position operator

Third update of aggregate notes for phy1520, Graduate Quantum Mechanics.

November 9, 2015 phy1520 1 comment , , , , , , , , , , , , , , , ,

I’ve posted a third update of my aggregate notes for PHY1520H Graduate Quantum Mechanics, taught by Prof. Arun Paramekanti. In addition to what was noted previously, this contains lecture notes up to lecture 13, my solutions for the third problem set, and some additional worked practice problems.

Most of the content was posted individually in the following locations, but those original documents will not be maintained individually any further.

Position operator in momentum space representation

November 8, 2015 phy1520 No comments , ,

[Click here for a PDF of this post with nicer formatting]

A derivation of the position space representation of the momentum operator \( -i \Hbar \partial_x \) is made in [1], starting with the position-momentum commutator. Here I’ll repeat that argument for the momentum space representation of the position operator.

What we want to do is expand the matrix element of the commutator. First using the definition of the commutator

\begin{equation}\label{eqn:positionOperatorInMomentumSpace:20}
\bra{p’} X P – P X \ket{p”}
=
i \Hbar \braket{p’}{p”}
=
i \Hbar \delta{p’ – p”},
\end{equation}

and then by inserting an identity operation in a momentum space basis

\begin{equation}\label{eqn:positionOperatorInMomentumSpace:40}
\begin{aligned}
\bra{p’} X P – P X \ket{p”}
&=
\int dp
\bra{p’} X \ket{p}\bra{p} P \ket{p”}
-\int dp
\bra{p’} P \ket{p}\bra{p} X \ket{p”} \\
&=
\int dp
\bra{p’} X \ket{p} p \delta(p – p”)
-\int dp
p \delta(p’ – p)
\bra{p} X \ket{p”} \\
&=
\bra{p’} X \ket{p”} p”

p’ \bra{p’} X \ket{p”}.
\end{aligned}
\end{equation}

So we have

\begin{equation}\label{eqn:positionOperatorInMomentumSpace:60}
\bra{p’} X \ket{p”} p”

p’ \bra{p’} X \ket{p”}
=
i \Hbar \delta{p’ – p”}.
\end{equation}

Because the RHS is zero whenever \( p’ \ne p” \), the matrix element \( \bra{p’} X \ket{p”} \) must also include a delta function. Let

\begin{equation}\label{eqn:positionOperatorInMomentumSpace:80}
\bra{p’} X \ket{p”} = \delta(p’ – p”) X(p”).
\end{equation}

Because \ref{eqn:positionOperatorInMomentumSpace:60} is an operator equation that really only takes on meaning when applied to a wave function and integrated, we do that

\begin{equation}\label{eqn:positionOperatorInMomentumSpace:100}
\int dp” \delta(p’ – p”) X(p”) p” \psi(p”)

\int dp” p’ \delta(p’ – p”) X(p”) \psi(p”)
=
\int dp” i \Hbar \delta{p’ – p”} \psi(p”),
\end{equation}

or
\begin{equation}\label{eqn:positionOperatorInMomentumSpace:120}
i \Hbar \psi(p’)
=
X(p’) p’ \psi(p’)

p’
X(p’) \psi(p’).
\end{equation}

Provided \( X(p’) \) operates on everything to its right, this equation is solved by setting

\begin{equation}\label{eqn:positionOperatorInMomentumSpace:140}
\boxed{
X(p’) = i \Hbar \PD{p’}{}.
}
\end{equation}

References

[1] BR Desai. Quantum mechanics with basic field theory. Cambridge University Press, 2009.

Plane wave ground state expectation for SHO

October 18, 2015 phy1520 No comments , , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

Problem [1] 2.18 is, for a 1D SHO, show that

\begin{equation}\label{eqn:exponentialExpectationGroundState:20}
\bra{0} e^{i k x} \ket{0} = \exp\lr{ -k^2 \bra{0} x^2 \ket{0}/2 }.
\end{equation}

Despite the simple appearance of this problem, I found this quite involved to show. To do so, start with a series expansion of the expectation

\begin{equation}\label{eqn:exponentialExpectationGroundState:40}
\bra{0} e^{i k x} \ket{0}
=
\sum_{m=0}^\infty \frac{(i k)^m}{m!} \bra{0} x^m \ket{0}.
\end{equation}

Let

\begin{equation}\label{eqn:exponentialExpectationGroundState:60}
X = \lr{ a + a^\dagger },
\end{equation}

so that

\begin{equation}\label{eqn:exponentialExpectationGroundState:80}
x
= \sqrt{\frac{\Hbar}{2 \omega m}} X
= \frac{x_0}{\sqrt{2}} X.
\end{equation}

