potential

A comparison of Geometric Algebra electrodynamic potential methods

January 7, 2017 math and physics play No comments , , , , , , , , , , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

Motivation

Geometric algebra (GA) allows for a compact description of Maxwell’s equations in either an explicit 3D representation or a STA (SpaceTime Algebra [2]) representation. The 3D GA and STA representations Maxwell’s equation both the form

\begin{equation}\label{eqn:potentialMethods:1280}
L \boldsymbol{\mathcal{F}} = J,
\end{equation}

where \( J \) represents the sources, \( L \) is a multivector gradient operator that includes partial derivative operator components for each of the space and time coordinates, and

\begin{equation}\label{eqn:potentialMethods:1020}
\boldsymbol{\mathcal{F}} = \boldsymbol{\mathcal{E}} + \eta I \boldsymbol{\mathcal{H}},
\end{equation}

is an electromagnetic field multivector, \( I = \Be_1 \Be_2 \Be_3 \) is the \R{3} pseudoscalar, and \( \eta = \sqrt{\mu/\epsilon} \) is the impedance of the media.

When Maxwell’s equations are extended to include magnetic sources in addition to conventional electric sources (as used in antenna-theory [1] and microwave engineering [3]), they take the form

\begin{equation}\label{eqn:chapter3Notes:20}
\spacegrad \cross \boldsymbol{\mathcal{E}} = – \boldsymbol{\mathcal{M}} – \PD{t}{\boldsymbol{\mathcal{B}}}
\end{equation}
\begin{equation}\label{eqn:chapter3Notes:40}
\spacegrad \cross \boldsymbol{\mathcal{H}} = \boldsymbol{\mathcal{J}} + \PD{t}{\boldsymbol{\mathcal{D}}}
\end{equation}
\begin{equation}\label{eqn:chapter3Notes:60}
\spacegrad \cdot \boldsymbol{\mathcal{D}} = q_{\textrm{e}}
\end{equation}
\begin{equation}\label{eqn:chapter3Notes:80}
\spacegrad \cdot \boldsymbol{\mathcal{B}} = q_{\textrm{m}}.
\end{equation}

The corresponding GA Maxwell equations in their respective 3D and STA forms are

\begin{equation}\label{eqn:potentialMethods:300}
\lr{ \spacegrad + \inv{v} \PD{t}{} } \boldsymbol{\mathcal{F}}
=
\eta
\lr{ v q_{\textrm{e}} – \boldsymbol{\mathcal{J}} }
+ I \lr{ v q_{\textrm{m}} – \boldsymbol{\mathcal{M}} }
\end{equation}
\begin{equation}\label{eqn:potentialMethods:320}
\grad \boldsymbol{\mathcal{F}} = \eta J – I M,
\end{equation}

where the wave group velocity in the medium is \( v = 1/\sqrt{\epsilon\mu} \), and the medium is isotropic with
\( \boldsymbol{\mathcal{B}} = \mu \boldsymbol{\mathcal{H}} \), and \( \boldsymbol{\mathcal{D}} = \epsilon \boldsymbol{\mathcal{E}} \). In the STA representation, \( \grad, J, M \) are all four-vectors, the specific meanings of which will be spelled out below.

How to determine the potential equations and the field representation using the conventional distinct Maxwell’s \ref{eqn:chapter3Notes:20}, … is well known. The basic procedure is to consider the electric and magnetic sources in turn, and observe that in each case one of the electric or magnetic fields must have a curl representation. The STA approach is similar, except that it can be observed that the field must have a four-curl representation for each type of source. In the explicit 3D GA formalism
\ref{eqn:potentialMethods:300} how to formulate a natural potential representation is not as obvious. There is no longer an reason to set any component of the field equal to a curl, and the representation of the four curl from the STA approach is awkward. Additionally, it is not obvious what form gauge invariance takes in the 3D GA representation.

