\Bx’)}{\Abs{\Bx}} d^3 x’
+\frac{\mu_0}{4 \pi} \int \frac{(\Bx \cdot \Bx’)J(\Bx’)}{\Abs{\Bx}^3} d^3 x’.
\end{equation}

Jackson uses a sneaky trick to show that the first integral is killed for a localized source. That trick appears to be based on evaluating the following divergence

\begin{equation}\label{eqn:magneticMomentJackson:100}
\begin{aligned}
\spacegrad \cdot (\BJ(\Bx) x_i)
&=
(\spacegrad \cdot \BJ) x_i
+
(\spacegrad x_i) \cdot \BJ \\
&=
(\Be_k \partial_k x_i) \cdot\BJ \\
&=
\delta_{ki} J_k \\
&=
J_i.
\end{aligned}
\end{equation}

Note that this made use of the fact that \( \spacegrad \cdot \BJ = 0 \) for magnetostatics. This provides a way to rewrite the current density as a divergence

\begin{equation}\label{eqn:magneticMomentJackson:120}
\begin{aligned}
\int \frac{J(\Bx’)}{\Abs{\Bx}} d^3 x’
&=
\Be_i \int \frac{\spacegrad’ \cdot (x_i’ \BJ(\Bx’))}{\Abs{\Bx}} d^3 x’ \\
&=
\frac{\Be_i}{\Abs{\Bx}} \int \spacegrad’ \cdot (x_i’ \BJ(\Bx’)) d^3 x’ \\
&=
\frac{1}{\Abs{\Bx}} \oint \Bx’ (d\Ba \cdot \BJ(\Bx’)).
\end{aligned}
\end{equation}

When \( \BJ \) is localized, this is zero provided we pick the integration surface for the volume outside of that localization region.

It is now desired to rewrite \( \int \Bx \cdot \Bx’ \BJ \) as a triple cross product since the dot product of such a triple cross product has exactly this term in it

\begin{equation}\label{eqn:magneticMomentJackson:140}
\begin{aligned}
– \Bx \cross \int \Bx’ \cross \BJ
&=
\int (\Bx \cdot \Bx’) \BJ

\int (\Bx \cdot \BJ) \Bx’ \\
&=
\int (\Bx \cdot \Bx’) \BJ

\Be_k x_i \int J_i x_k’,
\end{aligned}
\end{equation}

so
\begin{equation}\label{eqn:magneticMomentJackson:160}
\int (\Bx \cdot \Bx’) \BJ
=
– \Bx \cross \int \Bx’ \cross \BJ
+
\Be_k x_i \int J_i x_k’.
\end{equation}

To get of this second term, the next sneaky trick is to consider the following divergence

\begin{equation}\label{eqn:magneticMomentJackson:180}
\begin{aligned}
\oint d\Ba’ \cdot (\BJ(\Bx’) x_i’ x_j’)
&=
\int dV’ \spacegrad’ \cdot (\BJ(\Bx’) x_i’ x_j’) \\
&=
\int dV’ (\spacegrad’ \cdot \BJ)
+
\int dV’ \BJ \cdot \spacegrad’ (x_i’ x_j’) \\
&=
\int dV’ J_k \cdot \lr{ x_i’ \partial_k x_j’ + x_j’ \partial_k x_i’ } \\
&=
\int dV’ \lr{J_k x_i’ \delta_{kj} + J_k x_j’ \delta_{ki}} \\
&=
\int dV’ \lr{J_j x_i’ + J_i x_j’}.
\end{aligned}
\end{equation}

The surface integral is once again zero, which means that we have an antisymmetric relationship in integrals of the form

\begin{equation}\label{eqn:magneticMomentJackson:200}
\int J_j x_i’ = -\int J_i x_j’.
\end{equation}

Now we can use the tensor algebra trick of writing \( y = (y + y)/2 \),

\begin{equation}\label{eqn:magneticMomentJackson:220}
\begin{aligned}
\int (\Bx \cdot \Bx’) \BJ
&=
– \Bx \cross \int \Bx’ \cross \BJ
+
\Be_k x_i \int J_i x_k’ \\
&=
– \Bx \cross \int \Bx’ \cross \BJ
+
\inv{2} \Be_k x_i \int \lr{ J_i x_k’ + J_i x_k’ } \\
&=
– \Bx \cross \int \Bx’ \cross \BJ
+
\inv{2} \Be_k x_i \int \lr{ J_i x_k’ – J_k x_i’ } \\
&=
– \Bx \cross \int \Bx’ \cross \BJ
+
\inv{2} \Be_k x_i \int (\BJ \cross \Bx’)_j \epsilon_{ikj} \\
&=
– \Bx \cross \int \Bx’ \cross \BJ

\inv{2} \epsilon_{kij} \Be_k x_i \int (\BJ \cross \Bx’)_j \\
&=
– \Bx \cross \int \Bx’ \cross \BJ

\inv{2} \Bx \cross \int \BJ \cross \Bx’ \\
&=
– \Bx \cross \int \Bx’ \cross \BJ
+
\inv{2} \Bx \cross \int \Bx’ \cross \BJ \\
&=
-\inv{2} \Bx \cross \int \Bx’ \cross \BJ,
\end{aligned}
\end{equation}

so

\begin{equation}\label{eqn:magneticMomentJackson:240}
\BA(\Bx) \approx \frac{\mu_0}{4 \pi \Abs{\Bx}^3} \lr{ -\frac{\Bx}{2} } \int \Bx’ \cross \BJ(\Bx’) d^3 x’.
\end{equation}

Letting

\begin{equation}\label{eqn:magneticMomentJackson:260}
\boxed{
\Bm = \inv{2} \int \Bx’ \cross \BJ(\Bx’) d^3 x’,
}
\end{equation}

the far field approximation of the vector potential is
\begin{equation}\label{eqn:magneticMomentJackson:280}
\boxed{
\BA(\Bx) = \frac{\mu_0}{4 \pi} \frac{\Bm \cross \Bx}{\Abs{\Bx}^3}.
}
\end{equation}

Note that when the current is restricted to an infintisimally thin loop, the magnetic moment reduces to

\begin{equation}\label{eqn:magneticMomentJackson:300}
\Bm(\Bx) = \frac{I}{2} \int \Bx \cross d\Bl’.
\end{equation}

Refering to [1] (pr. 1.60), this can be seen to be \( I \) times the “vector-area” integral.

References

[1] David Jeffrey Griffiths and Reed College. Introduction to electrodynamics. Prentice hall Upper Saddle River, NJ, 3rd edition, 1999.

[2] JD Jackson. Classical Electrodynamics. John Wiley and Sons, 2nd edition, 1975.

Jackson’s electrostatic self energy analysis

October 10, 2016 math and physics play , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

Motivation

I was reading my Jackson [1], which characteristically had the statement “the […] integral can easily be shown to have the value \( 4 \pi \)”, in a discussion of electrostatic energy and self energy. After a few attempts and a couple of pages of calculations, I figured out how this can be easily shown.

Context

Let me walk through the context that leads to the “easy” integral, and then the evaluation of that integral. Unlike my older copy of Jackson, I’ll do this in SI units.

The starting point is a statement that the work done (potential energy) of one charge \( q_i \) in a set of \( n \) charges, where that charge is brought to its position \( \Bx_i \) from infinity, is

\begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:20}
W_i = q_i \Phi(\Bx_i),
\end{equation}

where the potential energy due to the rest of the charge configuration is

\begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:40}
\Phi(\Bx_i) = \inv{4 \pi \epsilon} \sum_{i \ne j} \frac{q_j}{\Abs{\Bx_i – \Bx_j}}.
\end{equation}

This means that the total potential energy, making sure not to double count, to move all the charges in from infinity is

\begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:60}
W = \inv{4 \pi \epsilon} \sum_{1 \le i < j \le n} \frac{q_i q_j}{\Abs{\Bx_i - \Bx_j}}. \end{equation} This sum over all unique pairs is somewhat unwieldy, so it can be adjusted by explicitly double counting with a corresponding divide by two \begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:80} W = \inv{2} \inv{4 \pi \epsilon} \sum_{1 \le i \ne j \le n} \frac{q_i q_j}{\Abs{\Bx_i - \Bx_j}}. \end{equation} The point that causes the trouble later is the continuum equivalent to this relationship, which is \begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:100} W = \inv{8 \pi \epsilon} \int \frac{\rho(\Bx) \rho(\Bx')}{\Abs{\Bx - \Bx'}} d^3 \Bx d^3 \Bx', \end{equation} or \begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:120} W = \inv{2} \int \rho(\Bx) \Phi(\Bx) d^3 \Bx. \end{equation} There's a subtlety here that is often passed over. When the charge densities represent point charges \( \rho(\Bx) = q \delta^3(\Bx - \Bx') \) are located at, notice that this integral equivalent is evaluated over all space, including the spaces that the charges that the charges are located at. Ignoring that subtlety, this potential energy can be expressed in terms of the electric field, and then integrated by parts \begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:140} \begin{aligned} W &= \inv{2 } \int (\spacegrad \cdot (\epsilon \BE)) \Phi(\Bx) d^3 \Bx \\ &= \frac{\epsilon}{2 } \int \lr{ \spacegrad \cdot (\BE \Phi) - (\spacegrad \Phi) \cdot \BE } d^3 \Bx \\ &= \frac{\epsilon}{2 } \oint dA \ncap \cdot (\BE \Phi) + \frac{\epsilon}{2 } \int \BE \cdot \BE d^3 \Bx. \end{aligned} \end{equation} The presumption is that \( \BE \Phi \) falls off as the bounds of the integration volume tends to infinity. That leaves us with an energy density proportional to the square of the field \begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:160} w = \frac{\epsilon}{2 } \BE^2. \end{equation}

Inconsistency

It’s here that Jackson points out the inconsistency between \ref{eqn:electrostaticJacksonSelfEnergy:160} and the original
discrete analogue \ref{eqn:electrostaticJacksonSelfEnergy:80} that this was based on. The energy density is positive definite, whereas the discrete potential energy can be negative if there is a difference in the sign of the charges.

Here Jackson uses a two particle charge distribution to help resolve this conundrum. For a superposition \( \BE = \BE_1 + \BE_2 \), we have

\begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:180}
\BE
=
\inv{4 \pi \epsilon} \frac{q_1 (\Bx – \Bx_1)}{\Abs{\Bx – \Bx_1}^3}
+ \inv{4 \pi \epsilon} \frac{q_2 (\Bx – \Bx_2)}{\Abs{\Bx – \Bx_2}^3},
\end{equation}

so the energy density is
\begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:200}
w =
\frac{1}{32 \pi^2 \epsilon} \frac{q_1^2}{\Abs{\Bx – \Bx_1}^4 }
+
\frac{1}{32 \pi^2 \epsilon} \frac{q_2^2}{\Abs{\Bx – \Bx_2}^4 }
+
2 \frac{q_1 q_2}{32 \pi^2 \epsilon}
\frac{(\Bx – \Bx_1)}{\Abs{\Bx – \Bx_1}^3} \cdot
\frac{(\Bx – \Bx_2)}{\Abs{\Bx – \Bx_2}^3}.
\end{equation}

The discrete potential had only an interaction energy, whereas the potential from this squared field has an interaction energy plus two self energy terms. Those two strictly positive self energy terms are what forces this field energy positive, independent of the sign of the interaction energy density. Jackson makes a change of variables of the form

\begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:220}
\begin{aligned}
\Brho &= (\Bx – \Bx_1)/R \\
R &= \Abs{\Bx_1 – \Bx_2} \\
\ncap &= (\Bx_1 – \Bx_2)/R,
\end{aligned}
\end{equation}

for which we find

\begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:240}
\Bx = \Bx_1 + R \Brho,
\end{equation}

so
\begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:260}
\Bx – \Bx_2 =
\Bx_1 – \Bx_2 + R \Brho
R (\ncap + \Brho),
\end{equation}

and
\begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:280}
d^3 \Bx = R^3 d^3 \Brho,
\end{equation}

so the total interaction energy is
\begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:300}
\begin{aligned}
W_{\textrm{int}}
&=
\frac{q_1 q_2}{16 \pi^2 \epsilon}
\int d^3 \Bx
\frac{(\Bx – \Bx_1)}{\Abs{\Bx – \Bx_1}^3} \cdot
\frac{(\Bx – \Bx_2)}{\Abs{\Bx – \Bx_2}^3} \\
&=
\frac{q_1 q_2}{16 \pi^2 \epsilon}
\int R^3 d^3 \Brho
\frac{ R \Brho }{ R^3 \Abs{\Brho}^3 } \cdot
\frac{R (\ncap + \Brho)}{R^3 \Abs{\ncap + \Brho}^3} \\
&=
\frac{q_1 q_2}{16 \pi^2 \epsilon R}
\int d^3 \Brho
\frac{ \Brho }{ \Abs{\Brho}^3 } \cdot
\frac{(\ncap + \Brho)}{ \Abs{\ncap + \Brho}^3}.
\end{aligned}
\end{equation}

Evaluating this integral is what Jackson calls easy. The technique required is to express the integrand in terms of gradients in the \( \Brho \) coordinate system

\begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:320}
\begin{aligned}
\int d^3 \Brho
\frac{ \Brho }{ \Abs{\Brho}^3 } \cdot
\frac{(\ncap + \Brho)}{ \Abs{\ncap + \Brho}^3}
&=
\int d^3 \Brho
\lr{ – \spacegrad_\Brho \inv{\Abs{\Brho}} }
\cdot
\lr{ – \spacegrad_\Brho \inv{\Abs{\ncap + \Brho}} } \\
&=
\int d^3 \Brho
\lr{ \spacegrad_\Brho \inv{\Abs{\Brho}} }
\cdot
\lr{ \spacegrad_\Brho \inv{\Abs{\ncap + \Brho}} }.
\end{aligned}
\end{equation}

I found it somewhat non-trivial to find the exact form of the chain rule that is required to simplify this integral, but after some trial and error, figured it out by working backwards from
\begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:340}
\spacegrad_\Brho^2 \inv{ \Abs{\Brho} \Abs{\ncap + \Brho}}
=
\spacegrad_\Brho \cdot \lr{ \inv{\Abs{\Brho}} \spacegrad_\Brho \inv{ \Abs{\ncap + \Brho} } }
+
\spacegrad_\Brho \cdot \lr{ \inv{\Abs{\ncap + \Brho}} \spacegrad_\Brho \inv{ \Abs{\Brho} } }.
\end{equation}

In integral form this is
\begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:360}
\begin{aligned}
\oint dA’ \ncap’ \cdot \spacegrad_\Brho \inv{ \Abs{\Brho} \Abs{\ncap + \Brho}}
&=
\int d^3 \Brho’
\spacegrad_{\Brho’} \cdot \lr{ \inv{\Abs{\Brho’ – \ncap}} \spacegrad_{\Brho’} \inv{ \Abs{\Brho’} } }
+
\int d^3 \Brho
\spacegrad_\Brho \cdot \lr{ \inv{\Abs{\ncap + \Brho}} \spacegrad_\Brho \inv{ \Abs{\Brho} } } \\
&=
\int d^3 \Brho’
\lr{ \spacegrad_{\Brho’} \inv{\Abs{\Brho’ – \ncap} } \cdot \spacegrad_{\Brho’} \inv{ \Abs{\Brho’} } }
+
\int d^3 \Brho’
\inv{\Abs{\Brho’ – \ncap}} \spacegrad_{\Brho’}^2 \inv{ \Abs{\Brho’} } \\
&+
\int d^3 \Brho
\lr{ \spacegrad_\Brho \inv{\Abs{\ncap + \Brho}}} \cdot \spacegrad_\Brho \inv{ \Abs{\Brho} }
+
\int d^3 \Brho
\inv{\Abs{\ncap + \Brho}} \spacegrad_\Brho^2 \inv{ \Abs{\Brho} } \\
&=
2 \int d^3 \Brho
\lr{ \spacegrad_\Brho \inv{\Abs{\ncap + \Brho}}} \cdot \spacegrad_\Brho \inv{ \Abs{\Brho} } \\
&- 4 \pi
\int d^3 \Brho’
\inv{\Abs{\Brho’ – \ncap}} \delta^3(\Brho’)
– 4 \pi
\int d^3 \Brho
\inv{\Abs{\Brho + \ncap}} \delta^3(\Brho) \\
&=
2 \int d^3 \Brho
\lr{ \spacegrad_\Brho \inv{\Abs{\ncap + \Brho}}} \cdot \spacegrad_\Brho \inv{ \Abs{\Brho} }
– 8 \pi.
\end{aligned}
\end{equation}

This used the Laplacian representation of the delta function \( \delta^3(\Bx) = -(1/4\pi) \spacegrad^2 (1/\Abs{\Bx}) \). Back-substitution gives

\begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:380}
\int d^3 \Brho
\frac{ \Brho }{ \Abs{\Brho}^3 } \cdot
\frac{(\ncap + \Brho)}{ \Abs{\ncap + \Brho}^3}
=
4 \pi
+
\oint dA’ \ncap’ \cdot \spacegrad_\Brho \inv{ \Abs{\Brho} \Abs{\ncap + \Brho}}.
\end{equation}

We can argue that this last integral tends to zero, since

\begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:400}
\begin{aligned}
\oint dA’ \ncap’ \cdot \spacegrad_\Brho \inv{ \Abs{\Brho} \Abs{\ncap + \Brho}}
&=
\oint dA’ \ncap’ \cdot \lr{
\lr{ \spacegrad_\Brho \inv{ \Abs{\Brho}} } \inv{\Abs{\ncap + \Brho}}
+
\inv{ \Abs{\Brho}} \lr{ \spacegrad_\Brho \inv{\Abs{\ncap + \Brho}} }
} \\
&=
-\oint dA’ \ncap’ \cdot \lr{
\frac{ \Brho } {\inv{ \Abs{\Brho}}^3 } \inv{\Abs{\ncap + \Brho}}
+
\inv{ \Abs{\Brho}} \frac{ (\Brho + \ncap) }{ \Abs{\ncap + \Brho}^3 }
} \\
&=
-\oint dA’ \inv{\Abs{\Brho} \Abs{\Brho + \ncap}}
\lr{
\frac{ \ncap’ \cdot \Brho }{
{\Abs{\Brho}}^2 }
+\frac{ \ncap’ \cdot (\Brho + \ncap) }{
{\Abs{\Brho + \ncap}}^2 }
}.
\end{aligned}
\end{equation}

The integrand in this surface integral is of \( O(1/\rho^3) \) so tends to zero on an infinite surface in the \( \Brho \) coordinate system. This completes the “easy” integral, leaving

\begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:420}
\int d^3 \Brho
\frac{ \Brho }{ \Abs{\Brho}^3 } \cdot
\frac{(\ncap + \Brho)}{ \Abs{\ncap + \Brho}^3}
=
4 \pi.
\end{equation}

The total field energy can now be expressed as a sum of the self energies and the interaction energy
\begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:440}
W =
\frac{1}{32 \pi^2 \epsilon} \int d^3 \Bx \frac{q_1^2}{\Abs{\Bx – \Bx_1}^4 }
+
\frac{1}{32 \pi^2 \epsilon} \int d^3 \Bx \frac{q_2^2}{\Abs{\Bx – \Bx_2}^4 }
+ \inv{ 4 \pi \epsilon}
\frac{q_1 q_2}{\Abs{\Bx_1 – \Bx_2} }.
\end{equation}

The interaction energy is exactly the potential energies for the two particles, the this total energy in the field is biased in the positive direction by the pair of self energies. It is interesting that the energy obtained from integrating the field energy density contains such self energy terms, but I don’t know exactly what to make of them at this point in time.

References

[1] JD Jackson. Classical Electrodynamics. John Wiley and Sons, 2nd edition, 1975.