Consider the first few values of \( \bra{0} X^n \ket{0} \)

\begin{equation}\label{eqn:exponentialExpectationGroundState:100}
\begin{aligned}
\bra{0} X \ket{0}
&=
\bra{0} \lr{ a + a^\dagger } \ket{0} \\
&=
\braket{0}{1} \\
&=
0,
\end{aligned}
\end{equation}

\begin{equation}\label{eqn:exponentialExpectationGroundState:120}
\begin{aligned}
\bra{0} X^2 \ket{0}
&=
\bra{0} \lr{ a + a^\dagger }^2 \ket{0} \\
&=
\braket{1}{1} \\
&=
1,
\end{aligned}
\end{equation}

\begin{equation}\label{eqn:exponentialExpectationGroundState:140}
\begin{aligned}
\bra{0} X^3 \ket{0}
&=
\bra{0} \lr{ a + a^\dagger }^3 \ket{0} \\
&=
\bra{1} \lr{ \sqrt{2} \ket{2} + \ket{0} } \\
&=
0.
\end{aligned}
\end{equation}

Whenever the power \( n \) in \( X^n \) is even, the braket can be split into a bra that has only contributions from odd eigenstates and a ket with even eigenstates. We conclude that \( \bra{0} X^n \ket{0} = 0 \) when \( n \) is odd.

Noting that \( \bra{0} x^2 \ket{0} = \ifrac{x_0^2}{2} \), this leaves

\begin{equation}\label{eqn:exponentialExpectationGroundState:160}
\begin{aligned}
\bra{0} e^{i k x} \ket{0}
&=
\sum_{m=0}^\infty \frac{(i k)^{2 m}}{(2 m)!} \bra{0} x^{2m} \ket{0} \\
&=
\sum_{m=0}^\infty \frac{(i k)^{2 m}}{(2 m)!} \lr{ \frac{x_0^2}{2} }^m \bra{0} X^{2m} \ket{0} \\
&=
\sum_{m=0}^\infty \frac{1}{(2 m)!} \lr{ -k^2 \bra{0} x^2 \ket{0} }^m \bra{0} X^{2m} \ket{0}.
\end{aligned}
\end{equation}

This problem is now reduced to showing that

\begin{equation}\label{eqn:exponentialExpectationGroundState:180}
\frac{1}{(2 m)!} \bra{0} X^{2m} \ket{0} = \inv{m! 2^m},
\end{equation}

or

\begin{equation}\label{eqn:exponentialExpectationGroundState:200}
\begin{aligned}
\bra{0} X^{2m} \ket{0}
&= \frac{(2m)!}{m! 2^m} \\
&= \frac{ (2m)(2m-1)(2m-2) \cdots (2)(1) }{2^m m!} \\
&= \frac{ 2^m (m)(2m-1)(m-1)(2m-3)(m-2) \cdots (2)(3)(1)(1) }{2^m m!} \\
&= (2m-1)!!,
\end{aligned}
\end{equation}

where \( n!! = n(n-2)(n-4)\cdots \).

It looks like \( \bra{0} X^{2m} \ket{0} \) can be expanded by inserting an identity operator and proceeding recursively, like

\begin{equation}\label{eqn:exponentialExpectationGroundState:220}
\begin{aligned}
\bra{0} X^{2m} \ket{0}
&=
\bra{0} X^2 \lr{ \sum_{n=0}^\infty \ket{n}\bra{n} } X^{2m-2} \ket{0} \\
&=
\bra{0} X^2 \lr{ \ket{0}\bra{0} + \ket{2}\bra{2} } X^{2m-2} \ket{0} \\
&=
\bra{0} X^{2m-2} \ket{0} + \bra{0} X^2 \ket{2} \bra{2} X^{2m-2} \ket{0}.
\end{aligned}
\end{equation}

This has made use of the observation that \( \bra{0} X^2 \ket{n} = 0 \) for all \( n \ne 0,2 \). The remaining term includes the factor

\begin{equation}\label{eqn:exponentialExpectationGroundState:240}
\begin{aligned}
\bra{0} X^2 \ket{2}
&=
\bra{0} \lr{a + a^\dagger}^2 \ket{2} \\
&=
\lr{ \bra{0} + \sqrt{2} \bra{2} } \ket{2} \\
&=
\sqrt{2},
\end{aligned}
\end{equation}

Since \( \sqrt{2} \ket{2} = \lr{a^\dagger}^2 \ket{0} \), the expectation of interest can be written

\begin{equation}\label{eqn:exponentialExpectationGroundState:260}
\bra{0} X^{2m} \ket{0}
=
\bra{0} X^{2m-2} \ket{0} + \bra{0} a^2 X^{2m-2} \ket{0}.
\end{equation}