Ideas explored in these notes

  • GA representation of Maxwell’s equations including magnetic sources.
  • STA GA formalism for Maxwell’s equations including magnetic sources.
  • Explicit form of the GA potential representation including both electric and magnetic sources.
  • Demonstration of exactly how the 3D and STA potentials are related.
  • Explore the structure of gauge transformations when magnetic sources are included.
  • Explore the structure of gauge transformations in the 3D GA formalism.
  • Specify the form of the Lorentz gauge in the 3D GA formalism.

Traditional vector algebra

No magnetic sources

When magnetic sources are omitted, it follows from \ref{eqn:chapter3Notes:80} that there is some \( \boldsymbol{\mathcal{A}}^{\mathrm{e}} \) for which

\begin{equation}\label{eqn:potentialMethods:20}
\boxed{
\boldsymbol{\mathcal{B}} = \spacegrad \cross \boldsymbol{\mathcal{A}}^{\mathrm{e}},
}
\end{equation}

Substitution into Faraday’s law \ref{eqn:chapter3Notes:20} gives

\begin{equation}\label{eqn:potentialMethods:40}
\spacegrad \cross \boldsymbol{\mathcal{E}} = – \PD{t}{}\lr{ \spacegrad \cross \boldsymbol{\mathcal{A}}^{\mathrm{e}} },
\end{equation}

or
\begin{equation}\label{eqn:potentialMethods:60}
\spacegrad \cross \lr{ \boldsymbol{\mathcal{E}} + \PD{t}{ \boldsymbol{\mathcal{A}}^{\mathrm{e}} } } = 0.
\end{equation}

A gradient representation of this curled quantity, say \( -\spacegrad \phi \), will provide the required zero

\begin{equation}\label{eqn:potentialMethods:80}
\boxed{
\boldsymbol{\mathcal{E}} = -\spacegrad \phi -\PD{t}{ \boldsymbol{\mathcal{A}}^{\mathrm{e}} }.
}
\end{equation}

The final two Maxwell equations yield

\begin{equation}\label{eqn:potentialMethods:100}
\begin{aligned}
-\spacegrad^2 \boldsymbol{\mathcal{A}}^{\mathrm{e}} + \spacegrad \lr{ \spacegrad \cdot \boldsymbol{\mathcal{A}}^{\mathrm{e}} } &= \mu \lr{ \boldsymbol{\mathcal{J}} + \epsilon \PD{t}{} \lr{ -\spacegrad \phi -\PD{t}{ \boldsymbol{\mathcal{A}}^{\mathrm{e}} } } } \\
\spacegrad \cdot \lr{ -\spacegrad \phi -\PD{t}{ \boldsymbol{\mathcal{A}}^{\mathrm{e}} } } &= q_e/\epsilon,
\end{aligned}
\end{equation}

or
\begin{equation}\label{eqn:potentialMethods:120}
\boxed{
\begin{aligned}
\spacegrad^2 \boldsymbol{\mathcal{A}}^{\mathrm{e}} – \inv{v^2} \PDSq{t}{ \boldsymbol{\mathcal{A}}^{\mathrm{e}} }
– \spacegrad \lr{
\inv{v^2} \PD{t}{\phi}
+\spacegrad \cdot \boldsymbol{\mathcal{A}}^{\mathrm{e}}
}
&= -\mu \boldsymbol{\mathcal{J}} \\
\spacegrad^2 \phi + \PD{t}{} \lr{ \spacegrad \cdot \boldsymbol{\mathcal{A}}^{\mathrm{e}} } &= -q_e/\epsilon.
\end{aligned}
}
\end{equation}

Note that the Lorentz condition \( \PDi{t}{(\phi/v^2)} + \spacegrad \cdot \boldsymbol{\mathcal{A}}^{\mathrm{e}} = 0 \) can be imposed to decouple these, leaving non-homogeneous wave equations for the vector and scalar potentials respectively.

