## Maxwell’s equations with magnetic sources

The form of Maxwell’s equations to be used here are expressed in terms of $$\boldsymbol{\mathcal{E}}$$ and $$\boldsymbol{\mathcal{H}}$$, assume linear media, and do not assume a phasor representation

\label{eqn:energyMomentumWithMagneticSources:120}
\spacegrad \cross \boldsymbol{\mathcal{E}} = – \boldsymbol{\mathcal{M}} – \mu_0 \PD{t}{\boldsymbol{\mathcal{H}}}

\label{eqn:energyMomentumWithMagneticSources:140}
\spacegrad \cross \boldsymbol{\mathcal{H}} = \boldsymbol{\mathcal{J}} + \epsilon_0 \PD{t}{\boldsymbol{\mathcal{E}}}

\label{eqn:energyMomentumWithMagneticSources:160}

\label{eqn:energyMomentumWithMagneticSources:180}

## Energy momentum conservation

With magnetic sources the Poynting and energy conservation relationship has to be adjusted slightly. Let’s derive that result, starting with the divergence of the Poynting vector

\label{eqn:energyMomentumWithMagneticSources:20}
\begin{aligned}
\spacegrad \cdot \lr{ \boldsymbol{\mathcal{E}} \cross \boldsymbol{\mathcal{H}} }
&=
\boldsymbol{\mathcal{H}} \cdot \lr{ \spacegrad \cross \boldsymbol{\mathcal{E}} }
-\boldsymbol{\mathcal{E}} \cdot \lr{ \spacegrad \cross \boldsymbol{\mathcal{H}} } \\
&=
-\boldsymbol{\mathcal{H}} \cdot \lr{ \mu_0 \partial_t \boldsymbol{\mathcal{H}} + \boldsymbol{\mathcal{M}} }
-\boldsymbol{\mathcal{E}} \cdot \lr{ \boldsymbol{\mathcal{J}} + \epsilon_0 \partial_t \boldsymbol{\mathcal{E}} } \\
&=
– \mu_0 \boldsymbol{\mathcal{H}} \cdot \partial_t \boldsymbol{\mathcal{H}} – \boldsymbol{\mathcal{H}} \cdot \boldsymbol{\mathcal{M}}
– \epsilon_0 \boldsymbol{\mathcal{E}} \cdot \partial_t \boldsymbol{\mathcal{E}} – \boldsymbol{\mathcal{E}} \cdot \boldsymbol{\mathcal{J}},
\end{aligned}

or

\label{eqn:energyMomentumWithMagneticSources:40}
\boxed{
\inv{2} \PD{t}{} \lr{ \epsilon_0 \boldsymbol{\mathcal{E}}^2 + \mu_0 \boldsymbol{\mathcal{H}}^2 }
+
\spacegrad \cdot \lr{ \boldsymbol{\mathcal{E}} \cross \boldsymbol{\mathcal{H}} }
=
– \boldsymbol{\mathcal{H}} \cdot \boldsymbol{\mathcal{M}}
– \boldsymbol{\mathcal{E}} \cdot \boldsymbol{\mathcal{J}}.
}

The usual relationship is only modified by one additional term. Recall from electrodynamics [2] that \ref{eqn:energyMomentumWithMagneticSources:40} (when the magnetic current density $$\boldsymbol{\mathcal{M}}$$ is omitted) is just one of four components of the energy momentum conservation equation

\label{eqn:energyMomentumWithMagneticSources:80}
\partial_\mu T^{\mu \nu} = – \inv{c} F^{\nu \lambda} j_\lambda.

Note that \ref{eqn:energyMomentumWithMagneticSources:80} was likely not in SI units. The next task is to generalize this classical relationship to incorporate the magnetic sources used in antenna theory. With an eye towards the relativistic nature of the energy momentum tensor, it is natural to assume that the remainder of the energy momentum tensor conservation relation can be found by taking the time derivatives of the Poynting vector.