How do we expand the second term. Let’s look at how \( a \) and \( X \) commute

\begin{equation}\label{eqn:exponentialExpectationGroundState:280}
\begin{aligned}
a X
&=
\antisymmetric{a}{X} + X a \\
&=
\antisymmetric{a}{a + a^\dagger} + X a \\
&=
\antisymmetric{a}{a^\dagger} + X a \\
&=
1 + X a,
\end{aligned}
\end{equation}

\begin{equation}\label{eqn:exponentialExpectationGroundState:300}
\begin{aligned}
a^2 X
&=
a \lr{ a X } \\
&=
a \lr{ 1 + X a } \\
&=
a + a X a \\
&=
a + \lr{ 1 + X a } a \\
&=
2 a + X a^2.
\end{aligned}
\end{equation}

Proceeding to expand \( a^2 X^n \) we find
\begin{equation}\label{eqn:exponentialExpectationGroundState:320}
\begin{aligned}
a^2 X^3 &= 6 X + 6 X^2 a + X^3 a^2 \\
a^2 X^4 &= 12 X^2 + 8 X^3 a + X^4 a^2 \\
a^2 X^5 &= 20 X^3 + 10 X^4 a + X^5 a^2 \\
a^2 X^6 &= 30 X^4 + 12 X^5 a + X^6 a^2.
\end{aligned}
\end{equation}

It appears that we have
\begin{equation}\label{eqn:exponentialExpectationGroundState:340}
\antisymmetric{a^2 X^n}{X^n a^2} = \beta_n X^{n-2} + 2 n X^{n-1} a,
\end{equation}

where

\begin{equation}\label{eqn:exponentialExpectationGroundState:360}
\beta_n = \beta_{n-1} + 2 (n-1),
\end{equation}

and \( \beta_2 = 2 \). Some goofing around shows that \( \beta_n = n(n-1) \), so the induction hypothesis is

\begin{equation}\label{eqn:exponentialExpectationGroundState:380}
\antisymmetric{a^2 X^n}{X^n a^2} = n(n-1) X^{n-2} + 2 n X^{n-1} a.
\end{equation}

Let’s check the induction
\begin{equation}\label{eqn:exponentialExpectationGroundState:400}
\begin{aligned}
a^2 X^{n+1}
&=
a^2 X^{n} X \\
&=
\lr{ n(n-1) X^{n-2} + 2 n X^{n-1} a + X^n a^2 } X \\
&=
n(n-1) X^{n-1} + 2 n X^{n-1} a X + X^n a^2 X \\
&=
n(n-1) X^{n-1} + 2 n X^{n-1} \lr{ 1 + X a } + X^n \lr{ 2 a + X a^2 } \\
&=
n(n-1) X^{n-1} + 2 n X^{n-1} + 2 n X^{n} a
+ 2 X^n a
+ X^{n+1} a^2 \\
&=
X^{n+1} a^2 + (2 + 2 n) X^{n} a + \lr{ 2 n + n(n-1) } X^{n-1} \\
&=
X^{n+1} a^2 + 2(n + 1) X^{n} a + (n+1) n X^{n-1},
\end{aligned}
\end{equation}

which concludes the induction, giving

\begin{equation}\label{eqn:exponentialExpectationGroundState:420}
\bra{ 0 } a^2 X^{n} \ket{0 } = n(n-1) \bra{0} X^{n-2} \ket{0},
\end{equation}

and

\begin{equation}\label{eqn:exponentialExpectationGroundState:440}
\bra{0} X^{2m} \ket{0}
=
\bra{0} X^{2m-2} \ket{0} + (2m-2)(2m-3) \bra{0} X^{2m-4} \ket{0}.
\end{equation}

Let

\begin{equation}\label{eqn:exponentialExpectationGroundState:460}
\sigma_{n} = \bra{0} X^n \ket{0},
\end{equation}

so that the recurrence relation, for \( 2n \ge 4 \) is

\begin{equation}\label{eqn:exponentialExpectationGroundState:480}
\sigma_{2n} = \sigma_{2n -2} + (2n-2)(2n-3) \sigma_{2n -4}
\end{equation}

We want to show that this simplifies to

\begin{equation}\label{eqn:exponentialExpectationGroundState:500}
\sigma_{2n} = (2n-1)!!
\end{equation}

The first values are

\begin{equation}\label{eqn:exponentialExpectationGroundState:540}
\sigma_0 = \bra{0} X^0 \ket{0} = 1
\end{equation}
\begin{equation}\label{eqn:exponentialExpectationGroundState:560}
\sigma_2 = \bra{0} X^2 \ket{0} = 1
\end{equation}

which gives us the right result for the first term in the induction

\begin{equation}\label{eqn:exponentialExpectationGroundState:580}
\begin{aligned}
\sigma_4
&= \sigma_2 + 2 \times 1 \times \sigma_0 \\
&= 1 + 2 \\
&= 3!!
\end{aligned}
\end{equation}

For the general induction term, consider

\begin{equation}\label{eqn:exponentialExpectationGroundState:600}
\begin{aligned}
\sigma_{2n + 2}
&= \sigma_{2n} + 2 n (2n – 1) \sigma_{2n -2} \\
&= (2n-1)!! + 2n ( 2n – 1) (2n -3)!! \\
&= (2n + 1) (2n -1)!! \\
&= (2n + 1)!!,
\end{aligned}
\end{equation}

which completes the final induction. That was also the last thing required to complete the proof, so we are done!