No electric sources

Without electric sources, a curl representation of the electric field can be assumed, satisfying Gauss’s law

\begin{equation}\label{eqn:potentialMethods:140}
\boxed{
\boldsymbol{\mathcal{D}} = – \spacegrad \cross \boldsymbol{\mathcal{A}}^{\mathrm{m}}.
}
\end{equation}

Substitution into the Maxwell-Faraday law gives
\begin{equation}\label{eqn:potentialMethods:160}
\spacegrad \cross \lr{ \boldsymbol{\mathcal{H}} + \PD{t}{\boldsymbol{\mathcal{A}}^{\mathrm{m}}} } = 0.
\end{equation}

This is satisfied with any gradient, say, \( -\spacegrad \phi_m \), providing a potential representation for the magnetic field

\begin{equation}\label{eqn:potentialMethods:180}
\boxed{
\boldsymbol{\mathcal{H}} = -\spacegrad \phi_m – \PD{t}{\boldsymbol{\mathcal{A}}^{\mathrm{m}}}.
}
\end{equation}

The remaining Maxwell equations provide the required constraints on the potentials

\begin{equation}\label{eqn:potentialMethods:220}
-\spacegrad^2 \boldsymbol{\mathcal{A}}^{\mathrm{m}} + \spacegrad \lr{ \spacegrad \cdot \boldsymbol{\mathcal{A}}^{\mathrm{m}} } = -\epsilon
\lr{
-\boldsymbol{\mathcal{M}} – \mu \PD{t}{}
\lr{
-\spacegrad \phi_m – \PD{t}{\boldsymbol{\mathcal{A}}^{\mathrm{m}}}
}
}
\end{equation}
\begin{equation}\label{eqn:potentialMethods:240}
\spacegrad \cdot
\lr{
-\spacegrad \phi_m – \PD{t}{\boldsymbol{\mathcal{A}}^{\mathrm{m}}}
}
= \inv{\mu} q_m,
\end{equation}

or
\begin{equation}\label{eqn:potentialMethods:260}
\boxed{
\begin{aligned}
\spacegrad^2 \boldsymbol{\mathcal{A}}^{\mathrm{m}} – \inv{v^2} \PDSq{t}{\boldsymbol{\mathcal{A}}^{\mathrm{m}}} – \spacegrad \lr{ \inv{v^2} \PD{t}{\phi_m} + \spacegrad \cdot \boldsymbol{\mathcal{A}}^{\mathrm{m}} } &= -\epsilon \boldsymbol{\mathcal{M}} \\
\spacegrad^2 \phi_m + \PD{t}{}\lr{ \spacegrad \cdot \boldsymbol{\mathcal{A}}^{\mathrm{m}} } &= -\inv{\mu} q_m.
\end{aligned}
}
\end{equation}

The general solution to Maxwell’s equations is therefore
\begin{equation}\label{eqn:potentialMethods:280}
\begin{aligned}
\boldsymbol{\mathcal{E}} &=
-\spacegrad \phi -\PD{t}{ \boldsymbol{\mathcal{A}}^{\mathrm{e}} }
– \inv{\epsilon} \spacegrad \cross \boldsymbol{\mathcal{A}}^{\mathrm{m}} \\
\boldsymbol{\mathcal{H}} &=
\inv{\mu} \spacegrad \cross \boldsymbol{\mathcal{A}}^{\mathrm{e}}
-\spacegrad \phi_m – \PD{t}{\boldsymbol{\mathcal{A}}^{\mathrm{m}}},
\end{aligned}
\end{equation}

subject to the constraints \ref{eqn:potentialMethods:120} and \ref{eqn:potentialMethods:260}.

Potential operator structure

Knowing that there is a simple underlying structure to the potential representation of the electromagnetic field in the STA formalism inspires the question of whether that structure can be found directly using the scalar and vector potentials determined above.

