[Click here for a PDF of this post with nicer formatting]

Equation (39) of [1] states the Baker-Campbell-Hausdorff formula for two operators \( a, b\) that commute with their commutator \( \antisymmetric{a}{b} \)

\begin{equation}\label{eqn:bakercambell:20}
e^a e^b = e^{a + b + \antisymmetric{a}{b}/2},
\end{equation}

and provides the outline of an interesting method of proof. That method is to consider the derivative of

\begin{equation}\label{eqn:bakercambell:40}
f(\lambda) = e^{\lambda a} e^{\lambda b} e^{-\lambda (a + b)},
\end{equation}

That derivative is
\begin{equation}\label{eqn:bakercambell:60}
\begin{aligned}
\frac{df}{d\lambda}
&=
e^{\lambda a} a e^{\lambda b} e^{-\lambda (a + b)}
+
e^{\lambda a} b e^{\lambda b} e^{-\lambda (a + b)}

e^{\lambda a} b e^{\lambda b} (a + b)e^{-\lambda (a + b)} \\
&=
e^{\lambda a} \lr{
a e^{\lambda b}
+
b e^{\lambda b}

e^{\lambda b} (a+b)
}
e^{-\lambda (a + b)} \\
&=
e^{\lambda a} \lr{
\antisymmetric{a}{e^{\lambda b}}
+
{\antisymmetric{b}{e^{\lambda b}}}
}
e^{-\lambda (a + b)} \\
&=
e^{\lambda a}
\antisymmetric{a}{e^{\lambda b}}
e^{-\lambda (a + b)}
.
\end{aligned}
\end{equation}

The commutator above is proportional to \( \antisymmetric{a}{b} \)

\begin{equation}\label{eqn:bakercambell:80}
\begin{aligned}
\antisymmetric{a}{e^{\lambda b}}
&=
\sum_{k=0}^\infty \frac{\lambda^k}{k!} \antisymmetric{a}{ b^k } \\
&=
\sum_{k=0}^\infty \frac{\lambda^k}{k!} k b^{k-1} \antisymmetric{a}{b} \\
&=
\lambda \sum_{k=1}^\infty \frac{\lambda^{k-1}}{(k-1)!} b^{k-1}
\antisymmetric{a}{b} \\
&=
\lambda e^{\lambda b} \antisymmetric{a}{b},
\end{aligned}
\end{equation}

so

\begin{equation}\label{eqn:bakercambell:100}
\frac{df}{d\lambda} = \lambda \antisymmetric{a}{b} f.
\end{equation}

To get the above, we should also do the induction demonstration for \( \antisymmetric{a}{ b^k } = k b^{k-1} \antisymmetric{a}{b} \).

This clearly holds for \( k = 0,1 \). For any other \( k \) we have

\begin{equation}\label{eqn:bakercambell:120}
\begin{aligned}
\antisymmetric{a}{b^{k+1}}
&=
a b^{k+1} – b^{k+1} a \\
&=
\lr{ \antisymmetric{a}{b^{k}} + b^k a
} b – b^{k+1} a \\
&=
k b^{k-1} \antisymmetric{a}{b} b
+ b^k \lr{ \antisymmetric{a}{b} + {b a} }
– {b^{k+1} a} \\
&=
k b^{k} \antisymmetric{a}{b}
+ b^k \antisymmetric{a}{b} \\
&=
(k+1) b^k \antisymmetric{a}{b}.
\end{aligned}
\end{equation}

Observe that \ref{eqn:bakercambell:100} is solved by

\begin{equation}\label{eqn:bakercambell:140}
f = e^{\lambda^2\antisymmetric{a}{b}/2},
\end{equation}

which gives

\begin{equation}\label{eqn:bakercambell:160}
e^{\lambda^2 \antisymmetric{a}{b}/2} =
e^{\lambda a} e^{\lambda b} e^{-\lambda (a + b)}.
\end{equation}

Right multiplication by \( e^{\lambda (a + b)} \) which commutes with \( e^{\lambda^2 \antisymmetric{a}{b}/2} \) and setting \( \lambda = 1 \) recovers \ref{eqn:bakercambell:20} as desired.

What I wonder looking at this, is what thought process led to trying this in the first place? This is not what I would consider an obvious approach to demonstrating this identity.

References

[1] Roy J Glauber. Some notes on multiple-boson processes. Physical Review, 84 (3), 1951.