References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

PHY1520H Graduate Quantum Mechanics. Lecture 5: time evolution of coherent states, and charged particles in a magnetic field. Taught by Prof. Arun Paramekanti

October 1, 2015 phy1520 No comments , , , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

Disclaimer

Peeter’s lecture notes from class. These may be incoherent and rough.

These are notes for the UofT course PHY1520, Graduate Quantum Mechanics, taught by Prof. Paramekanti, covering \textchapref{{1}} [1] content.

Coherent states (cont.)

A coherent state for the SHO \( H = \lr{ N + \inv{2} } \Hbar \omega \) was given by

\begin{equation}\label{eqn:qmLecture5:20}
a \ket{z} = z \ket{z},
\end{equation}

where we showed that

\begin{equation}\label{eqn:qmLecture5:40}
\ket{z} = c_0 e^{ z a^\dagger } \ket{0}.
\end{equation}

In the Heisenberg picture we found

\begin{equation}\label{eqn:qmLecture5:60}
\begin{aligned}
a_{\textrm{H}}(t) &= e^{i H t/\Hbar} a e^{-i H t/\Hbar} = a e^{-i\omega t} \\
a_{\textrm{H}}^\dagger(t) &= e^{i H t/\Hbar} a^\dagger e^{-i H t/\Hbar} = a^\dagger e^{i\omega t}.
\end{aligned}
\end{equation}

Recall that the position and momentum representation of the ladder operators was

\begin{equation}\label{eqn:qmLecture5:80}
\begin{aligned}
a &= \inv{\sqrt{2}} \lr{ \hat{x} \sqrt{\frac{m \omega}{\Hbar}} + i \hat{p} \sqrt{\inv{m \Hbar \omega}} } \\
a^\dagger &= \inv{\sqrt{2}} \lr{ \hat{x} \sqrt{\frac{m \omega}{\Hbar}} – i \hat{p} \sqrt{\inv{m \Hbar \omega}} },
\end{aligned}
\end{equation}

or equivalently
\begin{equation}\label{eqn:qmLecture5:100}
\begin{aligned}
\hat{x} &= \lr{ a + a^\dagger } \sqrt{\frac{\Hbar}{ 2 m \omega}} \\
\hat{p} &= i \lr{ a^\dagger – a } \sqrt{\frac{m \Hbar \omega}{2}}.
\end{aligned}
\end{equation}

Given this we can compute expectation value of position operator

\begin{equation}\label{eqn:qmLecture5:120}
\begin{aligned}
\bra{z} \hat{x} \ket{z}
&=
\sqrt{\frac{\Hbar}{ 2 m \omega}}
\bra{z}
\lr{ a + a^\dagger }
\ket{z} \\
&=
\lr{ z + z^\conj } \sqrt{\frac{\Hbar}{ 2 m \omega}} \\
&=
2 \textrm{Re} z \sqrt{\frac{\Hbar}{ 2 m \omega}} .
\end{aligned}
\end{equation}

Similarly

\begin{equation}\label{eqn:qmLecture5:140}
\begin{aligned}
\bra{z} \hat{p} \ket{z}
&=
i \sqrt{\frac{m \Hbar \omega}{2}}
\bra{z}
\lr{ a^\dagger – a }
\ket{z} \\
&=
\sqrt{\frac{m \Hbar \omega}{2}}
2 \textrm{Im} z.
\end{aligned}
\end{equation}

How about the expectation of the Heisenberg position operator? That is

\begin{equation}\label{eqn:qmLecture5:160}
\begin{aligned}
\bra{z} \hat{x}_{\textrm{H}}(t) \ket{z}
&=
\sqrt{\frac{\Hbar}{2 m \omega}} \bra{z} \lr{ a + a^\dagger } \ket{z} \\
&=
\sqrt{\frac{\Hbar}{2 m \omega}} \lr{ z e^{-i \omega t} + z^\conj e^{i \omega t}} \\
&=
\sqrt{\frac{\Hbar}{2 m \omega}} \lr{ \lr{z + z^\conj} \cos( \omega t ) -i \lr{ z – z^\conj } \sin( \omega t) } \\
&=
\sqrt{\frac{\Hbar}{2 m \omega}} \lr{ \expectation{x(0)} \sqrt{ \frac{2 m \omega}{\Hbar}} \cos( \omega t ) -i \expectation{p(0)} i \sqrt{\frac{2 m \omega}{\Hbar} } \sin( \omega t) } \\
&=
\expectation{x(0)} \cos( \omega t ) + \frac{\expectation{p(0)}}{m \omega} \sin( \omega t) .
\end{aligned}
\end{equation}