\label{eqn:energyMomentumWithMagneticSources:200}
\PD{t}{} \lr{ \boldsymbol{\mathcal{E}} \cross \boldsymbol{\mathcal{H}} }
=
\PD{t}{\boldsymbol{\mathcal{E}}} \cross \boldsymbol{\mathcal{H}}
+ \boldsymbol{\mathcal{E}} \cross \PD{t}{\boldsymbol{\mathcal{H}} }
=
\inv{\epsilon_0}
\lr{ \spacegrad \cross \boldsymbol{\mathcal{H}} – \boldsymbol{\mathcal{J}} } \cross \boldsymbol{\mathcal{H}}
+
\inv{\mu_0}
\boldsymbol{\mathcal{E}} \cross
\lr{

\spacegrad \cross \boldsymbol{\mathcal{E}} – \boldsymbol{\mathcal{M}} },

or

\label{eqn:energyMomentumWithMagneticSources:220}
\inv{c^2} \PD{t}{} \lr{ \boldsymbol{\mathcal{E}} \cross \boldsymbol{\mathcal{H}} }
+
\mu_0 \boldsymbol{\mathcal{J}} \cross \boldsymbol{\mathcal{H}}
+\epsilon_0
\boldsymbol{\mathcal{E}} \cross \boldsymbol{\mathcal{M}}
=
-\mu_0 \boldsymbol{\mathcal{H}} \cross \lr{ \spacegrad \cross \boldsymbol{\mathcal{H}} }
– \epsilon_0 \boldsymbol{\mathcal{E}} \cross \lr{ \spacegrad \cross \boldsymbol{\mathcal{E}} }.

The $$\mu_0 \boldsymbol{\mathcal{J}} \cross \boldsymbol{\mathcal{H}} = \boldsymbol{\mathcal{J}} \cross \BB$$ is a portion of the Lorentz force equation in its density form. To put \ref{eqn:energyMomentumWithMagneticSources:220} into the desired form, the remainder of the Lorentz force force equation $$\rho \boldsymbol{\mathcal{E}} = \epsilon_0 \boldsymbol{\mathcal{E}} \spacegrad \cdot \boldsymbol{\mathcal{E}}$$ must be added to both sides. To extend the magnetic current term to its full dual (magnetic) Lorentz force structure, the quantity to add to both sides is $$\rho_m \boldsymbol{\mathcal{H}} = \mu_0 \boldsymbol{\mathcal{H}} \spacegrad \cdot \boldsymbol{\mathcal{H}}$$. Performing these manipulations gives

\label{eqn:energyMomentumWithMagneticSources:240}
\inv{c^2} \PD{t}{} \lr{ \boldsymbol{\mathcal{E}} \cross \boldsymbol{\mathcal{H}} }
+
\rho \BE + \mu_0 \boldsymbol{\mathcal{J}} \cross \boldsymbol{\mathcal{H}}
+ \rho_m \boldsymbol{\mathcal{H}}
+ \epsilon_0 \boldsymbol{\mathcal{E}} \cross \boldsymbol{\mathcal{M}}
=
\mu_0
\lr{
-\boldsymbol{\mathcal{H}} \cross \lr{ \spacegrad \cross \boldsymbol{\mathcal{H}} }
}
+ \epsilon_0
\lr{

\boldsymbol{\mathcal{E}} \cross \lr{ \spacegrad \cross \boldsymbol{\mathcal{E}} }
}.

It seems slightly surprising the sign of the magnetic equivalent of the Lorentz force terms have an alternation of sign. This is, however, consistent with the duality transformations outlined in ([1] table 3.2)

\label{eqn:energyMomentumWithMagneticSources:280}
\rho \rightarrow \rho_m

\label{eqn:energyMomentumWithMagneticSources:300}
\boldsymbol{\mathcal{J}} \rightarrow \boldsymbol{\mathcal{M}}

\label{eqn:energyMomentumWithMagneticSources:320}
\mu_0 \rightarrow \epsilon_0

\label{eqn:energyMomentumWithMagneticSources:340}
\boldsymbol{\mathcal{E}} \rightarrow \boldsymbol{\mathcal{H}}

