matrix representation

Plane wave and spinor under time reversal

December 16, 2015 phy1520 , , , , ,

[Click here for a PDF of this post with nicer formatting]

Q: [1] pr 4.7

  1. (a)
    Find the time reversed form of a spinless plane wave state in three dimensions.

  2. (b)
    For the eigenspinor of \( \Bsigma \cdot \ncap \) expressed in terms of polar and azimuthal angles \( \beta\) and \( \gamma \), show that \( -i \sigma_y \chi^\conj(\ncap) \) has the reversed spin direction.

A: part (a)

The Hamiltonian for a plane wave is

\begin{equation}\label{eqn:timeReversalPlaneWaveAndSpinor:20}
H = \frac{\Bp^2}{2m} = i \PD{t}.
\end{equation}

Under time reversal the momentum side transforms as

\begin{equation}\label{eqn:timeReversalPlaneWaveAndSpinor:40}
\begin{aligned}
\Theta \frac{\Bp^2}{2m} \Theta^{-1}
&=
\frac{\lr{ \Theta \Bp \Theta^{-1}} \cdot \lr{ \Theta \Bp \Theta^{-1}} }{2m} \\
&=
\frac{(-\Bp) \cdot (-\Bp)}{2m} \\
&=
\frac{\Bp^2}{2m}.
\end{aligned}
\end{equation}

The time derivative side of the equation is also time reversal invariant
\begin{equation}\label{eqn:timeReversalPlaneWaveAndSpinor:60}
\begin{aligned}
\Theta i \PD{t}{} \Theta^{-1}
&=
\Theta i \Theta^{-1} \Theta \PD{t}{} \Theta^{-1} \\
&=
-i \PD{(-t)}{} \\
&=
i \PD{t}{}.
\end{aligned}
\end{equation}

Solutions to this equation are linear combinations of

\begin{equation}\label{eqn:timeReversalPlaneWaveAndSpinor:80}
\psi(\Bx, t) = e^{i \Bk \cdot \Bx – i E t/\Hbar},
\end{equation}

where \( \Hbar^2 \Bk^2/2m = E \), the energy of the particle. Under time reversal we have

\begin{equation}\label{eqn:timeReversalPlaneWaveAndSpinor:100}
\begin{aligned}
\psi(\Bx, t)
\rightarrow e^{-i \Bk \cdot \Bx + i E (-t)/\Hbar}
&= \lr{ e^{i \Bk \cdot \Bx – i E (-t)/\Hbar} }^\conj \\
&=
\psi^\conj(\Bx, -t)
\end{aligned}
\end{equation}

A: part (b)

The text uses a requirement for time reversal of spin states to show that the Pauli matrix form of the time reversal operator is

\begin{equation}\label{eqn:timeReversalPlaneWaveAndSpinor:120}
\Theta = -i \sigma_y K,
\end{equation}

where \( K \) is a complex conjugating operator. The form of the spin up state used in that demonstration was

\begin{equation}\label{eqn:timeReversalPlaneWaveAndSpinor:140}
\begin{aligned}
\ket{\ncap ; +}
&= e^{-i S_z \beta/\Hbar} e^{-i S_y \gamma/\Hbar} \ket{+} \\
&= e^{-i \sigma_z \beta/2} e^{-i \sigma_y \gamma/2} \ket{+} \\
&= \lr{ \cos(\beta/2) – i \sigma_z \sin(\beta/2) }
\lr{ \cos(\gamma/2) – i \sigma_y \sin(\gamma/2) } \ket{+} \\
&= \lr{ \cos(\beta/2) – i \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ \end{bmatrix} \sin(\beta/2) }
\lr{ \cos(\gamma/2) – i \begin{bmatrix} 0 & -i \\ i & 0 \\ \end{bmatrix} \sin(\gamma/2) } \ket{+} \\
&=
\begin{bmatrix}
e^{-i\beta/2} & 0 \\
0 & e^{i \beta/2}
\end{bmatrix}
\begin{bmatrix}
\cos(\gamma/2) & -\sin(\gamma/2) \\
\sin(\gamma/2) & \cos(\gamma/2)
\end{bmatrix}
\begin{bmatrix}
1 \\
0
\end{bmatrix} \\
&=
\begin{bmatrix}
e^{-i\beta/2} & 0 \\
0 & e^{i \beta/2}
\end{bmatrix}
\begin{bmatrix}
\cos(\gamma/2) \\
\sin(\gamma/2) \\
\end{bmatrix} \\
&=
\begin{bmatrix}
\cos(\gamma/2)
e^{-i\beta/2}
\\
\sin(\gamma/2)
e^{i \beta/2}
\end{bmatrix}.
\end{aligned}
\end{equation}