We find that the average of the Heisenberg position operator evolves in time in exactly the same fashion as position in the classical Harmonic oscillator. This phase space like trajectory is sketched in fig. 1.

fig. 1.  phase space like trajectory

fig. 1. phase space like trajectory

In the text it is shown that we have the same structure for the Heisenberg operator itself, before taking expectations

\begin{equation}\label{eqn:qmLecture5:220}
\hat{x}_{\textrm{H}}(t)
=
{x(0)} \cos( \omega t ) + \frac{{p(0)}}{m \omega} \sin( \omega t).
\end{equation}

Where the coherent states become useful is that we will see that the second moments of position and momentum are not time dependent with respect to the coherent states. Such states remain localized.

Uncertainty

First note that using the commutator relationship we have

\begin{equation}\label{eqn:qmLecture5:180}
\begin{aligned}
\bra{z} a a^\dagger \ket{z}
&=
\bra{z} \lr{ \antisymmetric{a}{a^\dagger} + a^\dagger a } \ket{z} \\
&=
\bra{z} \lr{ 1 + a^\dagger a } \ket{z}.
\end{aligned}
\end{equation}

For the second moment we have

\begin{equation}\label{eqn:qmLecture5:200}
\begin{aligned}
\bra{z} \hat{x}^2 \ket{z}
&=
\frac{\Hbar}{ 2 m \omega}
\bra{z} \lr{a + a^\dagger } \lr{a + a^\dagger } \ket{z} \\
&=
\frac{\Hbar}{ 2 m \omega}
\bra{z} \lr{
a^2 + {(a^\dagger)}^2 + a a^\dagger + a^\dagger a
} \ket{z} \\
&=
\frac{\Hbar}{ 2 m \omega}
\bra{z} \lr{
a^2 + {(a^\dagger)}^2 + 2 a^\dagger a + 1
} \ket{z} \\
&=
\frac{\Hbar}{ 2 m \omega}
\lr{ z^2 + {(z^\conj)}^2 + 2 z^\conj z + 1} \ket{z} \\
&=
\frac{\Hbar}{ 2 m \omega}
\lr{ z + z^\conj }^2
+
\frac{\Hbar}{ 2 m \omega}.
\end{aligned}
\end{equation}

We find

\begin{equation}\label{eqn:qmLecture5:240}
\sigma_x^2 = \frac{\Hbar}{ 2 m \omega},
\end{equation}

and

\begin{equation}\label{eqn:qmLecture5:260}
\sigma_p^2 = \frac{m \Hbar \omega}{2}
\end{equation}

so

\begin{equation}\label{eqn:qmLecture5:280}
\sigma_x^2 \sigma_p^2 = \frac{\Hbar^2}{4},
\end{equation}

or

\begin{equation}\label{eqn:qmLecture5:300}
\sigma_x \sigma_p = \frac{\Hbar}{2}.
\end{equation}

This is the minimum uncertainty.

Quantum Field theory

In Quantum Field theory the ideas of isolated oscillators is used to model particle creation. The lowest energy state (a no particle, vacuum state) is given the lowest energy level, with each additional quantum level modeling a new particle creation state as sketched in fig. 2.

fig. 2.  QFT energy levels

fig. 2. QFT energy levels

We have to imagine many oscillators, each with a distinct vacuum energy \( \sim \Bk^2 \) . The Harmonic oscillator can be used to model the creation of particles with \( \Hbar \omega \) energy differences from that “vacuum energy”.

Charged particle in a magnetic field

In the classical case ( with SI units or \( c = 1 \) ) we have

\begin{equation}\label{eqn:qmLecture5:320}
\BF = q \BE + q \Bv \cross \BB.
\end{equation}

Alternately, we can look at the Hamiltonian view of the system, written in terms of potentials

\begin{equation}\label{eqn:qmLecture5:340}
\BB = \spacegrad \cross \BA,
\end{equation}
\begin{equation}\label{eqn:qmLecture5:360}
\BE = – \spacegrad \phi – \PD{t}{\BA}.
\end{equation}

Note that the curl form for the magnetic field implies one of the required Maxwell’s equations \( \spacegrad \cdot \BB = 0 \).

Ignoring time dependence of the potentials, the Hamiltonian can be expressed as

\begin{equation}\label{eqn:qmLecture5:380}
H = \inv{2 m} \lr{ \Bp – q \BA }^2 + q \phi.
\end{equation}

In this Hamiltonian the vector \( \Bp \) is called the canonical momentum, the momentum conjugate to position in phase space.