\label{eqn:energyMomentumWithMagneticSources:360}
\boldsymbol{\mathcal{H}} \rightarrow -\boldsymbol{\mathcal{E}},

for

\label{eqn:energyMomentumWithMagneticSources:380}
\rho \BE + \mu_0 \boldsymbol{\mathcal{J}} \cross \boldsymbol{\mathcal{H}}
\rightarrow
\rho_m \BH + \epsilon_0 \boldsymbol{\mathcal{M}} \cross \lr{ -\boldsymbol{\mathcal{E}}}
=
\rho_m \BH + \epsilon_0 \boldsymbol{\mathcal{E}} \cross \boldsymbol{\mathcal{M}}.

Comfortable that the LHS has the desired structure, the RHS can expressed as a divergence. Just expanding one of the differences of vector products on the RHS does not obviously show that this is possible, for example

\label{eqn:energyMomentumWithMagneticSources:400}
\begin{aligned}
\Be_a \cdot
\lr{

\boldsymbol{\mathcal{E}} \cross \lr{ \spacegrad \cross \boldsymbol{\mathcal{E}} }
}
&=
E_a \partial_b E_b

\epsilon_{a b c} E_b \epsilon_{c r s} \partial_r E_s \\
&=
E_a \partial_b E_b

\delta_{a b}^{[r s]} E_b \partial_r E_s \\
&=
E_a \partial_b E_b

E_b \lr{
\partial_a E_b
-\partial_b E_a
} \\
&=
E_a \partial_b E_b
– E_b \partial_a E_b
+ E_b \partial_b E_a.
\end{aligned}

This happens to equal

\label{eqn:energyMomentumWithMagneticSources:420}
\begin{aligned}
\spacegrad \cdot \lr{ \lr{E_a E_b – \inv{2} \delta_{a b} \boldsymbol{\mathcal{E}}^2 } \Be_b }
&=
\partial_b
\lr{E_a E_b – \inv{2} \delta_{a b} \boldsymbol{\mathcal{E}}^2 } \\
&=
E_b \partial_b E_a
+ E_a \partial_b E_b

\inv{2} \delta_{a b} 2 E_c \partial_b E_c \\
i&=
E_b \partial_b E_a
+ E_a \partial_b E_b
– E_b \partial_a E_b.
\end{aligned}

This allows a final formulation of the remaining energy momentum conservation equation in its divergence form. Let

\label{eqn:energyMomentumWithMagneticSources:440}
T^{a b} =
\epsilon_0 \lr{ E_a E_b – \inv{2} \delta_{a b} \boldsymbol{\mathcal{E}}^2 }
+ \mu_0 \lr{ H_a H_b – \inv{2} \delta_{a b} \boldsymbol{\mathcal{H}}^2 },

so that the remaining energy momentum conservation equation, extended to both electric and magnetic sources, is

\label{eqn:energyMomentumWithMagneticSources:460}
\boxed{
\inv{c^2} \PD{t}{} \lr{ \boldsymbol{\mathcal{E}} \cross \boldsymbol{\mathcal{H}} }
+
\rho \BE + \mu_0 \boldsymbol{\mathcal{J}} \cross \boldsymbol{\mathcal{H}}
+ \rho_m \boldsymbol{\mathcal{H}}
+ \epsilon_0 \boldsymbol{\mathcal{E}} \cross \boldsymbol{\mathcal{M}}
=
\Be_a \spacegrad \cdot \lr{ T^{a b} \Be_b }.
}

On the LHS we have the rate of change of momentum density, the electric Lorentz force density terms, the dual (magnetic) Lorentz force density terms, and on the RHS the the momentum flux terms.

# References

[1] Constantine A Balanis. Antenna theory: analysis and design. John Wiley \& Sons, 3rd edition, 2005.

[2] Peeter Joot. Relativistic Electrodynamics., chapter {Energy Momentum Tensor.} peeterjoot.com, 2011. URL http://peeterjoot.com/archives/math2011/phy450.pdf. [Online; accessed 18-February-2015].