The state orthogonal to this one is claimed to be

\begin{equation}\label{eqn:timeReversalPlaneWaveAndSpinor:180}
\begin{aligned}
\ket{\ncap ; -}
&= e^{-i S_z \beta/\Hbar} e^{-i S_y (\gamma + \pi)/\Hbar} \ket{+} \\
&= e^{-i \sigma_z \beta/2} e^{-i \sigma_y (\gamma + \pi)/2} \ket{+}.
\end{aligned}
\end{equation}

We have

\begin{equation}\label{eqn:timeReversalPlaneWaveAndSpinor:200}
\begin{aligned}
\cos((\gamma + \pi)/2)
&=
\textrm{Re} e^{i(\gamma + \pi)/2} \\
&=
\textrm{Re} i e^{i\gamma/2} \\
&=
-\sin(\gamma/2),
\end{aligned}
\end{equation}

and
\begin{equation}\label{eqn:timeReversalPlaneWaveAndSpinor:220}
\begin{aligned}
\sin((\gamma + \pi)/2)
&=
\textrm{Im} e^{i(\gamma + \pi)/2} \\
&=
\textrm{Im} i e^{i\gamma/2} \\
&=
\cos(\gamma/2),
\end{aligned}
\end{equation}

so we should have

\begin{equation}\label{eqn:timeReversalPlaneWaveAndSpinor:240}
\ket{\ncap ; -}
=
\begin{bmatrix}
-\sin(\gamma/2)
e^{-i\beta/2}
\\
\cos(\gamma/2)
e^{i \beta/2}
\end{bmatrix}.
\end{equation}

This looks right, but we can sanity check orthogonality

\begin{equation}\label{eqn:timeReversalPlaneWaveAndSpinor:260}
\begin{aligned}
\braket{\ncap ; -}{\ncap ; +}
&=
\begin{bmatrix}
-\sin(\gamma/2)
e^{i\beta/2}
&
\cos(\gamma/2)
e^{-i \beta/2}
\end{bmatrix}
\begin{bmatrix}
\cos(\gamma/2)
e^{-i\beta/2}
\\
\sin(\gamma/2)
e^{i \beta/2}
\end{bmatrix} \\
&=
0,
\end{aligned}
\end{equation}

as expected.

The task at hand appears to be the operation on the column representation of \( \ket{\ncap; +} \) using the Pauli representation of the time reversal operator. That is

\begin{equation}\label{eqn:timeReversalPlaneWaveAndSpinor:160}
\begin{aligned}
\Theta \ket{\ncap ; +}
&=
-i \sigma_y K
\begin{bmatrix}
e^{-i\beta/2} \cos(\gamma/2) \\
e^{i \beta/2} \sin(\gamma/2)
\end{bmatrix} \\
&=
-i \begin{bmatrix} 0 & -i \\ i & 0 \\ \end{bmatrix}
\begin{bmatrix}
e^{i\beta/2} \cos(\gamma/2) \\
e^{-i \beta/2} \sin(\gamma/2)
\end{bmatrix} \\
&=
\begin{bmatrix}
0 & -1 \\
1 & 0
\end{bmatrix}
\begin{bmatrix}
e^{i\beta/2} \cos(\gamma/2) \\
e^{-i \beta/2} \sin(\gamma/2)
\end{bmatrix} \\
&=
\begin{bmatrix}
-e^{-i \beta/2} \sin(\gamma/2) \\
e^{i\beta/2} \cos(\gamma/2) \\
\end{bmatrix} \\
&= \ket{\ncap ; -},
\end{aligned}
\end{equation}

which is the result to be demononstrated.