It is left as an exercise to show that the Lorentz force equation results from application of the Hamiltonian equations of motion, and that the velocity is given by \( \Bv = (\Bp – q \BA)/m \).

For quantum mechanics, we use the same Hamiltonian, but promote our position, momentum and potentials to operators.

\begin{equation}\label{eqn:qmLecture5:400}
\hat{H} = \inv{2 m} \lr{ \hat{\Bp} – q \hat{\BA}(\Br, t) }^2 + q \hat{\phi}(\Br, t).
\end{equation}

Gauge invariance

Can we say anything about this before looking at the question of a particle in a magnetic field?

Recall that the we can make a gauge transformation of the form

\label{eqn:qmLecture5:420a}
\begin{equation}\label{eqn:qmLecture5:420}
\BA \rightarrow \BA + \spacegrad \chi
\end{equation}
\begin{equation}\label{eqn:qmLecture5:440}
\phi \rightarrow \phi – \PD{t}{\chi}
\end{equation}

Does this notion of gauge invariance also carry over to the Quantum Hamiltonian. After gauge transformation we have

\begin{equation}\label{eqn:qmLecture5:460}
\hat{H}’
= \inv{2 m} \lr{ \hat{\Bp} – q \BA – q \spacegrad \chi }^2 + q \lr{ \phi – \PD{t}{\chi} }
\end{equation}

Now we are in a mess, since this function \( \chi \) can make the Hamiltonian horribly complicated. We don’t see how gauge invariance can easily be applied to the quantum problem. Next time we will introduce a transformation that resolves some of this mess.

Question: Lorentz force from classical electrodynamic Hamiltonian

Given the classical Hamiltonian

\begin{equation}\label{eqn:qmLecture5:381}
H = \inv{2 m} \lr{ \Bp – q \BA }^2 + q \phi.
\end{equation}

apply the Hamiltonian equations of motion

\begin{equation}\label{eqn:qmLecture5:480}
\begin{aligned}
\ddt{\Bp} &= – \PD{\Bq}{H} \\
\ddt{\Bq} &= \PD{\Bp}{H},
\end{aligned}
\end{equation}

to show that this is the Hamiltonian that describes the Lorentz force equation, and to find the velocity in terms of the canonical momentum and vector potential.

Answer

The particle velocity follows easily

\begin{equation}\label{eqn:qmLecture5:500}
\begin{aligned}
\Bv
&= \ddt{\Br} \\
&= \PD{\Bp}{H} \\
&= \inv{m} \lr{ \Bp – a \BA }.
\end{aligned}
\end{equation}

For the Lorentz force we can proceed in the coordinate representation

\begin{equation}\label{eqn:qmLecture5:520}
\begin{aligned}
\ddt{p_k}
&= – \PD{x_k}{H} \\
&= – \frac{2}{2m} \lr{ p_m – q A_m } \PD{x_k}{}\lr{ p_m – q A_m } – q \PD{x_k}{\phi} \\
&= q v_m \PD{x_k}{A_m} – q \PD{x_k}{\phi},
\end{aligned}
\end{equation}

We also have

\begin{equation}\label{eqn:qmLecture5:540}
\begin{aligned}
\ddt{p_k}
&=
\ddt{} \lr{m x_k + q A_k } \\
&=
m \frac{d^2 x_k}{dt^2} + q \PD{x_m}{A_k} \frac{d x_m}{dt} + q \PD{t}{A_k}.
\end{aligned}
\end{equation}

Putting these together we’ve got

\begin{equation}\label{eqn:qmLecture5:560}
\begin{aligned}
m \frac{d^2 x_k}{dt^2}
&= q v_m \PD{x_k}{A_m} – q \PD{x_k}{\phi},
– q \PD{x_m}{A_k} \frac{d x_m}{dt} – q \PD{t}{A_k} \\
&=
q v_m \lr{ \PD{x_k}{A_m} – \PD{x_m}{A_k} } + q E_k \\
&=
q v_m \epsilon_{k m s} B_s + q E_k,
\end{aligned}
\end{equation}

or

\begin{equation}\label{eqn:qmLecture5:580}
\begin{aligned}
m \frac{d^2 \Bx}{dt^2}
&=
q \Be_k v_m \epsilon_{k m s} B_s + q E_k \\
&= q \Bv \cross \BB + q \BE.
\end{aligned}
\end{equation}

Question: Show gauge invariance of the magnetic and electric fields

After the gauge transformation of \ref{eqn:qmLecture5:420} show that the electric and magnetic fields are unaltered.