## Notes for ece1229 antenna theory

I’ve now posted a first set of notes for the antenna theory course that I am taking this term at UofT.

Unlike most of the other classes I have taken, I am not attempting to take comprehensive notes for this class. The class is taught on slides that match the textbook so closely, there is little value to me taking notes that just replicate the text. Instead, I am annotating my copy of textbook with little details instead. My usual notes collection for the class will contain musings of details that were unclear, or in some cases, details that were provided in class, but are not in the text (and too long to pencil into my book.)

• Reading notes for chapter 2 (Fundamental Parameters of Antennas) and chapter 3 (Radiation Integrals and Auxiliary Potential Functions) of the class text.
• Geometric Algebra musings.  How to do formulate Maxwell’s equations when magnetic sources are also included (those modeling magnetic dipoles).
• Some problems for chapter 2 content.

## Phasor form of (extended) Maxwell’s equations in Geometric Algebra

Separate examinations of the phasor form of Maxwell’s equation (with electric charges and current densities), and the Dual Maxwell’s equation (i.e. allowing magnetic charges and currents) were just performed. Here the structure of these equations with both electric and magnetic charges and currents will be examined.

The vector curl and divergence form of Maxwell’s equations are

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:20}
\spacegrad \cross \boldsymbol{\mathcal{E}} = -\PD{t}{\boldsymbol{\mathcal{B}}} -\BM

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:40}
\spacegrad \cross \boldsymbol{\mathcal{H}} = \boldsymbol{\mathcal{J}} + \PD{t}{\boldsymbol{\mathcal{D}}}

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:60}

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:80}

In phasor form these are

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:100}
\spacegrad \cross \BE = – j k c \BB -\BM

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:120}
\spacegrad \cross \BH = \BJ + j k c \BD

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:140}

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:160}

Switching to $$\BE = \BD/\epsilon_0, \BB = \mu_0 \BH$$ fields (even though these aren’t the primary fields in engineering), gives

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:180}
\spacegrad \cross \BE = – j k (c \BB) -\BM

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:200}
\spacegrad \cross (c \BB) = \frac{\BJ}{\epsilon_0 c} + j k \BE

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:220}

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:240}
\spacegrad \cdot (c \BB) = c \rho_m.

Finally, using

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:260}
\Bf \Bg = \Bf \cdot \Bg + I \Bf \cross \Bg,

the divergence and curl contributions of each of the fields can be grouped

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:300}
\spacegrad \BE = \rho/\epsilon_0 – \lr{ j k (c \BB) +\BM} I

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:320}
\spacegrad (c \BB I) = c \rho_m I – \lr{ \frac{\BJ}{\epsilon_0 c} + j k \BE },

or

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:340}
\spacegrad \lr{ \BE + c \BB I }
=
\rho/\epsilon_0 – \lr{ j k (c \BB) +\BM} I
+
c \rho_m I – \lr{ \frac{\BJ}{\epsilon_0 c} + j k \BE }.

Regrouping gives Maxwell’s equations including both electric and magnetic sources
\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:360}
\boxed{
\lr{ \spacegrad + j k } \lr{ \BE + c \BB I }
=
\inv{\epsilon_0 c} \lr{ c \rho – \BJ }
+ \lr{ c \rho_m – \BM } I.
}

It was observed that these can be put into a tidy four vector form by premultiplying by $$\gamma_0$$, where

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:400}
J = \gamma_\mu J^\mu = \lr{ c \rho, \BJ }

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:420}
M = \gamma_\mu M^\mu = \lr{ c \rho_m, \BM }

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:440}
\grad = \gamma_0 \lr{ \spacegrad + j k } = \gamma^k \partial_k + j k \gamma_0,

That gives

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:460}
\boxed{
\grad \lr{ \BE + c \BB I } = \frac{J}{\epsilon_0 c} + M I.
}

When there were only electric sources, it was observed that potential solutions were of the form $$\BE + c \BB I \propto \grad \wedge A$$, whereas when there was only magnetic sources it was observed that potential solutions were of the form $$\BE + c \BB I \propto (\grad \wedge F) I$$. It seems reasonable to attempt a trial solution that contains both such contributions, say

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:480}
\BE + c \BB I = \grad \wedge A_{\textrm{e}} + \grad \wedge A_{\textrm{m}} I.