References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

Spin three halves spin interaction

December 15, 2015 phy1520 , , , ,

[Click here for a PDF of this post with nicer formatting]

Q: [1] pr 3.33

A spin \( 3/2 \) nucleus subjected to an external electric field has an interaction Hamiltonian of the form

\begin{equation}\label{eqn:spinThreeHalvesNucleus:20}
H = \frac{e Q}{2 s(s-1) \Hbar^2} \lr{
\lr{\PDSq{x}{\phi}}_0 S_x^2
+\lr{\PDSq{y}{\phi}}_0 S_y^2
+\lr{\PDSq{z}{\phi}}_0 S_z^2
}.
\end{equation}

Show that the interaction energy can be written as

\begin{equation}\label{eqn:spinThreeHalvesNucleus:40}
A(3 S_z^2 – \BS^2) + B(S_{+}^2 + S_{-}^2).
\end{equation}

Find the energy eigenvalues for such a Hamiltonian.

A:

Reordering
\begin{equation}\label{eqn:spinThreeHalvesNucleus:60}
\begin{aligned}
S_{+} &= S_x + i S_y \\
S_{-} &= S_x – i S_y,
\end{aligned}
\end{equation}

gives
\begin{equation}\label{eqn:spinThreeHalvesNucleus:80}
\begin{aligned}
S_x &= \inv{2} \lr{ S_{+} + S_{-} } \\
S_y &= \inv{2i} \lr{ S_{+} – S_{-} }.
\end{aligned}
\end{equation}

The squared spin operators are
\begin{equation}\label{eqn:spinThreeHalvesNucleus:100}
\begin{aligned}
S_x^2
&=
\inv{4} \lr{ S_{+}^2 + S_{-}^2 + S_{+} S_{-} + S_{-} S_{+} } \\
&=
\inv{4} \lr{ S_{+}^2 + S_{-}^2 + 2( S_x^2 + S_y^2 ) } \\
&=
\inv{4} \lr{ S_{+}^2 + S_{-}^2 + 2( \BS^2 – S_z^2 ) },
\end{aligned}
\end{equation}

\begin{equation}\label{eqn:spinThreeHalvesNucleus:120}
\begin{aligned}
S_y^2
&=
-\inv{4} \lr{ S_{+}^2 + S_{-}^2 – S_{+} S_{-} – S_{-} S_{+} } \\
&=
-\inv{4} \lr{ S_{+}^2 + S_{-}^2 – 2( S_x^2 + S_y^2 ) } \\
&=
-\inv{4} \lr{ S_{+}^2 + S_{-}^2 – 2( \BS^2 – S_z^2 ) }.
\end{aligned}
\end{equation}

This gives
\begin{equation}\label{eqn:spinThreeHalvesNucleus:140}
\begin{aligned}
H &= \frac{e Q}{2 s(s-1) \Hbar^2} \biglr{ \inv{4} \lr{\PDSq{x}{\phi}}_0 \lr{ S_{+}^2 + S_{-}^2 + 2( \BS^2 – S_z^2 ) }
-\lr{\PDSq{y}{\phi}}_0 \lr{ S_{+}^2 + S_{-}^2 – 2( \BS^2 – S_z^2 ) }
+\lr{\PDSq{z}{\phi}}_0 S_z^2 } \\
&= \frac{e Q}{2 s(s-1) \Hbar^2} \biglr{ \inv{4} \lr{ \lr{\PDSq{x}{\phi}}_0 -\lr{\PDSq{y}{\phi}}_0 } \lr{ S_{+}^2 + S_{-}^2 }
+ \inv{2} \lr{ \lr{\PDSq{x}{\phi}}_0 + \lr{\PDSq{y}{\phi}}_0 } \BS^2
+ \lr{ \lr{\PDSq{z}{\phi}}_0 – \inv{2} \lr{\PDSq{x}{\phi}}_0 – \inv{2} \lr{\PDSq{y}{\phi}}_0 } S_z^2
}.
\end{aligned}
\end{equation}

For a static electric field we have

\begin{equation}\label{eqn:spinThreeHalvesNucleus:160}
\spacegrad^2 \phi = -\frac{\rho}{\epsilon_0},
\end{equation}

but are evaluating it at a point away from the generating charge distribution, so \( \spacegrad^2 \phi = 0 \) at that point. This gives

\begin{equation}\label{eqn:spinThreeHalvesNucleus:180}
H
=
\frac{e Q}{4 s(s-1) \Hbar^2}
\biglr{
\inv{2} \lr{ \lr{\PDSq{x}{\phi}}_0 -\lr{\PDSq{y}{\phi}}_0
} \lr{ S_{+}^2 + S_{-}^2 }
+
\lr{
\lr{\PDSq{x}{\phi}}_0 + \lr{\PDSq{y}{\phi}}_0
} (\BS^2 – 3 S_z^2)
},
\end{equation}

so
\begin{equation}\label{eqn:spinThreeHalvesNucleus:200}
A =
-\frac{e Q}{4 s(s-1) \Hbar^2} \lr{
\lr{\PDSq{x}{\phi}}_0 + \lr{\PDSq{y}{\phi}}_0
}
\end{equation}
\begin{equation}\label{eqn:spinThreeHalvesNucleus:220}
B =
\frac{e Q}{8 s(s-1) \Hbar^2}
\lr{ \lr{\PDSq{x}{\phi}}_0 – \lr{\PDSq{y}{\phi}}_0 }.
\end{equation}

A: energy eigenvalues

Using sakuraiProblem3.33.nb, matrix representations for the spin three halves operators and the Hamiltonian were constructed with respect to the basis \( \setlr{ \ket{3/2}, \ket{1/2}, \ket{-1/2}, \ket{-3/2} } \)

\begin{equation}\label{eqn:spinThreeHalvesNucleus:240}
\begin{aligned}
S_{+} &=
\Hbar
\begin{bmatrix}
0 & \sqrt{3} & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & \sqrt{3} \\
0 & 0 & 0 & 0 \\
\end{bmatrix} \\
S_{-} &=
\Hbar
\begin{bmatrix}
0 & 0 & 0 & 0 \\
\sqrt{3} & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & \sqrt{3} & 0 \\
\end{bmatrix} \\
S_x &=
\Hbar
\begin{bmatrix}
0 & \sqrt{3}/2 & 0 & 0 \\
\sqrt{3}/2 & 0 & 1 & 0 \\
0 & 1 & 0 & \sqrt{3}/2 \\
0 & 0 & \sqrt{3}/2 & 0 \\
\end{bmatrix} \\
S_y &=
i \Hbar
\begin{bmatrix}
0 & -\ifrac{\sqrt{3}}{2} & 0 & 0 \\
\ifrac{\sqrt{3}}{2} & 0 & -1 & 0 \\
0 & 1 & 0 & -\ifrac{\sqrt{3}}{2} \\
0 & 0 & \ifrac{\sqrt{3}}{2} & 0 \\
\end{bmatrix} \\
S_z &=
\frac{\Hbar}{2}
\begin{bmatrix}
3 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -3 \\
\end{bmatrix} \\
H &=
\begin{bmatrix}
3 A & 0 & 2 \sqrt{3} B & 0 \\
0 & -3 A & 0 & 2 \sqrt{3} B \\
2 \sqrt{3} B & 0 & -3 A & 0 \\
0 & 2 \sqrt{3} B & 0 & 3 A \\
\end{bmatrix}.
\end{aligned}
\end{equation}

The energy eigenvalues are found to be

\begin{equation}\label{eqn:spinThreeHalvesNucleus:260}
E = \pm \Hbar^2 \sqrt{9 A^2 + 12 B^2 },
\end{equation}

with two fold degeneracies for each eigenvalue.

References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

PHY1520H Graduate Quantum Mechanics. Lecture 3: Density matrix (cont.). Taught by Prof. Arun Paramekanti

September 24, 2015 phy1520 , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

Disclaimer

Peeter’s lecture notes from class. These may be incoherent and rough.

These are notes for the UofT course PHY1520, Graduate Quantum Mechanics, taught by Prof. Paramekanti, covering [1] chap. 3 content.

Density matrix (cont.)

An example of a partitioned system with four total states (two spin 1/2 particles) is sketched in fig. 1.

fig. 1.  Two spins

fig. 1. Two spins

An example of a partitioned system with eight total states (three spin 1/2 particles) is sketched in fig. 2.

fig. 2.  Three spins

fig. 2. Three spins

The density matrix

\begin{equation}\label{eqn:qmLecture3:20}
\hat{\rho} = \ket{\Psi}\bra{\Psi}
\end{equation}

is clearly an operator as can be seen by applying it to a state

\begin{equation}\label{eqn:qmLecture3:40}
\hat{\rho} \ket{\phi} = \ket{\Psi} \lr{ \braket{ \Psi }{\phi} }.
\end{equation}

The quantity in braces is just a complex number.

After expanding the pure state \( \ket{\Psi} \) in terms of basis states for each of the two partitions

\begin{equation}\label{eqn:qmLecture3:60}
\ket{\Psi}
= \sum_{m,n} C_{m, n} \ket{m}_{\textrm{L}} \ket{n}_{\textrm{R}},
\end{equation}

With \( \textrm{L} \) and \( \textrm{R} \) implied for \( \ket{m}, \ket{n} \) indexed states respectively, this can be written

\begin{equation}\label{eqn:qmLecture3:460}
\ket{\Psi}
= \sum_{m,n} C_{m, n} \ket{m} \ket{n}.
\end{equation}

The density operator is

\begin{equation}\label{eqn:qmLecture3:80}
\hat{\rho} =
\sum_{m,n}
C_{m, n}
C_{m’, n’}^\conj
\ket{m} \ket{n}
\sum_{m’,n’}
\bra{m’} \bra{n’}.
\end{equation}

Suppose we trace over the right partition of the state space, defining such a trace as the reduced density operator \( \hat{\rho}_{\textrm{red}} \)

\begin{equation}\label{eqn:qmLecture3:100}
\begin{aligned}
\hat{\rho}_{\textrm{red}}
&\equiv
\textrm{Tr}_{\textrm{R}}(\hat{\rho}) \\
&= \sum_{\tilde{n}} \bra{\tilde{n}} \hat{\rho} \ket{ \tilde{n}} \\
&= \sum_{\tilde{n}}
\bra{\tilde{n} }
\lr{
\sum_{m,n}
C_{m, n}
\ket{m} \ket{n}
}
\lr{
\sum_{m’,n’}
C_{m’, n’}^\conj
\bra{m’} \bra{n’}
}
\ket{ \tilde{n} } \\
&=
\sum_{\tilde{n}}
\sum_{m,n}
\sum_{m’,n’}
C_{m, n}
C_{m’, n’}^\conj
\ket{m} \delta_{\tilde{n} n}
\bra{m’ }
\delta_{ \tilde{n} n’ } \\
&=
\sum_{\tilde{n}, m, m’}
C_{m, \tilde{n}}
C_{m’, \tilde{n}}^\conj
\ket{m} \bra{m’ }
\end{aligned}
\end{equation}

Computing the matrix element of \( \hat{\rho}_{\textrm{red}} \), we have

\begin{equation}\label{eqn:qmLecture3:120}
\begin{aligned}
\bra{\tilde{m}} \hat{\rho}_{\textrm{red}} \ket{\tilde{m}}
&=
\sum_{m, m’, \tilde{n}} C_{m, \tilde{n}} C_{m’, \tilde{n}}^\conj \braket{ \tilde{m}}{m} \braket{m’}{\tilde{m}} \\
&=
\sum_{\tilde{n}} \Abs{C_{\tilde{m}, \tilde{n}} }^2.
\end{aligned}
\end{equation}

This is the probability that the left partition is in state \( \tilde{m} \).

Average of an observable

Suppose we have two spin half particles. For such a system the total magnetization is

\begin{equation}\label{eqn:qmLecture3:140}
S_{\textrm{Total}} =
S_1^z
+
S_1^z,
\end{equation}

as sketched in fig. 3.

fig. 3.  Magnetic moments from two spins.

fig. 3. Magnetic moments from two spins.

The average of some observable is

\begin{equation}\label{eqn:qmLecture3:160}
\expectation{\hatA}
= \sum_{m, n, m’, n’} C_{m, n}^\conj C_{m’, n’}
\bra{m}\bra{n} \hatA \ket{n’} \ket{m’}.
\end{equation}

Consider the trace of the density operator observable product

\begin{equation}\label{eqn:qmLecture3:180}
\textrm{Tr}( \hat{\rho} \hatA )
= \sum_{m, n} \braket{m n}{\Psi} \bra{\Psi} \hatA \ket{m, n}.
\end{equation}

Let

\begin{equation}\label{eqn:qmLecture3:200}
\ket{\Psi} = \sum_{m, n} C_{m n} \ket{m, n},
\end{equation}

so that

\begin{equation}\label{eqn:qmLecture3:220}
\begin{aligned}
\textrm{Tr}( \hat{\rho} \hatA )
&= \sum_{m, n, m’, n’, m”, n”} C_{m’, n’} C_{m”, n”}^\conj
\braket{m n}{m’, n’} \bra{m”, n”} \hatA \ket{m, n} \\
&= \sum_{m, n, m”, n”} C_{m, n} C_{m”, n”}^\conj
\bra{m”, n”} \hatA \ket{m, n}.
\end{aligned}
\end{equation}

This is just

\begin{equation}\label{eqn:qmLecture3:240}
\boxed{
\bra{\Psi} \hatA \ket{\Psi} = \textrm{Tr}( \hat{\rho} \hatA ).
}
\end{equation}

Left observables

Consider

\begin{equation}\label{eqn:qmLecture3:260}
\begin{aligned}
\bra{\Psi} \hatA_{\textrm{L}} \ket{\Psi}
&= \textrm{Tr}(\hat{\rho} \hatA_{\textrm{L}}) \\
&=
\textrm{Tr}_{\textrm{L}}
\textrm{Tr}_{\textrm{R}}
(\hat{\rho} \hatA_{\textrm{L}}) \\
&=
\textrm{Tr}_{\textrm{L}}
\lr{
\lr{
\textrm{Tr}_{\textrm{R}} \hat{\rho}
}
\hatA_{\textrm{L}})
} \\
&=
\textrm{Tr}_{\textrm{L}}
\lr{
\hat{\rho}_{\textrm{red}}
\hatA_{\textrm{L}})
}.
\end{aligned}
\end{equation}

We see

\begin{equation}\label{eqn:qmLecture3:280}
\bra{\Psi} \hatA_{\textrm{L}} \ket{\Psi}
=
\textrm{Tr}_{\textrm{L}} \lr{ \hat{\rho}_{\textrm{red}, \textrm{L}} \hatA_{\textrm{L}} }.
\end{equation}

We find that we don’t need to know the state of the complete system to answer questions about portions of the system, but instead just need \( \hat{\rho} \), a “probability operator” that provides all the required information about the partitioning of the system.

Pure states vs. mixed states

For pure states we can assign a state vector and talk about reduced scenarios. For mixed states we must work with reduced density matrix.

Example: Two particle spin half pure states

Consider

\begin{equation}\label{eqn:qmLecture3:300}
\ket{\psi_1} = \inv{\sqrt{2}} \lr{ \ket{ \uparrow \downarrow } – \ket{ \downarrow \uparrow } }
\end{equation}

\begin{equation}\label{eqn:qmLecture3:320}
\ket{\psi_2} = \inv{\sqrt{2}} \lr{ \ket{ \uparrow \downarrow } + \ket{ \uparrow \uparrow } }.
\end{equation}

For the first pure state the density operator is
\begin{equation}\label{eqn:qmLecture3:360}
\hat{\rho} = \inv{2}
\lr{ \ket{ \uparrow \downarrow } – \ket{ \downarrow \uparrow } }
\lr{ \bra{ \uparrow \downarrow } – \bra{ \downarrow \uparrow } }
\end{equation}

What are the reduced density matrices?

\begin{equation}\label{eqn:qmLecture3:340}
\begin{aligned}
\hat{\rho}_{\textrm{L}}
&= \textrm{Tr}_{\textrm{R}} \lr{ \hat{\rho} } \\
&=
\inv{2} (-1)(-1) \ket{\downarrow}\bra{\downarrow}
+\inv{2} (+1)(+1) \ket{\uparrow}\bra{\uparrow},
\end{aligned}
\end{equation}

so the matrix representation of this reduced density operator is

\begin{equation}\label{eqn:qmLecture3:380}
\hat{\rho}_{\textrm{L}}
=
\inv{2}
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}.
\end{equation}

For the second pure state the density operator is
\begin{equation}\label{eqn:qmLecture3:400}
\hat{\rho} = \inv{2}
\lr{ \ket{ \uparrow \downarrow } + \ket{ \uparrow \uparrow } }
\lr{ \bra{ \uparrow \downarrow } + \bra{ \uparrow \uparrow } }.
\end{equation}