Answer

For the magnetic field the transformed field is

\begin{equation}\label{eqn:qmLecture5:600}
\begin{aligned}
\BB’
&= \spacegrad \cross \lr{ \BA + \spacegrad \chi } \\
&= \spacegrad \cross \BA + \spacegrad \cross \lr{ \spacegrad \chi } \\
&= \spacegrad \cross \BA \\
&= \BB.
\end{aligned}
\end{equation}

\begin{equation}\label{eqn:qmLecture5:620}
\begin{aligned}
\BE’
&=
– \PD{t}{\BA’} – \spacegrad \phi’ \\
&=
– \PD{t}{}\lr{\BA + \spacegrad \chi} – \spacegrad \lr{ \phi – \PD{t}{\chi}} \\
&=
– \PD{t}{\BA} – \spacegrad \phi \\
&=
\BE.
\end{aligned}
\end{equation}

References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

Gauge transformation of free particle Hamiltonian

September 15, 2015 math and physics play No comments , , , , , ,


[Click here for a PDF of this post with nicer formatting]

Question:

Given a gauge transformation of the free particle Hamiltonian to

\begin{equation}\label{eqn:gaugeTx:20}
H = \inv{2 m} \BPi \cdot \BPi + e \phi,
\end{equation}

where

\begin{equation}\label{eqn:gaugeTx:40}
\BPi = \Bp – \frac{e}{c} \BA,
\end{equation}

calculate \( m d\Bx/dt \), \( \antisymmetric{\Pi_i}{\Pi_j} \), and \( m d^2\Bx/dt^2 \), where \( \Bx \) is the Heisenberg picture position operator, and the fields are functions only of position \( \phi = \phi(\Bx), \BA = \BA(\Bx) \).

Answer

The final results for these calculations are found in [1], but seem worth deriving to exercise our commutator muscles.

Heisenberg picture velocity operator

The first order of business is the Heisenberg picture velocity operator, but first note

\begin{equation}\label{eqn:gaugeTx:60}
\begin{aligned}
\BPi \cdot \BPi
&= \lr{ \Bp – \frac{e}{c} \BA} \cdot \lr{ \Bp – \frac{e}{c} \BA} \\
&= \Bp^2 – \frac{e}{c} \lr{ \BA \cdot \Bp + \Bp \cdot \BA } + \frac{e^2}{c^2} \BA^2.
\end{aligned}
\end{equation}

The time evolution of the Heisenberg picture position operator is therefore

\begin{equation}\label{eqn:gaugeTx:80}
\begin{aligned}
\ddt{\Bx}
&= \inv{i\Hbar} \antisymmetric{\Bx}{H} \\
&= \inv{i\Hbar 2 m} \antisymmetric{\Bx}{\BPi^2} \\
&= \inv{i\Hbar 2 m} \antisymmetric{\Bx}{\Bp^2 – \frac{e}{c} \lr{ \BA \cdot \Bp
+ \Bp \cdot \BA } + \frac{e^2}{c^2} \BA^2 } \\
&= \inv{i\Hbar 2 m}
\lr{
\antisymmetric{\Bx}{\Bp^2}
– \frac{e}{c} \antisymmetric{\Bx}{ \BA \cdot \Bp + \Bp \cdot \BA }
}
.
\end{aligned}
\end{equation}

For the \( \Bp^2 \) commutator we have

\begin{equation}\label{eqn:gaugeTx:100}
\antisymmetric{x_r}{\Bp^2}
=
i \Hbar \PD{p_r}{\Bp^2}
=
2 i \Hbar p_r,
\end{equation}

or
\begin{equation}\label{eqn:gaugeTx:120}
\antisymmetric{\Bx}{\Bp^2}
=
2 i \Hbar \Bp.
\end{equation}

Computing the remaining commutator, we’ve got

\begin{equation}\label{eqn:gaugeTx:140}
\begin{aligned}
\antisymmetric{x_r}{\Bp \cdot \BA + \BA \cdot \Bp}
&= x_r p_s A_s – p_s A_s x_r \\
&\quad+ x_r A_s p_s – A_s p_s x_r \\
&= \lr{ \antisymmetric{x_r}{p_s} + p_s x_r } A_s – p_s A_s x_r \\
&\quad+ x_r A_s p_s – A_s \lr{ \antisymmetric{p_s}{x_r} + x_r p_s } \\
&= \antisymmetric{x_r}{p_s} A_s + {p_s A_s x_r – p_s A_s x_r} \\
&\quad+ {x_r A_s p_s – x_r A_s p_s} + A_s \antisymmetric{x_r}{p_s} \\
&= 2 i \Hbar \delta_{r s} A_s \\
&= 2 i \Hbar A_r,
\end{aligned}
\end{equation}

so

\begin{equation}\label{eqn:gaugeTx:160}
\antisymmetric{\Bx}{\Bp \cdot \BA + \BA \cdot \Bp} = 2 i \Hbar \BA.
\end{equation}

Assembling these results gives

\begin{equation}\label{eqn:gaugeTx:180}
\boxed{
\ddt{\Bx} = \inv{m} \lr{ \Bp – \frac{e}{c} \BA } = \inv{m} \BPi,
}
\end{equation}

as asserted in the text.