Without any loss of generality Lorentz gauge conditions can be imposed on the four-vector fields $$A_{\textrm{e}}, A_{\textrm{m}}$$. Those conditions are

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:500}

Since $$\grad X = \grad \cdot X + \grad \wedge X$$, for any four vector $$X$$, the trial solution \ref{eqn:phasorMaxwellsWithElectricAndMagneticCharges:480} is reduced to

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:520}
\BE + c \BB I = \grad A_{\textrm{e}} + \grad A_{\textrm{m}} I.

Maxwell’s equation is now

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:540}
\begin{aligned}
\frac{J}{\epsilon_0 c} + M I
&=
\grad^2 \lr{ A_{\textrm{e}} + A_{\textrm{m}} I } \\
&=
\gamma_0 \lr{ \spacegrad + j k }
\gamma_0 \lr{ \spacegrad + j k }
\lr{ A_{\textrm{e}} + A_{\textrm{m}} I } \\
&=
\lr{ -\spacegrad + j k }
\lr{ \spacegrad + j k }
\lr{ A_{\textrm{e}} + A_{\textrm{m}} I } \\
&=
\lr{ A_{\textrm{e}} + A_{\textrm{m}} I }.
\end{aligned}

Notice how tidily this separates into vector and trivector components. Those are

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:580}
-\lr{ \spacegrad^2 + k^2 } A_{\textrm{e}} = \frac{J}{\epsilon_0 c}

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:600}
-\lr{ \spacegrad^2 + k^2 } A_{\textrm{m}} = M.

The result is a single Helmholtz equation for each of the electric and magnetic four-potentials, and both can be solved completely independently. This was claimed in class, but now the underlying reason is clear.

Because a single frequency phasor relationship was implied the scalar components of each of these four potentials is determined by the Lorentz gauge condition. For example

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:620}
\begin{aligned}
0
&=
\spacegrad \cdot \lr{ A_{\textrm{e}} e^{j k c t} } \\
&=
\lr{ \gamma^0 \inv{c} \PD{t}{} + \gamma^k \PD{x^k}{} } \cdot
\lr{
\gamma_0 A_{\textrm{e}}^0 e^{j k c t}
+ \gamma_m A_{\textrm{e}}^m e^{j k c t}
} \\
&=
\lr{ \gamma^0 j k + \gamma^r \PD{x^r}{} } \cdot
\lr{
\gamma_0 A_{\textrm{e}}^0
+ \gamma_s A_{\textrm{e}}^s
}
e^{j k c t} \\
&=
\lr{
j k
A_{\textrm{e}}^0
+
\BA_{\textrm{e}}
}
e^{j k c t},
\end{aligned}

so

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:640}
A_{\textrm{e}}^0
=\frac{ j} { k }
\BA_{\textrm{e}}.

The same sort of relationship will apply to the magnetic potential too. This means that the Helmholtz equations can be solved in the three vector space as

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:680}
\lr{ \spacegrad^2 + k^2 } \BA_{\textrm{e}} = -\frac{\BJ}{\epsilon_0 c}

\label{eqn:phasorMaxwellsWithElectricAndMagneticCharges:700}
\lr{ \spacegrad^2 + k^2 } \BA_{\textrm{m}} = -\BM.

## Maxwell’s equations review (plus magnetic sources and currents)

These are notes for the UofT course ECE1229, Advanced Antenna Theory, taught by Prof. Eleftheriades, covering ch. 3 [1] content.

Unlike most of the other classes I have taken, I am not attempting to take comprehensive notes for this class. The class is taught on slides that match the textbook so closely, there is little value to me taking notes that just replicate the text. Instead, I am annotating my copy of textbook with little details instead. My usual notes collection for the class will contain musings of details that were unclear, or in some cases, details that were provided in class, but are not in the text (and too long to pencil into my book.)

## Maxwell’s equation review

For reasons that are yet to be seen (and justified), we work with a generalization of Maxwell’s equations to include
electric AND magnetic charge densities.

\label{eqn:chapter3Notes:20}
\spacegrad \cross \boldsymbol{\mathcal{E}} = – \boldsymbol{\mathcal{M}} – \PD{t}{\boldsymbol{\mathcal{B}}}

\label{eqn:chapter3Notes:40}
\spacegrad \cross \boldsymbol{\mathcal{H}} = \boldsymbol{\mathcal{J}} + \PD{t}{\boldsymbol{\mathcal{D}}}

\label{eqn:chapter3Notes:60}

\label{eqn:chapter3Notes:80}

Assuming a phasor relationships of the form $$\boldsymbol{\mathcal{E}} = \text{Real} \lr{ \BE(\Br) e^{j \omega t}}$$ for the fields and the currents, these reduce to

\label{eqn:chapter3Notes:100}
\spacegrad \cross \BE = – \BM – j \omega \BB

\label{eqn:chapter3Notes:120}
\spacegrad \cross \BH = \BJ + j \omega \BD

\label{eqn:chapter3Notes:140}

\label{eqn:chapter3Notes:160}

In engineering the fields

• $$\BE$$ : Electric field intensity (V/m, Volts/meter).
• $$\BH$$ : Magnetic field intensity (A/m, Amperes/meter).

are designated primary fields, whereas

• $$\BD$$ : Electric flux density (or displacement vector) (C/m, {Coulombs/meter).
• $$\BB$$ : Magnetic flux density (W/m, Webers/meter).

are designated the induced fields. The currents and charges are

• $$\BJ$$ : Electric current density (A/m).
• $$\BM$$ : Magnetic current density (V/m).
• $$\rho$$ : Electric charge density (C/m^3).
• $$\rho_m$$ : Magnetic charge density (W/m^3).

Because $$\spacegrad \cdot \lr{ \spacegrad \cross \Bf } = 0$$ for any
(sufficiently continuous) vector $$\Bf$$, divergence relations between the
currents and the charges follow from \ref{eqn:chapter3Notes:100}…

\label{eqn:chapter3Notes:180}
0
= -\spacegrad \cdot \BM – j \omega \rho_m,

and

\label{eqn:chapter3Notes:200}
0
= \spacegrad \cdot \BJ + j \omega \rho,

These are the phasor forms of the continuity equations

\label{eqn:chapter3Notes:220}
\spacegrad \cdot \BM = – j \omega \rho_m

\label{eqn:chapter3Notes:240}
\spacegrad \cdot \BJ = -j \omega \rho.

### Integral forms

The integral forms of Maxwell’s equations follow from Stokes’ theorem and the divergence theorems. Stokes’ theorem is a relation between the integral of the curl and the outwards normal differential area element of a surface, to the boundary of that surface, and applies to any surface with that boundary

\label{eqn:chapter3Notes:260}
\iint
= \oint \Bf \cdot d\Bl.

The divergence theorem, a special case of the general Stokes’ theorem is

\label{eqn:chapter3Notes:280}
= \iint_{\partial V} \Bf \cdot d\BA,

where the integral is over the surface of the volume, and the area element of the bounding integral has an outwards normal orientation.

See [5] for a derivation of this and various generalizations.

Applying these to Maxwell’s equations gives

\label{eqn:chapter3Notes:320}
\oint d\Bl \cdot \BE = –
\iint d\BA \cdot \lr{
\BM + j \omega \BB
}

\label{eqn:chapter3Notes:340}
\oint d\Bl \cdot \BH =
\iint d\BA \cdot \lr{
\BJ + j \omega \BD
}

\label{eqn:chapter3Notes:360}
\iint_{\partial V} d\BA \cdot \BD = \iiint \rho dV

\label{eqn:chapter3Notes:380}
\iint_{\partial V} d\BA \cdot \BB = \iiint \rho_m dV

## Constitutive relations

For linear isotropic homogeneous materials, the following constitutive relations apply

• $$\BD = \epsilon \BE$$
• $$\BB = \mu \BH$$
• $$\BJ = \sigma \BE$$, Ohm’s law.

where

• $$\epsilon = \epsilon_r \epsilon_0$$, is the permutivity (F/m, Farads/meter ).
• $$\mu = \mu_r \mu_0$$, is the permeability (H/m, Henries/meter), $$\mu_0 = 4 \pi \times 10^{-7}$$.
• $$\sigma$$, is the conductivity ($$\inv{\Omega m}$$, where $$1/\Omega$$ is a Siemens.)

In AM radio, will see ferrite cores with the inductors, which introduces non-unit $$\mu_r$$. This is to increase the radiation resistance.

## Boundary conditions

For good electric conductor $$\BE = 0$$.
For good magnetic conductor $$\BB = 0$$.

(more on class slides)

## Linear time invariant

Linear time invariant meant that the impulse response $$h(t,t’)$$ was a function of just the difference in times $$h(t,t’) = h(t-t’)$$.

## Green’s functions

For electromagnetic problems the impulse function sources $$\delta(\Br – \Br’)$$ also has a direction, and can yield any of $$E_x, E_y, E_z$$. A tensor impulse response is required.

Some overview of an approach that uses such tensor Green’s functions is outlined on the slides. It gets really messy since we require four tensor Green’s functions to handle electric and magnetic current and charges. Because of this complexity, we don’t go down this path, and use potentials instead.

In \S 3.5 [1] and the class notes, a verification of the spherical wave form for the Helmholtz Green’s function was developed. This was much simpler than the same verification I did in [4]. Part of the reason for that was that I worked in Cartesian coordinates, which made things much messier. The other part of the reason, for treating a neighbourhood of $$\Abs{\Br – \Br’} \sim 0$$, I verified the convolution, whereas Prof. Eleftheriades argues that a verification that $$\int \lr{\spacegrad^2 + k^2} G(\Br, \Br’) dV’ = 1$$ is sufficient. Balanis, on the other hand, argues that knowing the solution for $$k \ne 0$$ must just be the solution for $$k = 0$$ (i.e. the Poisson solution) provided it is multiplied by the $$e^{-j k r}$$ factor.

Note that back when I did that derivation, I used a different sign convention for the Green’s function, and in QM we used a positive sign instead of the negative in $$e^{-j k r }$$.

## Notation

• Phasor frequency terms are written as $$e^{j \omega t}$$, not $$e^{-j \omega t}$$, as done in physics. I didn’t recall that this was always the case in physics, and wouldn’t have assumed it. This is the case in both [3] and [2]. The latter however, also uses $$\cos(\omega t – k r)$$ for spherical waves possibly implying an alternate phasor sign convention in that content, so I’d be wary about trusting any absolute “engineering” vs. physics sign convention without checking carefully.
• In Green’s functions $$G(\Br, \Br’)$$, $$\Br$$ is the point of observation, and $$\Br’$$ is the point in the convolution integration space.
• Both $$\BM$$ and $$\BJ_m$$ are used for magnetic current sources in the class notes.

# References

[1] Constantine A Balanis. Antenna theory: analysis and design. John Wiley \& Sons, 3rd edition, 2005.

[2] David Jeffrey Griffiths and Reed College. Introduction to electrodynamics, chapter {Electromagnetic Waves}. Prentice hall Upper Saddle River, NJ, 3rd edition, 1999.

[3] JD Jackson. Classical Electrodynamics, chapter {Simple Radiating Systems, Scattering, and Diffraction}. John Wiley and Sons, 2nd edition, 1975.

[4] Peeter Joot. Quantum Mechanics II., chapter {Verifying the Helmholtz Green’s function.} peeterjoot.com, 2011. URL http://peeterjoot.com/archives/math2011/phy456.pdf. [Online; accessed 28-January-2015].

[5] Peeter Joot. Exploring physics with Geometric Algebra, chapter {Stokes theorem}. peeterjoot.com, 2014. URL http://peeterjoot.com/archives/math2009/gabook.pdf. [Online; accessed 28-January-2015].