This has a reduced density matrice

\begin{equation}\label{eqn:qmLecture3:420}
\begin{aligned}
\hat{\rho}_{\textrm{L}}
&= \textrm{Tr}_{\textrm{R}} \lr{ \hat{\rho} } \\
&=
\inv{2} \ket{\uparrow}\bra{\uparrow}
+\inv{2} \ket{\uparrow}\bra{\uparrow} \\
&=
\ket{\uparrow}\bra{\uparrow} .
\end{aligned}
\end{equation}

This has a matrix representation

\begin{equation}\label{eqn:qmLecture3:440}
\hat{\rho}_{\textrm{L}}
=
\begin{bmatrix}
1 & 0 \\
0 & 0
\end{bmatrix}.
\end{equation}

In this second example, we have more information about the left partition. That will be seen as a zero entanglement entropy in the problem set. In contrast we have less information about the first state, and will find a non-zero positive entanglement entropy in that case.

References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

Entropy when density operator has zero eigenvalues

September 20, 2015 phy1520 , , , , ,

[Click here for a PDF of this post with nicer formatting]

In the class notes and the text [1] the Von Neumann entropy is defined as

\begin{equation}\label{eqn:densityMatrixEntropy:20}
S = -\textrm{Tr} \rho \ln \rho.
\end{equation}

In one of our problems I had trouble evaluating this, having calculated a density operator matrix representation

\begin{equation}\label{eqn:densityMatrixEntropy:40}
\rho = E \wedge E^{-1},
\end{equation}

where

\begin{equation}\label{eqn:densityMatrixEntropy:60}
E = \inv{\sqrt{2}}
\begin{bmatrix}
1 & 1 \\
1 & -1
\end{bmatrix},
\end{equation}

and
\begin{equation}\label{eqn:densityMatrixEntropy:100}
\wedge =
\begin{bmatrix}
1 & 0 \\
0 & 0
\end{bmatrix}.
\end{equation}

The usual method of evaluating a function of a matrix is to assume the function has a power series representation, and that a similarity transformation of the form \( A = E \wedge E^{-1} \) is possible, so that

\begin{equation}\label{eqn:densityMatrixEntropy:80}
f(A) = E f(\wedge) E^{-1},
\end{equation}

however, when attempting to do this with the matrix of \ref{eqn:densityMatrixEntropy:40} leads to an undesirable result

\begin{equation}\label{eqn:densityMatrixEntropy:120}
\ln \rho =
\inv{2}
\begin{bmatrix}
1 & 1 \\
1 & -1
\end{bmatrix}
\begin{bmatrix}
\ln 1 & 0 \\
0 & \ln 0
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
1 & -1
\end{bmatrix}.
\end{equation}

The \( \ln 0 \) makes the evaluation of this matrix logarithm rather unpleasant. To give meaning to the entropy expression, we have to do two things, the first is treating the trace operation as a higher precedence than the logarithms that it contains. That is

\begin{equation}\label{eqn:densityMatrixEntropy:140}
\begin{aligned}
-\textrm{Tr} ( \rho \ln \rho )
&=
-\textrm{Tr} ( E \wedge E^{-1} E \ln \wedge E^{-1} ) \\
&=
-\textrm{Tr} ( E \wedge \ln \wedge E^{-1} ) \\
&=
-\textrm{Tr} ( E^{-1} E \wedge \ln \wedge ) \\
&=
-\textrm{Tr} ( \wedge \ln \wedge ) \\
&=
– \sum_k \wedge_{kk} \ln \wedge_{kk}.
\end{aligned}
\end{equation}

Now the matrix of the logarithm need not be evaluated, but we still need to give meaning to \( \wedge_{kk} \ln \wedge_{kk} \) for zero diagonal entries. This can be done by considering a limiting scenerio

\begin{equation}\label{eqn:densityMatrixEntropy:160}
\begin{aligned}
-\lim_{a \rightarrow 0} a \ln a
&=
-\lim_{x \rightarrow \infty} e^{-x} \ln e^{-x} \\
&=
\lim_{x \rightarrow \infty} x e^{-x} \\
&=
0.
\end{aligned}
\end{equation}

The entropy can now be expressed in the unambiguous form, summing over all the non-zero eigenvalues of the density operator

\begin{equation}\label{eqn:densityMatrixEntropy:180}
\boxed{
S = – \sum_{ \wedge_{kk} \ne 0} \wedge_{kk} \ln \wedge_{kk}.
}
\end{equation}

References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

Operator matrix element

August 29, 2015 phy1520 , , , , , ,

[Click here for a PDF of this post with nicer formatting]

0dc1b8c5-232f-492d-b520-bcec41e45c88

Weird dreams

I woke up today having a dream still in my head from the night, but it was a strange one. I was expanding out the Dirac notation representation of an operator in matrix form, but the symbols in the kets were elaborate pictures of Disney princesses that I was drawing with forestry scenery in the background, including little bears. At the point that I woke up from the dream, I noticed that I’d gotten the proportion of the bears wrong in one of the pictures, and they looked like they were ready to eat one of the princess characters.

Guts

As a side effect of this weird dream I actually started thinking about matrix element representation of operators.

When forming the matrix element of an operator using Dirac notation the elements are of the form \( \bra{\textrm{row}} A \ket{\textrm{column}} \). I’ve gotten that mixed up a couple of times, so I thought it would be helpful to write this out explicitly for a \( 2 \times 2 \) operator representation for clarity.

To start, consider a change of basis for a single matrix element from basis \( \setlr{\ket{q}, \ket{r} } \), to basis \( \setlr{\ket{a}, \ket{b} } \)

\begin{equation}\label{eqn:operatorMatrixElement:20}
\begin{aligned}
\bra{q} A \ket{r}
&=
\braket{q}{a} \bra{a} A \ket{r}
+
\braket{q}{b} \bra{b} A \ket{r} \\
&=
\braket{q}{a} \bra{a} A \ket{a}\braket{a}{r}
+ \braket{q}{a} \bra{a} A \ket{b}\braket{b}{r} \\
&+ \braket{q}{b} \bra{b} A \ket{a}\braket{a}{r}
+ \braket{q}{b} \bra{b} A \ket{b}\braket{b}{r} \\
&=
\braket{q}{a}
\begin{bmatrix}
\bra{a} A \ket{a} & \bra{a} A \ket{b}
\end{bmatrix}
\begin{bmatrix}
\braket{a}{r} \\
\braket{b}{r}
\end{bmatrix}
+
\braket{q}{b}
\begin{bmatrix}
\bra{b} A \ket{a} & \bra{b} A \ket{b}
\end{bmatrix}
\begin{bmatrix}
\braket{a}{r} \\
\braket{b}{r}
\end{bmatrix} \\
&=
\begin{bmatrix}
\braket{q}{a} &
\braket{q}{b}
\end{bmatrix}
\begin{bmatrix}
\bra{a} A \ket{a} & \bra{a} A \ket{b} \\
\bra{b} A \ket{a} & \bra{b} A \ket{b}
\end{bmatrix}
\begin{bmatrix}
\braket{a}{r} \\
\braket{b}{r}
\end{bmatrix}.
\end{aligned}
\end{equation}

Suppose the matrix representation of \( \ket{q}, \ket{r} \) are respectively

\begin{equation}\label{eqn:operatorMatrixElement:40}
\begin{aligned}
\ket{q} &\sim
\begin{bmatrix}
\braket{a}{q} \\
\braket{b}{q} \\
\end{bmatrix} \\
\ket{r} &\sim
\begin{bmatrix}
\braket{a}{r} \\
\braket{b}{r} \\
\end{bmatrix} \\
\end{aligned},
\end{equation}

then

\begin{equation}\label{eqn:operatorMatrixElement:60}
\bra{q} \sim
{\begin{bmatrix}
\braket{a}{q} \\
\braket{b}{q} \\
\end{bmatrix}}^\dagger
=
\begin{bmatrix}
\braket{q}{a} &
\braket{q}{b}
\end{bmatrix}.
\end{equation}

The matrix element is then

\begin{equation}\label{eqn:operatorMatrixElement:80}
\bra{q} A \ket{r}
\sim
\bra{q}
\begin{bmatrix}
\bra{a} A \ket{a} & \bra{a} A \ket{b} \\
\bra{b} A \ket{a} & \bra{b} A \ket{b}
\end{bmatrix}
\ket{r},
\end{equation}

and the corresponding matrix representation of the operator is

\begin{equation}\label{eqn:operatorMatrixElement:100}
A \sim
\begin{bmatrix}
\bra{a} A \ket{a} & \bra{a} A \ket{b} \\
\bra{b} A \ket{a} & \bra{b} A \ket{b}
\end{bmatrix}.
\end{equation}