Kinetic Momentum commutators

\begin{equation}\label{eqn:gaugeTx:200}
\begin{aligned}
\antisymmetric{\Pi_r}{\Pi_s}
&=
\antisymmetric{p_r – e A_r/c}{p_s – e A_s/c} \\
&=
{\antisymmetric{p_r}{p_s}}
– \frac{e}{c} \lr{ \antisymmetric{p_r}{A_s} + \antisymmetric{A_r}{p_s}}
+ \frac{e^2}{c^2} {\antisymmetric{A_r}{A_s}} \\
&=
– \frac{e}{c} \lr{ (-i\Hbar) \PD{x_r}{A_s} + (i\Hbar) \PD{x_s}{A_r} } \\
&=
– \frac{i e \Hbar}{c} \lr{ -\PD{x_r}{A_s} + \PD{x_s}{A_r} } \\
&=
– \frac{i e \Hbar}{c} \epsilon_{t s r} B_t,
\end{aligned}
\end{equation}

or
\begin{equation}\label{eqn:gaugeTx:220}
\boxed{
\antisymmetric{\Pi_r}{\Pi_s}
=
\frac{i e \Hbar}{c} \epsilon_{r s t} B_t.
}
\end{equation}

Quantum Lorentz force

For the force equation we have

\begin{equation}\label{eqn:gaugeTx:240}
\begin{aligned}
m \frac{d^2 \Bx}{dt^2}
&= \ddt{\BPi} \\
&= \inv{i \Hbar} \antisymmetric{\BPi}{H} \\
&= \inv{i \Hbar 2 m } \antisymmetric{\BPi}{\BPi^2}
+ \inv{i \Hbar } \antisymmetric{\BPi}{e \phi}.
\end{aligned}
\end{equation}

For the \( \phi \) commutator consider one component

\begin{equation}\label{eqn:gaugeTx:260}
\begin{aligned}
\antisymmetric{\Pi_r}{e \phi}
&=
e \antisymmetric{p_r – \frac{e}{c} A_r}{\phi} \\
&=
e \antisymmetric{p_r}{\phi} \\
&=
e (-i\Hbar) \PD{x_r}{\phi},
\end{aligned}
\end{equation}

or
\begin{equation}\label{eqn:gaugeTx:280}
\inv{i \Hbar} \antisymmetric{\BPi}{e \phi}
=
– e \spacegrad \phi
=
e \BE.
\end{equation}

For the \( \BPi^2 \) commutator I initially did this the hard way (it took four notebook pages, plus two for a false start.) Realizing that I didn’t use \ref{eqn:gaugeTx:220} for that expansion was the clue to doing this more expediently.

Considering a single component

\begin{equation}\label{eqn:gaugeTx:300}
\begin{aligned}
\antisymmetric{\Pi_r}{\BPi^2}
&=
\antisymmetric{\Pi_r}{\Pi_s \Pi_s} \\
&=
\Pi_r \Pi_s \Pi_s – \Pi_s \Pi_s \Pi_r \\
&=
\lr{ \antisymmetric{\Pi_r}{\Pi_s} + {\Pi_s \Pi_r} }
\Pi_s
– \Pi_s
\lr{ \antisymmetric{\Pi_s}{\Pi_r} + {\Pi_r \Pi_s} } \\
&= i \Hbar \frac{e}{c} \epsilon_{r s t}
\lr{ B_t \Pi_s + \Pi_s B_t },
\end{aligned}
\end{equation}

or

\begin{equation}\label{eqn:gaugeTx:320}
\begin{aligned}
\inv{ i \Hbar 2 m} \antisymmetric{\BPi}{\BPi^2}
&= \frac{e}{2 m c } \epsilon_{r s t} \Be_r
\lr{ B_t \Pi_s + \Pi_s B_t } \\
&= \frac{e}{ 2 m c }
\lr{
\BPi \cross \BB
– \BB \cross \BPi
}.
\end{aligned}
\end{equation}

Putting all the pieces together we’ve got the quantum equivalent of the Lorentz force equation

\begin{equation}\label{eqn:gaugeTx:340}
\boxed{
m \frac{d^2 \Bx}{dt^2} = e \BE + \frac{e}{2 c} \lr{
\frac{d\Bx}{dt} \cross \BB
– \BB \cross \frac{d\Bx}{dt}
}.
}
\end{equation}

While this looks equivalent to the classical result, all the vectors here are Heisenberg picture operators dependent on position.

References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

%d bloggers like this: