## More satisfying editing of classical mechanics notes.

I’ve purged about 30 pages of material related to field Lagrangian densities and Maxwell’s equation, replacing it with about 8 pages of new less incoherent material. As before, I’ve physically ripped out all the pages that have been replaced, which is satisfying, and makes it easier to see what is left to review.

The new version is now reduced to 333 pages, close to a 100 page reduction from the original mess.  I may print myself a new physical copy, as I’ve moved things around so much that I have to search the latex to figure out where to make changes.

## Maxwell’s equation Lagrangian (geometric algebra and tensor formalism)

[Click here for a PDF of this post with nicer formatting]

Maxwell’s equation using geometric algebra Lagrangian.

## Motivation.

In my classical mechanics notes, I’ve got computations of Maxwell’s equation (singular in it’s geometric algebra form) from a Lagrangian in various ways (using a tensor, scalar and multivector Lagrangians), but all of these seem more convoluted than they should be.
Here we do this from scratch, starting with the action principle for field variables, covering:

• Derivation of the relativistic form of the Euler-Lagrange field equations from the covariant form of the action,
• Derivation of Maxwell’s equation (in it’s STA form) from the Maxwell Lagrangian,
• Relationship of the STA Maxwell Lagrangian to the tensor equivalent,
• Relationship of the STA form of Maxwell’s equation to it’s tensor equivalents,
• Relationship of the STA Maxwell’s equation to it’s conventional Gibbs form.
• Show that we may use a multivector valued Lagrangian with all of $$F^2$$, not just the scalar part.

It is assumed that the reader is thoroughly familiar with the STA formalism, and if that is not the case, there is no better reference than .

## Theorem 1.1: Relativistic Euler-Lagrange field equations.

Let $$\phi \rightarrow \phi + \delta \phi$$ be any variation of the field, such that the variation
$$\delta \phi = 0$$ vanishes at the boundaries of the action integral
\begin{equation}\label{eqn:maxwells:2120}
S = \int d^4 x \LL(\phi, \partial_\nu \phi).
\end{equation}
The extreme value of the action is found when the Euler-Lagrange equations
\begin{equation}\label{eqn:maxwells:2140}
0 = \PD{\phi}{\LL} – \partial_\nu \PD{(\partial_\nu \phi)}{\LL},
\end{equation}
are satisfied. For a Lagrangian with multiple field variables, there will be one such equation for each field.

### Start proof:

To ease the visual burden, designate the variation of the field by $$\delta \phi = \epsilon$$, and perform a first order expansion of the varied Lagrangian
\begin{equation}\label{eqn:maxwells:20}
\begin{aligned}
\LL
&\rightarrow
\LL(\phi + \epsilon, \partial_\nu (\phi + \epsilon)) \\
&=
\LL(\phi, \partial_\nu \phi)
+
\PD{\phi}{\LL} \epsilon +
\PD{(\partial_\nu \phi)}{\LL} \partial_\nu \epsilon.
\end{aligned}
\end{equation}
The variation of the Lagrangian is
\begin{equation}\label{eqn:maxwells:40}
\begin{aligned}
\delta \LL
&=
\PD{\phi}{\LL} \epsilon +
\PD{(\partial_\nu \phi)}{\LL} \partial_\nu \epsilon \\
&=
\PD{\phi}{\LL} \epsilon +
\partial_\nu \lr{ \PD{(\partial_\nu \phi)}{\LL} \epsilon }

\epsilon \partial_\nu \PD{(\partial_\nu \phi)}{\LL},
\end{aligned}
\end{equation}
which we may plug into the action integral to find
\begin{equation}\label{eqn:maxwells:60}
\delta S
=
\int d^4 x \epsilon \lr{
\PD{\phi}{\LL}

\partial_\nu \PD{(\partial_\nu \phi)}{\LL}
}
+
\int d^4 x
\partial_\nu \lr{ \PD{(\partial_\nu \phi)}{\LL} \epsilon }.
\end{equation}
The last integral can be evaluated along the $$dx^\nu$$ direction, leaving
\begin{equation}\label{eqn:maxwells:80}
\int d^3 x
\evalbar{ \PD{(\partial_\nu \phi)}{\LL} \epsilon }{\Delta x^\nu},
\end{equation}
where $$d^3 x = dx^\alpha dx^\beta dx^\gamma$$ is the product of differentials that does not include $$dx^\nu$$. By construction, $$\epsilon$$ vanishes on the boundary of the action integral so \ref{eqn:maxwells:80} is zero. The action takes its extreme value when
\begin{equation}\label{eqn:maxwells:100}
0 = \delta S
=
\int d^4 x \epsilon \lr{
\PD{\phi}{\LL}

\partial_\nu \PD{(\partial_\nu \phi)}{\LL}
}.
\end{equation}
The proof is complete after noting that this must hold for all variations of the field $$\epsilon$$, which means that we must have
\begin{equation}\label{eqn:maxwells:120}
0 =
\PD{\phi}{\LL}

\partial_\nu \PD{(\partial_\nu \phi)}{\LL}.
\end{equation}

### End proof.

Armed with the Euler-Lagrange equations, we can apply them to the Maxwell’s equation Lagrangian, which we will claim has the following form.

## Theorem 1.2: Maxwell’s equation Lagrangian.

Application of the Euler-Lagrange equations to the Lagrangian
\begin{equation}\label{eqn:maxwells:2160}
\LL = – \frac{\epsilon_0 c}{2} F \cdot F + J \cdot A,
\end{equation}
where $$F = \grad \wedge A$$, yields the vector portion of Maxwell’s equation
\begin{equation}\label{eqn:maxwells:2180}
\grad \cdot F = \inv{\epsilon_0 c} J,
\end{equation}
which implies
\begin{equation}\label{eqn:maxwells:2200}
\grad F = \inv{\epsilon_0 c} J.
\end{equation}
This is Maxwell’s equation.

### Start proof:

We wish to apply all of the Euler-Lagrange equations simultaneously (i.e. once for each of the four $$A_\mu$$ components of the potential), and cast it into four-vector form
\begin{equation}\label{eqn:maxwells:140}
0 = \gamma_\nu \lr{ \PD{A_\nu}{} – \partial_\mu \PD{(\partial_\mu A_\nu)}{} } \LL.
\end{equation}
Since our Lagrangian splits nicely into kinetic and interaction terms, this gives us
\begin{equation}\label{eqn:maxwells:160}
0 = \gamma_\nu \lr{ \PD{A_\nu}{(A \cdot J)} + \frac{\epsilon_0 c}{2} \partial_\mu \PD{(\partial_\mu A_\nu)}{ (F \cdot F)} }.
\end{equation}
The interaction term above is just
\begin{equation}\label{eqn:maxwells:180}
\gamma_\nu \PD{A_\nu}{(A \cdot J)}
=
\gamma_\nu \PD{A_\nu}{(A_\mu J^\mu)}
=
\gamma_\nu J^\nu
=
J,
\end{equation}
but the kinetic term takes a bit more work. Let’s start with evaluating
\begin{equation}\label{eqn:maxwells:200}
\begin{aligned}
\PD{(\partial_\mu A_\nu)}{ (F \cdot F)}
&=
\PD{(\partial_\mu A_\nu)}{ F } \cdot F
+
F \cdot \PD{(\partial_\mu A_\nu)}{ F } \\
&=
2 \PD{(\partial_\mu A_\nu)}{ F } \cdot F \\
&=
2 \PD{(\partial_\mu A_\nu)}{ (\partial_\alpha A_\beta) } \lr{ \gamma^\alpha \wedge \gamma^\beta } \cdot F \\
&=
2 \lr{ \gamma^\mu \wedge \gamma^\nu } \cdot F.
\end{aligned}
\end{equation}
We hit this with the $$\mu$$-partial and expand as a scalar selection to find
\begin{equation}\label{eqn:maxwells:220}
\begin{aligned}
\partial_\mu \PD{(\partial_\mu A_\nu)}{ (F \cdot F)}
&=
2 \lr{ \partial_\mu \gamma^\mu \wedge \gamma^\nu } \cdot F \\
&=
– 2 (\gamma^\nu \wedge \grad) \cdot F \\
&=
– 2 \gpgradezero{ (\gamma^\nu \wedge \grad) F } \\
&=
– 2 \gpgradezero{ \gamma^\nu \grad F – \gamma^\nu \cdot \grad F } \\
&=
– 2 \gamma^\nu \cdot \lr{ \grad \cdot F }.
\end{aligned}
\end{equation}
Putting all the pieces together yields
\begin{equation}\label{eqn:maxwells:240}
0
= J – \epsilon_0 c \gamma_\nu \lr{ \gamma^\nu \cdot \lr{ \grad \cdot F } }
= J – \epsilon_0 c \lr{ \grad \cdot F },
\end{equation}
but
\begin{equation}\label{eqn:maxwells:260}
\begin{aligned}
\grad \cdot F
&=
\grad F – \grad \wedge F \\
&=
\grad F – \grad \wedge (\grad \wedge A) \\
&=
\grad F,
\end{aligned}
\end{equation}
so the multivector field equations for this Lagrangian are
\begin{equation}\label{eqn:maxwells:280}
\grad F = \inv{\epsilon_0 c} J,
\end{equation}
as claimed.

## Problem: Correspondence with tensor formalism.

Cast the Lagrangian of \ref{eqn:maxwells:2160} into the conventional tensor form
\begin{equation}\label{eqn:maxwells:300}
\LL = \frac{\epsilon_0 c}{4} F_{\mu\nu} F^{\mu\nu} + A^\mu J_\mu.
\end{equation}
Also show that the four-vector component of Maxwell’s equation $$\grad \cdot F = J/(\epsilon_0 c)$$ is equivalent to the conventional tensor form of the Gauss-Ampere law
\begin{equation}\label{eqn:maxwells:320}
\partial_\mu F^{\mu\nu} = \inv{\epsilon_0 c} J^\nu,
\end{equation}
where $$F^{\mu\nu} = \partial^\mu A^\nu – \partial^\nu A^\mu$$ as usual. Also show that the trivector component of Maxwell’s equation $$\grad \wedge F = 0$$ is equivalent to the tensor form of the Gauss-Faraday law
\begin{equation}\label{eqn:maxwells:340}
\partial_\alpha \lr{ \epsilon^{\alpha \beta \mu \nu} F_{\mu\nu} } = 0.
\end{equation}

## Answer

To show the Lagrangian correspondence we must expand $$F \cdot F$$ in coordinates
\begin{equation}\label{eqn:maxwells:360}
\begin{aligned}
F \cdot F
&=
( \grad \wedge A ) \cdot
( \grad \wedge A ) \\
&=
\lr{ (\gamma^\mu \partial_\mu) \wedge (\gamma^\nu A_\nu) }
\cdot
\lr{ (\gamma^\alpha \partial_\alpha) \wedge (\gamma^\beta A_\beta) } \\
&=
\lr{ \gamma^\mu \wedge \gamma^\nu } \cdot \lr{ \gamma_\alpha \wedge \gamma_\beta }
(\partial_\mu A_\nu )
(\partial^\alpha A^\beta ) \\
&=
\lr{
{\delta^\mu}_\beta
{\delta^\nu}_\alpha

{\delta^\mu}_\alpha
{\delta^\nu}_\beta
}
(\partial_\mu A_\nu )
(\partial^\alpha A^\beta ) \\
&=
– \partial_\mu A_\nu \lr{
\partial^\mu A^\nu

\partial^\nu A^\mu
} \\
&=
– \partial_\mu A_\nu F^{\mu\nu} \\
&=
– \inv{2} \lr{
\partial_\mu A_\nu F^{\mu\nu}
+
\partial_\nu A_\mu F^{\nu\mu}
} \\
&=
– \inv{2} \lr{
\partial_\mu A_\nu

\partial_\nu A_\mu
}
F^{\mu\nu} \\
&=

\inv{2}
F_{\mu\nu}
F^{\mu\nu}.
\end{aligned}
\end{equation}
With a substitution of this and $$A \cdot J = A_\mu J^\mu$$ back into the Lagrangian, we recover the tensor form of the Lagrangian.

To recover the tensor form of Maxwell’s equation, we first split it into vector and trivector parts
\begin{equation}\label{eqn:maxwells:1580}
\grad \cdot F + \grad \wedge F = \inv{\epsilon_0 c} J.
\end{equation}
Now the vector component may be expanded in coordinates by dotting both sides with $$\gamma^\nu$$ to find
\begin{equation}\label{eqn:maxwells:1600}
\inv{\epsilon_0 c} \gamma^\nu \cdot J = J^\nu,
\end{equation}
and
\begin{equation}\label{eqn:maxwells:1620}
\begin{aligned}
\gamma^\nu \cdot
\lr{ \grad \cdot F }
&=
\partial_\mu \gamma^\nu \cdot \lr{ \gamma^\mu \cdot \lr{ \gamma_\alpha \wedge \gamma_\beta } \partial^\alpha A^\beta } \\
&=
\lr{
{\delta^\mu}_\alpha
{\delta^\nu}_\beta

{\delta^\nu}_\alpha
{\delta^\mu}_\beta
}
\partial_\mu
\partial^\alpha A^\beta \\
&=
\partial_\mu
\lr{
\partial^\mu A^\nu

\partial^\nu A^\mu
} \\
&=
\partial_\mu F^{\mu\nu}.
\end{aligned}
\end{equation}
Equating \ref{eqn:maxwells:1600} and \ref{eqn:maxwells:1620} finishes the first part of the job. For the trivector component, we have
\begin{equation}\label{eqn:maxwells:1640}
0
= \grad \wedge F
= (\gamma^\mu \partial_\mu) \wedge \lr{ \gamma^\alpha \wedge \gamma^\beta } \partial_\alpha A_\beta
= \inv{2} (\gamma^\mu \partial_\mu) \wedge \lr{ \gamma^\alpha \wedge \gamma^\beta } F_{\alpha \beta}.
\end{equation}
Wedging with $$\gamma^\tau$$ and then multiplying by $$-2 I$$ we find
\begin{equation}\label{eqn:maxwells:1660}
0 = – \lr{ \gamma^\mu \wedge \gamma^\alpha \wedge \gamma^\beta \wedge \gamma^\tau } I \partial_\mu F_{\alpha \beta},
\end{equation}
but
\begin{equation}\label{eqn:maxwells:1680}
\gamma^\mu \wedge \gamma^\alpha \wedge \gamma^\beta \wedge \gamma^\tau = -I \epsilon^{\mu \alpha \beta \tau},
\end{equation}
which leaves us with
\begin{equation}\label{eqn:maxwells:1700}
\epsilon^{\mu \alpha \beta \tau} \partial_\mu F_{\alpha \beta} = 0,
\end{equation}
as expected.

## Problem: Correspondence of tensor and Gibbs forms of Maxwell’s equations.

Given the identifications

\begin{equation}\label{eqn:lorentzForceCovariant:1500}
F^{k0} = E^k,
\end{equation}
and
\begin{equation}\label{eqn:lorentzForceCovariant:1520}
F^{rs} = -\epsilon^{rst} B^t,
\end{equation}
and
\begin{equation}\label{eqn:maxwells:1560}
J^\mu = \lr{ c \rho, \BJ },
\end{equation}
the reader should satisfy themselves that the traditional Gibbs form of Maxwell’s equations can be recovered from \ref{eqn:maxwells:320}.

## Answer

The reader is referred to Exercise 3.4 “Electrodynamics, variational principle.” from .

## Problem: Correspondence with grad and curl form of Maxwell’s equations.

With $$J = c \rho \gamma_0 + J^k \gamma_k$$ and $$F = \BE + I c \BB$$ show that Maxwell’s equation, as stated in \ref{eqn:maxwells:2200} expand to the conventional div and curl expressions for Maxwell’s equations.

## Answer

To obtain Maxwell’s equations in their traditional vector forms, we pre-multiply both sides with $$\gamma_0$$
\begin{equation}\label{eqn:maxwells:1720}
\gamma_0 \grad F = \inv{\epsilon_0 c} \gamma_0 J,
\end{equation}
and then select each grade separately. First observe that the RHS above has scalar and bivector components, as
\begin{equation}\label{eqn:maxwells:1740}
\gamma_0 J
=
c \rho + J^k \gamma_0 \gamma_k.
\end{equation}
In terms of the spatial bivector basis $$\Be_k = \gamma_k \gamma_0$$, the RHS of \ref{eqn:maxwells:1720} is
\begin{equation}\label{eqn:maxwells:1760}
\gamma_0 \frac{J}{\epsilon_0 c} = \frac{\rho}{\epsilon_0} – \mu_0 c \BJ.
\end{equation}
For the LHS, first note that
\begin{equation}\label{eqn:maxwells:1780}
\begin{aligned}
\gamma_0 \grad
&=
\gamma_0
\lr{
\gamma_0 \partial^0 +
\gamma_k \partial^k
} \\
&=
\partial_0 – \gamma_0 \gamma_k \partial_k \\
&=
\inv{c} \PD{t}{} + \spacegrad.
\end{aligned}
\end{equation}
We can express all the the LHS of \ref{eqn:maxwells:1720} in the bivector spatial basis, so that Maxwell’s equation in multivector form is
\begin{equation}\label{eqn:maxwells:1800}
\lr{ \inv{c} \PD{t}{} + \spacegrad } \lr{ \BE + I c \BB } = \frac{\rho}{\epsilon_0} – \mu_0 c \BJ.
\end{equation}
Selecting the scalar, vector, bivector, and trivector grades of both sides (in the spatial basis) gives the following set of respective equations
\begin{equation}\label{eqn:maxwells:1840}
\spacegrad \cdot \BE = \frac{\rho}{\epsilon_0}
\end{equation}
\begin{equation}\label{eqn:maxwells:1860}
\inv{c} \partial_t \BE + I c \spacegrad \wedge \BB = – \mu_0 c \BJ
\end{equation}
\begin{equation}\label{eqn:maxwells:1880}
\spacegrad \wedge \BE + I \partial_t \BB = 0
\end{equation}
\begin{equation}\label{eqn:maxwells:1900}
I c \spacegrad \cdot B = 0,
\end{equation}
which we can rewrite after some duality transformations (and noting that $$\mu_0 \epsilon_0 c^2 = 1$$), we have
\begin{equation}\label{eqn:maxwells:1940}
\spacegrad \cdot \BE = \frac{\rho}{\epsilon_0}
\end{equation}
\begin{equation}\label{eqn:maxwells:1960}
\spacegrad \cross \BB – \mu_0 \epsilon_0 \PD{t}{\BE} = \mu_0 \BJ
\end{equation}
\begin{equation}\label{eqn:maxwells:1980}
\spacegrad \cross \BE + \PD{t}{\BB} = 0
\end{equation}
\begin{equation}\label{eqn:maxwells:2000}
\spacegrad \cdot B = 0,
\end{equation}
which are Maxwell’s equations in their traditional form.

## Problem: Alternative multivector Lagrangian.

Show that a scalar+pseudoscalar Lagrangian of the following form
\begin{equation}\label{eqn:maxwells:2220}
\LL = – \frac{\epsilon_0 c}{2} F^2 + J \cdot A,
\end{equation}
which omits the scalar selection of the Lagrangian in \ref{eqn:maxwells:2160}, also represents Maxwell’s equation. Discuss the scalar and pseudoscalar components of $$F^2$$, and show why the pseudoscalar inclusion is irrelevant.

## Answer

The quantity $$F^2 = F \cdot F + F \wedge F$$ has both scalar and pseudoscalar
components. Note that unlike vectors, a bivector wedge in 4D with itself need not be zero (example: $$\gamma_0 \gamma_1 + \gamma_2 \gamma_3$$ wedged with itself).
We can see this multivector nature nicely by expansion in terms of the electric and magnetic fields
\begin{equation}\label{eqn:maxwells:2020}
\begin{aligned}
F^2
&= \lr{ \BE + I c \BB }^2 \\
&= \BE^2 – c^2 \BB^2 + I c \lr{ \BE \BB + \BB \BE } \\
&= \BE^2 – c^2 \BB^2 + 2 I c \BE \cdot \BB.
\end{aligned}
\end{equation}
Both the scalar and pseudoscalar parts of $$F^2$$ are Lorentz invariant, a requirement of our Lagrangian, but most Maxwell equation Lagrangians only include the scalar $$\BE^2 – c^2 \BB^2$$ component of the field square. If we allow the Lagrangian to be multivector valued, and evaluate the Euler-Lagrange equations, we quickly find the same results
\begin{equation}\label{eqn:maxwells:2040}
\begin{aligned}
0
&= \gamma_\nu \lr{ \PD{A_\nu}{} – \partial_\mu \PD{(\partial_\mu A_\nu)}{} } \LL \\
&= \gamma_\nu \lr{ J^\nu + \frac{\epsilon_0 c}{2} \partial_\mu
\lr{
(\gamma^\mu \wedge \gamma^\nu) F
+
F (\gamma^\mu \wedge \gamma^\nu)
}
}.
\end{aligned}
\end{equation}
Here some steps are skipped, building on our previous scalar Euler-Lagrange evaluation experience. We have a symmetric product of two bivectors, which we can express as a 0,4 grade selection, since
\begin{equation}\label{eqn:maxwells:2060}
\gpgrade{ X F }{0,4} = \inv{2} \lr{ X F + F X },
\end{equation}
for any two bivectors $$X, F$$. This leaves
\begin{equation}\label{eqn:maxwells:2080}
\begin{aligned}
0
&= J + \epsilon_0 c \gamma_\nu \gpgrade{ (\grad \wedge \gamma^\nu) F }{0,4} \\
&= J + \epsilon_0 c \gamma_\nu \gpgrade{ -\gamma^\nu \grad F + (\gamma^\nu \cdot \grad) F }{0,4} \\
&= J + \epsilon_0 c \gamma_\nu \gpgrade{ -\gamma^\nu \grad F }{0,4} \\
&= J – \epsilon_0 c \gamma_\nu
\lr{
\gamma^\nu \cdot \lr{ \grad \cdot F } + \gamma^\nu \wedge \grad \wedge F
}.
\end{aligned}
\end{equation}
However, since $$\grad \wedge F = \grad \wedge \grad \wedge A = 0$$, we see that there is no contribution from the $$F \wedge F$$ pseudoscalar component of the Lagrangian, and we are left with
\begin{equation}\label{eqn:maxwells:2100}
\begin{aligned}
0
&= J – \epsilon_0 c (\grad \cdot F) \\
&= J – \epsilon_0 c \grad F,
\end{aligned}
\end{equation}
which is Maxwell’s equation, as before.

# References

 C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University Press New York, Cambridge, UK, 1st edition, 2003.

 Peeter Joot. Quantum field theory. Kindle Direct Publishing, 2018.

## PHY2403H Quantum Field Theory. Lecture 5: Klein-Gordon equation, Hamilton’s equations, SHOs, momentum space representation, raising and lowering operators. Taught by Prof. Erich Poppitz

[Click here for a PDF of this post with nicer formatting]

### DISCLAIMER: Very rough notes from class. Some additional side notes, but otherwise barely edited.

These are notes for the UofT course PHY2403H, Quantum Field Theory I, taught by Prof. Erich Poppitz fall 2018.

## Canonical quantization

Last time we introduced a Lagrangian density associated with the Klein-Gordon equation (with a quadratic potential coupling)
\begin{equation}\label{eqn:qftLecture5:20}
L = \int d^3 x
\lr{
\inv{2} \lr{\partial_0 \phi}^2 – \inv{2} \lr{\spacegrad \phi}^2 – \frac{m^2}{2} \phi^2 – \frac{\lambda}{4} \phi^4
}.
\end{equation}
This Lagrangian density was related to the action by
\begin{equation}\label{eqn:qftLecture5:40}
S = \int dt L = \int dt d^3 x \LL,
\end{equation}
with momentum canonically conjugate to the field $$\phi$$ defined as
\begin{equation}\label{eqn:qftLecture5:60}
\Pi(\Bx, t) = \frac{\delta \LL}{\delta \phidot(\Bx, t) } = \PD{\phidot(\Bx, t)}{\LL}
\end{equation}

The Hamiltonian defined as
\begin{equation}\label{eqn:qftLecture5:80}
H = \int d^3 x \lr{ \Pi(\Bx, t) \phidot(\Bx, t) – \LL },
\end{equation}
led to
\begin{equation}\label{eqn:qftLecture5:680}
H
= \int d^3 x
\lr{ \inv{2} \Pi^2 + (\spacegrad \phi)^2 + \inv{2} m^2 \phi^2 + \frac{\lambda}{4} \phi^4 }.
\end{equation}
Like the Lagrangian density, we may introduce a Hamiltonian density $$\mathcal{H}$$ as
\begin{equation}\label{eqn:qftLecture5:100}
H = \int d^3 x \mathcal{H}(\Bx, t).
\end{equation}
For our Klein-Gordon system, this is
\begin{equation}\label{eqn:qftLecture5:120}
\mathcal{H}(\Bx, t) =
\inv{2} \Pi^2 + (\spacegrad \phi)^2 + \inv{2} m^2 \phi^2 + \frac{\lambda}{4} \phi^4.
\end{equation}

### Canonical Commutation Relations (CCR)

:

We quantize the system by promoting our fields to Heisenberg-Picture (HP) operators, and imposing commutation relations
\begin{equation}\label{eqn:qftLecture5:140}
\antisymmetric{\hat{\Pi}(\Bx, t)}{\hat{\phi}(\By, t)} = -i \delta^3 (\Bx – \By)
\end{equation}

This is in analogy to
\begin{equation}\label{eqn:qftLecture5:160}
\antisymmetric{\hat{p}_i}{\hat{q}_j} = -i \delta_{ij},
\end{equation}

To choose a representation, we may map the $$\Psi$$ of QM $$\rightarrow$$ to a wave functional $$\Psi[\phi]$$
\begin{equation}\label{eqn:qftLecture5:180}
\hat{\phi}(\By, t) \Psi[\phi] = \phi(\By, t) \Psi[\phi]
\end{equation}

This is similar to the QM wave functions
\begin{equation}\label{eqn:qftLecture5:200}
\begin{aligned}
\hat{q}_i \Psi(\setlr{q}) &= q_i \Psi(q) \\
\hat{p}_i \Psi(\setlr{q}) &= -i \PD{q_i}{} \Psi(p)
\end{aligned}
\end{equation}

Our momentum operator is quantized by expressing it in terms of a variational derivative
\begin{equation}\label{eqn:qftLecture5:220}
\hat{\Pi}(\Bx, t) = -i \frac{\delta}{\delta \phi(\Bx, t)}.
\end{equation}
(Fixme: I’m not really sure exactly what is meant by using the variation derivative $$\delta$$ notation here), and to
quantize the Hamiltonian we just add hats, assuming that our fields are all now HP operators
\begin{equation}\label{eqn:qftLecture5:240}
\hat{\mathcal{H}}(\Bx, t)
=
\inv{2} \hat{\Pi}^2 + (\spacegrad \hat{\phi})^2 + \inv{2} m^2 \hat{\phi}^2 + \frac{\lambda}{4} \hat{\phi}^4.
\end{equation}

### QM SHO review

Recall the QM SHO had a Hamiltonian
\begin{equation}\label{eqn:qftLecture5:260}
\hat{H} = \inv{2} \hat{p}^2 + \inv{2} \omega^2 \hat{q}^2,
\end{equation}
where
\begin{equation}\label{eqn:qftLecture5:280}
\antisymmetric{\hat{p}}{\hat{q}} = -i,
\end{equation}
and that
HP time evolution operators $$O$$ satisfied
\begin{equation}\label{eqn:qftLecture5:700}
\ddt{\hatO} = i \antisymmetric{\hatH}{\hatO}.
\end{equation}
In particular
\begin{equation}\label{eqn:qftLecture5:300}
\begin{aligned}
\ddt{\hat{p}}
&= i \antisymmetric{\hat{H}}{\hatp} \\
&= i \frac{\omega^2}{2} \antisymmetric{\hat{q}^2}{\hatp} \\
&= i \frac{\omega^2}{2} (2 i \hat{q}) \\
&= -i \omega^2 \hat{q},
\end{aligned}
\end{equation}
and
\begin{equation}\label{eqn:qftLecture5:320}
\begin{aligned}
\ddt{\hat{q}}
&= i \antisymmetric{\hat{H}}{\hat{q}} \\
&= i \inv{2} \antisymmetric{\hatp^2}{\hat{q}} \\
&= \frac{i}{2}(-2 i \hatp ) \\
&= \hatp.
\end{aligned}
\end{equation}
Applying the time evolution operator twice, we find
\begin{equation}\label{eqn:qftLecture5:340}
\frac{d^2}{dt^2}{\hat{q}}
= \ddt{\hat{p}}
= – \omega^2 \hat{q}.
\end{equation}
We see that the Heisenberg operators obey the classical equations of motion.

Now we want to try this with the quantized QFT fields we’ve promoted to operators
\begin{equation}\label{eqn:qftLecture5:360}
\begin{aligned}
\ddt{\hat{\Pi}}(\Bx, t)
&= i \antisymmetric{\hatH}{\hat{\Pi}(\Bx, t)} \\
&=
i \int d^3 y \inv{2} \antisymmetric{ \lr{\spacegrad \phihat(\By) }^2 }{\hat{\Pi}(\Bx) }
+
i \int d^3 y \frac{m^2}{2} \antisymmetric{ \phihat(\By)^2 }{\hat{\Pi}(\Bx) }
+
i \frac{\lambda}{4} \int d^3 \antisymmetric{ \phihat(\By)^4 }{\hat{\Pi}(\Bx) }
\end{aligned}
\end{equation}

Starting with the non-gradient commutators, and utilizing the HP field analogues of the relations $$\antisymmetric{\hat{q}^n}{\hatp} = n i \hat{q}^{n-1}$$, we find
\begin{equation}\label{eqn:qftLecture5:780}
\int d^3 y \antisymmetric{ \lr{ \phihat(\By) }^2 }{\hat{\Pi}(\Bx) }
=
\int d^3 y 2 i \phihat(\By) \delta^3(\Bx – \By)
= 2 i \phihat(\Bx).
\end{equation}
\begin{equation}\label{eqn:qftLecture5:740}
\int d^3 y \antisymmetric{ \lr{ \phihat(\By) }^4 }{\hat{\Pi}(\Bx) }
=
\int d^3 y 4 i \phihat(\By)^3 \delta^3(\Bx – \By)
= 4 i \phihat(\Bx)^3.
\end{equation}
For the gradient commutators, we have more work. Prof Poppitz blitzed through that, just calling it integration by parts. I had trouble seeing what he was doing, so here’s a more explicit dumb expansion required to calculate the commutator
\begin{equation}\label{eqn:qftLecture5:720}
\begin{aligned}
\int d^3 y (\spacegrad \phihat(\By))^2 \hat{\Pi}(\Bx)
&=
\int d^3 y
\lr{ \spacegrad \phihat(\By) \cdot \spacegrad \phihat(\By) } \hat{\Pi}(\Bx) \\
&=
\int d^3 y
\spacegrad \phihat(\By) \cdot
\lr{ \spacegrad (\phihat(\By) \hat{\Pi}(\Bx)) } \\
&=
\int d^3 y
\spacegrad \phihat(\By) \cdot
\lr{ \spacegrad (\hat{\Pi}(\Bx) \phihat(\By) + i \delta^3(\Bx – \By)) } \\
&=
\int d^3 y
\Biglr{
\spacegrad \lr{ \phihat(\By) \hat{\Pi}(\Bx) } \cdot \spacegrad \phihat(\By)
+ i
\spacegrad \phihat(\By) \cdot \spacegrad \delta^3(\Bx – \By)
} \\
&=
\int d^3 y
\Biglr{
\spacegrad \lr{ \hat{\Pi}(\Bx) \phihat(\By) + i \delta^3(\Bx – \By) } \cdot \spacegrad \phihat(\By)
+ i
\spacegrad \phihat(\By) \cdot \spacegrad \delta^3(\Bx – \By)
} \\
&=
\int d^3 y
\hat{\Pi}(\Bx)
\lr{
\spacegrad \phihat(\By) \cdot \spacegrad \phihat(\By)
}
+ 2 i
\int d^3 y
\spacegrad \phihat(\By) \cdot \spacegrad \delta^3(\Bx – \By) \\
&=
\int d^3 y
\hat{\Pi}(\Bx) \spacegrad^2 \phihat(\By)
+
2 i
\int d^3 y
\spacegrad \cdot \lr{ \delta^3(\Bx – \By) \spacegrad \phihat(\By) }

2 i
\int d^3 y
\delta^3(\Bx – \By) \spacegrad^2 \phihat(\By) \\
&=
\int d^3 y
\hat{\Pi}(\Bx) \spacegrad^2 \phihat(\By)
+
2 i
\int_\partial d^2 y
\delta^3(\Bx – \By)
\ncap \cdot \spacegrad \phihat(\By)

2 i \spacegrad^2 \phihat(\Bx).
\end{aligned}
\end{equation}
Here we take advantage of the fact that the derivative operators $$\spacegrad = \spacegrad_\By$$ commute with $$\hat{\Pi}(\Bx)$$, and use the identity
$$\spacegrad \cdot (a \spacegrad b) = (\spacegrad a) \cdot (\spacegrad b) + a \spacegrad^2 b$$, so the commutator is
\begin{equation}\label{eqn:qftLecture5:800}
\begin{aligned}
\int d^3 y \antisymmetric{(\spacegrad \phihat(\By))^2}{\hat{\Pi}(\Bx)}
&=
2 i
\int_\partial d^2 y
\delta^3(\Bx – \By)
\ncap \cdot \spacegrad \phihat(\By)

2 i \spacegrad^2 \phihat(\Bx) \\
&=

2 i \spacegrad^2 \phihat(\Bx),
\end{aligned}
\end{equation}
where the boundary integral is presumed to be zero (without enough justification.) All the pieces can now be put back together
\begin{equation}\label{eqn:qftLecture5:820}
\ddt{} \hat{\Pi}(\Bx, t)
=
\spacegrad^2 \phihat(\Bx, t)

m^2 \phihat(\Bx, t)

\lambda \phihat^3(\Bx, t).
\end{equation}

Now, for the $$\phihat$$ time evolution, which is much easier
\begin{equation}\label{eqn:qftLecture5:380}
\begin{aligned}
\ddt{\hat{\phi}}(\Bx, t)
&= i \antisymmetric{\hatH}{\hat{\phi}(\Bx, t)} \\
&= i \inv{2} \int d^3 y \antisymmetric{\hat{\Pi}^2(\By)}{\hat{\phi}(\Bx)} \\
&= i \inv{2} \int d^3 y (-2 i) \hat{\Pi}(\By, t) \delta^3(\Bx – \By) \\
&= \hat{\Pi}(\Bx, t)
\end{aligned}
\end{equation}
\begin{equation}\label{eqn:qftLecture5:400}
\frac{d^2}{dt^2}{\hat{\phi}}(\Bx, t)
=
\spacegrad^2 \phi
-m^2 \phi – \lambda \phihat^3.
\end{equation}
That is
\begin{equation}\label{eqn:qftLecture5:420}
\ddot{\phihat} – \spacegrad^2 \phihat + m^2 \phihat + \lambda \phihat^3 = 0,
\end{equation}
which is the classical Euler-Lagrange equation, also obeyed by the Heisenberg operator $$\phi(\Bx, t)$$. When $$\lambda = 0$$ this is the Klein-Gordon equation.

## Momentum space representation.

Dropping hats, we now consider the momentum space representation of our operators, as determined by Fourier transform pairs
\begin{equation}\label{eqn:qftLecture5:440}
\begin{aligned}
\phi(\Bx, t) &= \int \frac{d^3 p}{(2\pi)^3} e^{i \Bp \cdot \Bx} \tilde{\phi}(\Bp, t) \\
\tilde{\phi}(\Bp, t) &= \int d^3 x e^{-i \Bp \cdot \Bx} \phi(\Bx, t)
\end{aligned}
\end{equation}

We can discover a representation of the delta function by applying these both in turn
\begin{equation}\label{eqn:qftLecture5:480}
\tilde{\phi}(\Bp, t)
= \int d^3 x e^{-i \Bp \cdot \Bx} \int \frac{d^3 q}{(2 \pi)^3} e^{i \Bq \cdot \Bx} \tilde{\phi}(\Bq, t)
\end{equation}
so
\begin{equation}\label{eqn:qftLecture5:500}
\boxed{
\int d^3 x e^{i \BA \cdot \Bx} = (2 \pi)^3 \delta^3(\BA)
}
\end{equation}

Also observe that $$\phi^\conj(\Bx, t) = \phi(\Bx, t)$$ iff $$\tilde{\phi}(\Bp, t) = \tilde{\phi}^\conj(-\Bp, t)$$.

We want the EOM for $$\tilde{\phi}(\Bp, t)$$ where the operator obeys the KG equation
\begin{equation}\label{eqn:qftLecture5:520}
\lr{ \partial_t^2 – \spacegrad^2 + m^2 } \phi(\Bx, t) = 0
\end{equation}

Inserting the transform relation \ref{eqn:qftLecture5:440} we get
\begin{equation}\label{eqn:qftLecture5:540}
\int \frac{d^3 p}{(2 \pi)^3} e^{i \Bp \cdot \Bx}
\lr{
\ddot{\tilde{\phi}}(\Bp, t) + \lr{ \Bp^2 + m^2 }
\tilde{\phi}(\Bp, t)
}
= 0,
\end{equation}
or
\begin{equation}\label{eqn:qftLecture5:580}
\boxed{
\ddot{\tilde{\phi}}(\Bp, t) = – \omega_\Bp^2 \,\tilde{\phi}(\Bp, t),
}
\end{equation}
where
\begin{equation}\label{eqn:qftLecture5:560}
\omega_\Bp = \sqrt{ \Bp^2 + m^2 }.
\end{equation}
The Fourier components of the HP operators are SHOs!

As we have SHO’s and know how to deal with these in QM, we use the same strategy, introducing raising and lowering operators
\begin{equation}\label{eqn:qftLecture5:600}
\tilde{\phi}(\Bp, t) = \inv{\sqrt{2 \omega_\Bp}} \lr{ e^{-i \omega_\Bp t } a_\Bp + e^{i \omega_\Bp t} a^\dagger_{-\Bp}
}
\end{equation}

Observe that
\begin{equation}\label{eqn:qftLecture5:840}
\begin{aligned}
\tilde{\phi}^\dagger(-\Bp, t)
&= \inv{\sqrt{2 \omega_\Bp}} \lr{ e^{i \omega_\Bp t } a^\dagger_{-\Bp} + e^{-i \omega_\Bp t} a_{\Bp} } \\
&=
\tilde{\phi}(\Bp, t),
\end{aligned}
\end{equation}
or
\begin{equation}\label{eqn:qftLecture5:620}
\tilde{\phi}^\dagger(\Bp, t) = \tilde{\phi}(-\Bp, t),
\end{equation}
so $$\phi(\Bp, t)$$ has a real representation in terms of $$a_\Bp$$.

We will find (Wednesday) that
\begin{equation}\label{eqn:qftLecture5:640}
\antisymmetric{a_\Bq}{a^+_\Bp} = \delta^3(\Bp – \Bq) (2 \pi)^3.
\end{equation}

These are equivalent to
\begin{equation}\label{eqn:qftLecture5:660}
\antisymmetric{\hat{\Pi}(\By, t)}{\tilde{\phi}(\Bx, t)} = -i \delta^3(\Bx – \By)
\end{equation}

## PHY2403H Quantum Field Theory. Lecture 4: Scalar action, least action principle, Euler-Lagrange equations for a field, canonical quantization. Taught by Prof. Erich Poppitz

[Click here for a PDF of this post with nicer formatting]

### DISCLAIMER: Very rough notes from class. May have some additional side notes, but otherwise probably barely edited.

These are notes for the UofT course PHY2403H, Quantum Field Theory I, taught by Prof. Erich Poppitz fall 2018.

## Principles (cont.)

• Lorentz (Poincar\’e : Lorentz and spacetime translations)
• locality
• dimensional analysis
• gauge invariance

These are the requirements for an action. We postulated an action that had the form
\begin{equation}\label{eqn:qftLecture4:20}
\int d^d x \partial_\mu \phi \partial^\mu \phi,
\end{equation}
called the “Kinetic term”, which mimics $$\int dt \dot{q}^2$$ that we’d see in quantum or classical mechanics. In principle there exists an infinite number of local Poincar\’e invariant terms that we can write. Examples:

• $$\partial_\mu \phi \partial^\mu \phi$$
• $$\partial_\mu \phi \partial_\nu \partial^\nu \partial^\mu \phi$$
• $$\lr{\partial_\mu \phi \partial^\mu \phi}^2$$
• $$f(\phi) \partial_\mu \phi \partial^\mu \phi$$
• $$f(\phi, \partial_\mu \phi \partial^\mu \phi)$$
• $$V(\phi)$$

It turns out that nature (i.e. three spatial dimensions and one time dimension) is described by a finite number of terms. We will now utilize dimensional analysis to determine some of the allowed forms of the action for scalar field theories in $$d = 2, 3, 4, 5$$ dimensions. Even though the real world is only $$d = 4$$, some of the $$d < 4$$ theories are relevant in condensed matter studies, and $$d = 5$$ is just for fun (but also applies to string theories.)

With $$[x] \sim \inv{M}$$ in natural units, we must define $$[\phi]$$ such that the kinetic term is dimensionless in d spacetime dimensions

\begin{equation}\label{eqn:qftLecture4:40}
\begin{aligned}
[d^d x] &\sim \inv{M^d} \\
[\partial_\mu] &\sim M
\end{aligned}
\end{equation}

so it must be that
\begin{equation}\label{eqn:qftLecture4:60}
[\phi] = M^{(d-2)/2}
\end{equation}

It will be easier to characterize the dimensionality of any given term by the power of the mass units, that is

\begin{equation}\label{eqn:qftLecture4:80}
\begin{aligned}
[\text{mass}] &= 1 \\
[d^d x] &= -d \\
[\partial_\mu] &= 1 \\
[\phi] &= (d-2)/2 \\
[S] &= 0.
\end{aligned}
\end{equation}
Since the action is
\begin{equation}\label{eqn:qftLecture4:100}
S = \int d^d x \lr{ \LL(\phi, \partial_\mu \phi) },
\end{equation}
and because action had dimensions of $$\Hbar$$, so in natural units, it must be dimensionless, the Lagrangian density dimensions must be $$[d]$$. We will abuse language in QFT and call the Lagrangian density the Lagrangian.

## $$d = 2$$

Because $$[\partial_\mu \phi \partial^\mu \phi ] = 2$$, the scalar field must be dimension zero, or in symbols
\begin{equation}\label{eqn:qftLecture4:120}
[\phi] = 0.
\end{equation}
This means that introducing any function $$f(\phi) = 1 + a \phi + b\phi^2 + c \phi^3 + \cdots$$ is also dimensionless, and
\begin{equation}\label{eqn:qftLecture4:140}
[f(\phi) \partial_\mu \phi \partial^\mu \phi ] = 2,
\end{equation}
for any $$f(\phi)$$. Another implication of this is that the a potential term in the Lagrangian $$[V(\phi)] = 0$$ needs a coupling constant of dimension 2. Letting $$\mu$$ have mass dimensions, our Lagrangian must have the form
\begin{equation}\label{eqn:qftLecture4:160}
f(\phi) \partial_\mu \phi \partial^\mu \phi + \mu^2 V(\phi).
\end{equation}
An infinite number of coupling constants of positive mass dimensions for $$V(\phi)$$ are also allowed. If we have higher order derivative terms, then we need to compensate for the negative mass dimensions. Example (still for $$d = 2$$).
\begin{equation}\label{eqn:qftLecture4:180}
\LL =
f(\phi) \partial_\mu \phi \partial^\mu \phi + \mu^2 V(\phi) + \inv{{\mu’}^2}\partial_\mu \phi \partial_\nu \partial^\nu \partial^\mu \phi + \lr{ \partial_\mu \phi \partial^\mu \phi }^2 \inv{\tilde{\mu}^2}.
\end{equation}
The last two terms, called \underline{couplings} (i.e. any non-kinetic term), are examples of terms with negative mass dimension. There is an infinite number of those in any theory in any dimension.

### Definitions

• Couplings that are dimensionless are called (classically) marginal.
• Couplings that have positive mass dimension are called (classically) relevant.
• Couplings that have negative mass dimension are called (classically) irrelevant.

In QFT we are generally interested in the couplings that are measurable at long distances for some given energy. Classically irrelevant theories are generally not interesting in $$d > 2$$, so we are very lucky that we don’t live in three dimensional space. This means that we can get away with a finite number of classically marginal and relevant couplings in 3 or 4 dimensions. This was mentioned in the Wilczek’s article referenced in the class forum \footnote{There’s currently more in that article that I don’t understand than I do, so it is hard to find it terribly illuminating.}

Long distance physics in any dimension is described by the marginal and relevant couplings. The irrelevant couplings die off at low energy. In two dimensions, a priori, an infinite number of marginal and relevant couplings are possible. 2D is a bad place to live!

## $$d = 3$$

Now we have
\begin{equation}\label{eqn:qftLecture4:200}
[\phi] = \inv{2}
\end{equation}
so that
\begin{equation}\label{eqn:qftLecture4:220}
[\partial_\mu \phi \partial^\mu \phi] = 3.
\end{equation}

A 3D Lagrangian could have local terms such as
\begin{equation}\label{eqn:qftLecture4:240}
\LL = \partial_\mu \phi \partial^\mu \phi + m^2 \phi^2 + \mu^{3/2} \phi^3 + \mu’ \phi^4
+ \lr{\mu”}{1/2} \phi^5
+ \lambda \phi^6.
\end{equation}
where $$m, \mu, \mu”$$ all have mass dimensions, and $$\lambda$$ is dimensionless. i.e. $$m, \mu, \mu”$$ are relevant, and $$\lambda$$ marginal. We stop at the sixth power, since any power after that will be irrelevant.

## $$d = 4$$

Now we have
\begin{equation}\label{eqn:qftLecture4:260}
[\phi] = 1
\end{equation}
so that
\begin{equation}\label{eqn:qftLecture4:280}
[\partial_\mu \phi \partial^\mu \phi] = 4.
\end{equation}

In this number of dimensions $$\phi^k \partial_\mu \phi \partial^\mu$$ is an irrelevant coupling.

A 4D Lagrangian could have local terms such as
\begin{equation}\label{eqn:qftLecture4:300}
\LL = \partial_\mu \phi \partial^\mu \phi + m^2 \phi^2 + \mu \phi^3 + \lambda \phi^4.
\end{equation}
where $$m, \mu$$ have mass dimensions, and $$\lambda$$ is dimensionless. i.e. $$m, \mu$$ are relevant, and $$\lambda$$ is marginal.

## $$d = 5$$

Now we have
\begin{equation}\label{eqn:qftLecture4:320}
[\phi] = \frac{3}{2},
\end{equation}
so that
\begin{equation}\label{eqn:qftLecture4:340}
[\partial_\mu \phi \partial^\mu \phi] = 5.
\end{equation}

A 5D Lagrangian could have local terms such as
\begin{equation}\label{eqn:qftLecture4:360}
\LL = \partial_\mu \phi \partial^\mu \phi + m^2 \phi^2 + \sqrt{\mu} \phi^3 + \inv{\mu’} \phi^4.
\end{equation}
where $$m, \mu, \mu’$$ all have mass dimensions. In 5D there are no marginal couplings. Dimension 4 is the last dimension where marginal couplings exist. In condensed matter physics 4D is called the “upper critical dimension”.

From the point of view of particle physics, all the terms in the Lagrangian must be the ones that are relevant at long distances.

## Least action principle (classical field theory).

Now we want to study 4D scalar theories. We have some action
\begin{equation}\label{eqn:qftLecture4:380}
S[\phi] = \int d^4 x \LL(\phi, \partial_\mu \phi).
\end{equation}

Let’s keep an example such as the following in mind
\begin{equation}\label{eqn:qftLecture4:400}
\LL = \underbrace{\inv{2} \partial_\mu \phi \partial^\mu \phi}_{\text{Kinetic term}} – \underbrace{m^2 \phi – \lambda \phi^4}_{\text{all relevant and marginal couplings}}.
\end{equation}
The even powers can be justified by assuming there is some symmetry that kills the odd powered terms.

We will be integrating over a space time region such as that depicted in fig. 1, where a cylindrical spatial cross section is depicted that we allow to tend towards infinity. We demand that the field is fixed on the infinite spatial boundaries. The easiest way to demand that the field dies off on the spatial boundaries, that is
\begin{equation}\label{eqn:qftLecture4:420}
\lim_{\Abs{\Bx} \rightarrow \infty} \phi(\Bx) \rightarrow 0.
\end{equation}
The functional $$\phi(\Bx, t)$$ that obeys the boundary condition as stated extremizes $$S[\phi]$$.

Extremizing the action means that we seek $$\phi(\Bx, t)$$
\begin{equation}\label{eqn:qftLecture4:440}
\delta S[\phi] = 0 = S[\phi + \delta \phi] – S[\phi].
\end{equation}

How do we compute the variation?
\begin{equation}\label{eqn:qftLecture4:460}
\begin{aligned}
\delta S
&= \int d^d x \lr{ \LL(\phi + \delta \phi, \partial_\mu \phi + \partial_\mu \delta \phi) – \LL(\phi, \partial_\mu \phi) } \\
&= \int d^d x \lr{ \PD{\phi}{\LL} \delta \phi + \PD{(\partial_mu \phi)}{\LL} (\partial_\mu \delta \phi) } \\
&= \int d^d x \lr{ \PD{\phi}{\LL} \delta \phi
+ \partial_\mu \lr{ \PD{(\partial_mu \phi)}{\LL} \delta \phi}
– \lr{ \partial_\mu \PD{(\partial_mu \phi)}{\LL} } \delta \phi
} \\
&=
\int d^d x
\delta \phi
\lr{ \PD{\phi}{\LL}
– \partial_\mu \PD{(\partial_mu \phi)}{\LL} }
+ \int d^3 \sigma_\mu \lr{ \PD{(\partial_\mu \phi)}{\LL} \delta \phi }
\end{aligned}
\end{equation}

If we are explicit about the boundary term, we write it as
\begin{equation}\label{eqn:qftLecture4:480}
\int dt d^3 \Bx \partial_t \lr{ \PD{(\partial_t \phi)}{\LL} \delta \phi }
– \spacegrad \cdot \lr{ \PD{(\spacegrad \phi)}{\LL} \delta \phi }
=
\int d^3 \Bx \evalrange{ \PD{(\partial_t \phi)}{\LL} \delta \phi }{t = -T}{t = T}
– \int dt d^2 \BS \cdot \lr{ \PD{(\spacegrad \phi)}{\LL} \delta \phi }.
\end{equation}
but $$\delta \phi = 0$$ at $$t = \pm T$$ and also at the spatial boundaries of the integration region.

This leaves
\begin{equation}\label{eqn:qftLecture4:500}
\delta S[\phi] = \int d^d x \delta \phi
\lr{ \PD{\phi}{\LL} – \partial_\mu \PD{(\partial_mu \phi)}{\LL} } = 0 \forall \delta \phi.
\end{equation}
That is

\begin{equation}\label{eqn:qftLecture4:540}
\boxed{
\PD{\phi}{\LL} – \partial_\mu \PD{(\partial_mu \phi)}{\LL} = 0.
}
\end{equation}

This are the Euler-Lagrange equations for a single scalar field.

Returning to our sample scalar Lagrangian
\begin{equation}\label{eqn:qftLecture4:560}
\LL = \inv{2} \partial_\mu \phi \partial^\mu \phi – \inv{2} m^2 \phi^2 – \frac{\lambda}{4} \phi^4.
\end{equation}
This example is related to the Ising model which has a $$\phi \rightarrow -\phi$$ symmetry. Applying the Euler-Lagrange equations, we have
\begin{equation}\label{eqn:qftLecture4:580}
\PD{\phi}{\LL} = -m^2 \phi – \lambda \phi^3,
\end{equation}
and
\begin{equation}\label{eqn:qftLecture4:600}
\begin{aligned}
\PD{(\partial_\mu \phi)}{\LL}
&=
\PD{(\partial_\mu \phi)}{} \lr{
\inv{2} \partial_\nu \phi \partial^\nu \phi } \\
&=
\inv{2} \partial^\nu \phi
\PD{(\partial_\mu \phi)}{}
\partial_\nu \phi
+
\inv{2} \partial_\nu \phi
\PD{(\partial_\mu \phi)}{}
\partial_\alpha \phi g^{\nu\alpha} \\
&=
\inv{2} \partial^\mu \phi
+
\inv{2} \partial_\nu \phi g^{\nu\mu} \\
&=
\partial^\mu \phi
\end{aligned}
\end{equation}
so we have
\begin{equation}\label{eqn:qftLecture4:620}
\begin{aligned}
0
&=
\PD{\phi}{\LL} -\partial_\mu
\PD{(\partial_\mu \phi)}{\LL} \\
&=
-m^2 \phi – \lambda \phi^3 – \partial_\mu \partial^\mu \phi.
\end{aligned}
\end{equation}

For $$\lambda = 0$$, the free field theory limit, this is just
\begin{equation}\label{eqn:qftLecture4:640}
\partial_\mu \partial^\mu \phi + m^2 \phi = 0.
\end{equation}
Written out from the observer frame, this is
\begin{equation}\label{eqn:qftLecture4:660}
(\partial_t)^2 \phi – \spacegrad^2 \phi + m^2 \phi = 0.
\end{equation}

With a non-zero mass term
\begin{equation}\label{eqn:qftLecture4:680}
\lr{ \partial_t^2 – \spacegrad^2 + m^2 } \phi = 0,
\end{equation}
is called the Klein-Gordan equation.

If we also had $$m = 0$$ we’d have
\begin{equation}\label{eqn:qftLecture4:700}
\lr{ \partial_t^2 – \spacegrad^2 } \phi = 0,
\end{equation}
which is the wave equation (for a massless free field). This is also called the D’Alembert equation, which is familiar from electromagnetism where we have
\begin{equation}\label{eqn:qftLecture4:720}
\begin{aligned}
\lr{ \partial_t^2 – \spacegrad^2 } \BE &= 0 \\
\lr{ \partial_t^2 – \spacegrad^2 } \BB &= 0,
\end{aligned}
\end{equation}
in a source free region.

## Canonical quantization.

\begin{equation}\label{eqn:qftLecture4:740}
\LL = \inv{2} \dot{q} – \frac{\omega^2}{2} q^2
\end{equation}
This has solution $$\ddot{q} = – \omega^2 q$$.

Let
\begin{equation}\label{eqn:qftLecture4:760}
p = \PD{\dot{q}}{\LL} = \dot{q}
\end{equation}
\begin{equation}\label{eqn:qftLecture4:780}
H(p,q) = \evalbar{p \dot{q} – \LL}{\dot{q}(p, q)}
= p p – \inv{2} p^2 + \frac{\omega^2}{2} q^2 = \frac{p^2}{2} + \frac{\omega^2}{2} q^2
\end{equation}

In QM we quantize by mapping Poisson brackets to commutators.
\begin{equation}\label{eqn:qftLecture4:800}
\antisymmetric{\hatp}{\hat{q}} = -i
\end{equation}
One way to represent is to say that states are $$\Psi(\hat{q})$$, a wave function, $$\hat{q}$$ acts by $$q$$
\begin{equation}\label{eqn:qftLecture4:820}
\hat{q} \Psi = q \Psi(q)
\end{equation}
With
\begin{equation}\label{eqn:qftLecture4:840}
\hatp = -i \PD{q}{},
\end{equation}
so
\begin{equation}\label{eqn:qftLecture4:860}
\antisymmetric{ -i \PD{q}{} } { q} = -i
\end{equation}

Let’s introduce an explicit space time split. We’ll write
\begin{equation}\label{eqn:qftLecture4:880}
L = \int d^3 x \lr{
\inv{2} (\partial_0 \phi(\Bx, t))^2 – \inv{2} \lr{ \spacegrad \phi(\Bx, t) }^2 – \frac{m^2}{2} \phi
},
\end{equation}
so that the action is
\begin{equation}\label{eqn:qftLecture4:900}
S = \int dt L.
\end{equation}
The dynamical variables are $$\phi(\Bx)$$. We define
\begin{equation}\label{eqn:qftLecture4:920}
\begin{aligned}
\pi(\Bx, t) = \frac{\delta L}{\delta (\partial_0 \phi(\Bx, t))}
&=
\partial_0 \phi(\Bx, t) \\
&=
\dot{\phi}(\Bx, t),
\end{aligned}
\end{equation}
called the canonical momentum, or the momentum conjugate to $$\phi(\Bx, t)$$. Why $$\delta$$? Has to do with an implicit Dirac function to eliminate the integral?

\begin{equation}\label{eqn:qftLecture4:940}
\begin{aligned}
H
&= \int d^3 x \evalbar{\lr{ \pi(\bar{\Bx}, t) \dot{\phi}(\bar{\Bx}, t) – L }}{\dot{\phi}(\bar{\Bx}, t) = \pi(x, t) } \\
&= \int d^3 x \lr{ (\pi(\Bx, t))^2 – \inv{2} (\pi(\Bx, t))^2 + \inv{2} (\spacegrad \phi)^2 + \frac{m}{2} \phi^2 },
\end{aligned}
\end{equation}
or
\begin{equation}\label{eqn:qftLecture4:960}
H
= \int d^3 x \lr{ \inv{2} (\pi(\Bx, t))^2 + \inv{2} (\spacegrad \phi(\Bx, t))^2 + \frac{m}{2} (\phi(\Bx, t))^2 }
\end{equation}

In analogy to the momentum, position commutator in QM
\begin{equation}\label{eqn:qftLecture4:1000}
\antisymmetric{\hat{p}_i}{\hat{q}_j} = -i \delta_{ij},
\end{equation}
we “quantize” the scalar field theory by promoting $$\pi, \phi$$ to operators and insisting that they also obey a commutator relationship
\begin{equation}\label{eqn:qftLecture4:980}
\antisymmetric{\pi(\Bx, t)}{\phi(\By, t)} = -i \delta^3(\Bx – \By).
\end{equation}

# References

 Frank Wilczek. Fundamental constants. arXiv preprint arXiv:0708.4361, 2007. URL https://arxiv.org/abs/0708.4361.