Specifically, what is the multivector representation \ref{eqn:potentialMethods:1020} of the electromagnetic field in terms of all the individual potential variables, and can an underlying structure for that field representation be found? The composite field is

\begin{equation}\label{eqn:potentialMethods:280b}
\boldsymbol{\mathcal{F}}
=
-\spacegrad \phi -\PD{t}{ \boldsymbol{\mathcal{A}}^{\mathrm{e}} }
– \inv{\epsilon} \spacegrad \cross \boldsymbol{\mathcal{A}}^{\mathrm{m}} \\
+ I \eta
\lr{
\inv{\mu} \spacegrad \cross \boldsymbol{\mathcal{A}}^{\mathrm{e}}
-\spacegrad \phi_m – \PD{t}{\boldsymbol{\mathcal{A}}^{\mathrm{m}}}
}.
\end{equation}

Can this be factored into into multivector operator and multivector potentials? Expanding the cross products provides some direction

\begin{equation}\label{eqn:potentialMethods:1040}
\begin{aligned}
\boldsymbol{\mathcal{F}}
&=
– \PD{t}{ \boldsymbol{\mathcal{A}}^{\mathrm{e}} }
– \eta \PD{t}{I \boldsymbol{\mathcal{A}}^{\mathrm{m}}}
– \spacegrad \lr{ \phi – \eta I \phi_m } \\
&\quad + \frac{\eta}{2 \mu} \lr{ \rspacegrad \boldsymbol{\mathcal{A}}^{\mathrm{e}} – \boldsymbol{\mathcal{A}}^{\mathrm{e}} \lspacegrad }
+ \frac{1}{2 \epsilon} \lr{ \rspacegrad I \boldsymbol{\mathcal{A}}^{\mathrm{m}} – I \boldsymbol{\mathcal{A}}^{\mathrm{m}} \lspacegrad }.
\end{aligned}
\end{equation}

Observe that the
gradient and the time partials can be grouped together

\begin{equation}\label{eqn:potentialMethods:1060}
\begin{aligned}
\boldsymbol{\mathcal{F}}
&=
– \PD{t}{ } \lr{\boldsymbol{\mathcal{A}}^{\mathrm{e}} + \eta I \boldsymbol{\mathcal{A}}^{\mathrm{m}}}
– \spacegrad \lr{ \phi + \eta I \phi_m }
+ \frac{v}{2} \lr{ \rspacegrad (\boldsymbol{\mathcal{A}}^{\mathrm{e}} + I \eta \boldsymbol{\mathcal{A}}^{\mathrm{m}}) – (\boldsymbol{\mathcal{A}}^{\mathrm{e}} + I \eta \boldsymbol{\mathcal{A}}^{\mathrm{m}}) \lspacegrad } \\
&=
\inv{2} \lr{
\lr{ \rspacegrad – \inv{v} {\stackrel{ \rightarrow }{\partial_t}} } \lr{ v \boldsymbol{\mathcal{A}}^{\mathrm{e}} + \eta v I \boldsymbol{\mathcal{A}}^{\mathrm{m}} }

\lr{ v \boldsymbol{\mathcal{A}}^{\mathrm{e}} + \eta v I \boldsymbol{\mathcal{A}}^{\mathrm{m}}} \lr{ \lspacegrad + \inv{v} {\stackrel{ \leftarrow }{\partial_t}} }
} \\
&+\quad \inv{2} \lr{
\lr{ \rspacegrad – \inv{v} {\stackrel{ \rightarrow }{\partial_t}} } \lr{ -\phi – \eta I \phi_m }
– \lr{ \phi + \eta I \phi_m } \lr{ \lspacegrad + \inv{v} {\stackrel{ \leftarrow }{\partial_t}} }
}
,
\end{aligned}
\end{equation}

or

\begin{equation}\label{eqn:potentialMethods:1080}
\boxed{
\boldsymbol{\mathcal{F}}
=
\inv{2} \Biglr{
\lr{ \rspacegrad – \inv{v} {\stackrel{ \rightarrow }{\partial_t}} }
\lr{
– \phi
+ v \boldsymbol{\mathcal{A}}^{\mathrm{e}}
+ \eta I v \boldsymbol{\mathcal{A}}^{\mathrm{m}}
– \eta I \phi_m
}

\lr{
\phi
+ v \boldsymbol{\mathcal{A}}^{\mathrm{e}}
+ \eta I v \boldsymbol{\mathcal{A}}^{\mathrm{m}}
+ \eta I \phi_m
}
\lr{ \lspacegrad + \inv{v} {\stackrel{ \leftarrow }{\partial_t}} }
}
.
}
\end{equation}

There’s a conjugate structure to the potential on each side of the curl operation where we see a sign change for the scalar and pseudoscalar elements only. The reason for this becomes more clear in the STA formalism.

Potentials in the STA formalism.

Maxwell’s equation in its explicit 3D form \ref{eqn:potentialMethods:300} can be
converted to STA form, by introducing a four-vector basis \( \setlr{ \gamma_\mu } \), where the spatial basis
\( \setlr{ \Be_k = \gamma_k \gamma_0 } \)
is expressed in terms of the Dirac basis \( \setlr{ \gamma_\mu } \).
By multiplying from the left with \( \gamma_0 \) a STA form of Maxwell’s equation
\ref{eqn:potentialMethods:320}
is obtained,
where
\begin{equation}\label{eqn:potentialMethods:340}
\begin{aligned}
J &= \gamma^\mu J_\mu = ( v q_e, \boldsymbol{\mathcal{J}} ) \\
M &= \gamma^\mu M_\mu = ( v q_m, \boldsymbol{\mathcal{M}} ) \\
\grad &= \gamma^\mu \partial_\mu = ( (1/v) \partial_t, \spacegrad ) \\
I &= \gamma_0 \gamma_1 \gamma_2 \gamma_3,
\end{aligned}
\end{equation}

Here the metric choice is \( \gamma_0^2 = 1 = -\gamma_k^2 \). Note that in this representation the electromagnetic field \( \boldsymbol{\mathcal{F}} = \boldsymbol{\mathcal{E}} + \eta I \boldsymbol{\mathcal{H}} \) is a bivector, not a multivector as it is explicit (frame dependent) 3D representation of \ref{eqn:potentialMethods:300}.

A potential representation can be obtained as before by considering electric and magnetic sources in sequence and using superposition to assemble a complete potential.

No magnetic sources

Without magnetic sources, Maxwell’s equation splits into vector and trivector terms of the form

\begin{equation}\label{eqn:potentialMethods:380}
\grad \cdot \boldsymbol{\mathcal{F}} = \eta J
\end{equation}
\begin{equation}\label{eqn:potentialMethods:400}
\grad \wedge \boldsymbol{\mathcal{F}} = 0.
\end{equation}

A four-vector curl representation of the field will satisfy \ref{eqn:potentialMethods:400} allowing an immediate potential solution

\begin{equation}\label{eqn:potentialMethods:560}
\boxed{
\begin{aligned}
&\boldsymbol{\mathcal{F}} = \grad \wedge {A^{\mathrm{e}}} \\
&\grad^2 {A^{\mathrm{e}}} – \grad \lr{ \grad \cdot {A^{\mathrm{e}}} } = \eta J.
\end{aligned}
}
\end{equation}

This can be put into correspondence with \ref{eqn:potentialMethods:120} by noting that

\begin{equation}\label{eqn:potentialMethods:460}
\begin{aligned}
\grad^2 &= (\gamma^\mu \partial_\mu) \cdot (\gamma^\nu \partial_\nu) = \inv{v^2} \partial_{tt} – \spacegrad^2 \\
\gamma_0 {A^{\mathrm{e}}} &= \gamma_0 \gamma^\mu {A^{\mathrm{e}}}_\mu = {A^{\mathrm{e}}}_0 + \Be_k {A^{\mathrm{e}}}_k = {A^{\mathrm{e}}}_0 + \BA^{\mathrm{e}} \\
\gamma_0 \grad &= \gamma_0 \gamma^\mu \partial_\mu = \inv{v} \partial_t + \spacegrad \\
\grad \cdot {A^{\mathrm{e}}} &= \partial_\mu {A^{\mathrm{e}}}^\mu = \inv{v} \partial_t {A^{\mathrm{e}}}_0 – \spacegrad \cdot \BA^{\mathrm{e}},
\end{aligned}
\end{equation}

so multiplying from the left with \( \gamma_0 \) gives

\begin{equation}\label{eqn:potentialMethods:480}
\lr{ \inv{v^2} \partial_{tt} – \spacegrad^2 } \lr{ {A^{\mathrm{e}}}_0 + \BA^{\mathrm{e}} } – \lr{ \inv{v} \partial_t + \spacegrad }\lr{ \inv{v} \partial_t {A^{\mathrm{e}}}_0 – \spacegrad \cdot \BA^{\mathrm{e}} } = \eta( v q_e – \boldsymbol{\mathcal{J}} ),
\end{equation}

or

\begin{equation}\label{eqn:potentialMethods:520}
\lr{ \inv{v^2} \partial_{tt} – \spacegrad^2 } \BA^{\mathrm{e}} – \spacegrad \lr{ \inv{v} \partial_t {A^{\mathrm{e}}}_0 – \spacegrad \cdot \BA^{\mathrm{e}} } = -\eta \boldsymbol{\mathcal{J}}
\end{equation}
\begin{equation}\label{eqn:potentialMethods:540}
\spacegrad^2 {A^{\mathrm{e}}}_0 – \inv{v} \partial_t \lr{ \spacegrad \cdot \BA^{\mathrm{e}} } = -q_e/\epsilon.
\end{equation}

So \( {A^{\mathrm{e}}}_0 = \phi \) and \( -\ifrac{\BA^{\mathrm{e}}}{v} = \boldsymbol{\mathcal{A}}^{\mathrm{e}} \), or

\begin{equation}\label{eqn:potentialMethods:600}
\boxed{
{A^{\mathrm{e}}} = \gamma_0\lr{ \phi – v \boldsymbol{\mathcal{A}}^{\mathrm{e}} }.
}
\end{equation}

No electric sources

Without electric sources, Maxwell’s equation now splits into

\begin{equation}\label{eqn:potentialMethods:640}
\grad \cdot \boldsymbol{\mathcal{F}} = 0
\end{equation}
\begin{equation}\label{eqn:potentialMethods:660}
\grad \wedge \boldsymbol{\mathcal{F}} = -I M.
\end{equation}

Here the dual of an STA curl yields a solution

\begin{equation}\label{eqn:potentialMethods:680}
\boxed{
\boldsymbol{\mathcal{F}} = I ( \grad \wedge {A^{\mathrm{m}}} ).
}
\end{equation}

Substituting this gives

\begin{equation}\label{eqn:potentialMethods:720}
\begin{aligned}
0
&=
\grad \cdot (I ( \grad \wedge {A^{\mathrm{m}}} ) ) \\
&=
\gpgradeone{ \grad I ( \grad \wedge {A^{\mathrm{m}}} ) } \\
&=
-I \grad \wedge ( \grad \wedge {A^{\mathrm{m}}} ).
\end{aligned}
\end{equation}
\begin{equation}\label{eqn:potentialMethods:740}
\begin{aligned}
-I M
&=
\grad \wedge (I ( \grad \wedge {A^{\mathrm{m}}} ) ) \\
&=
\gpgradethree{ \grad I ( \grad \wedge {A^{\mathrm{m}}} ) } \\
&=
-I \grad \cdot ( \grad \wedge {A^{\mathrm{m}}} ).
\end{aligned}
\end{equation}

The \( \grad \cdot \boldsymbol{\mathcal{F}} \) relation \ref{eqn:potentialMethods:720} is identically zero as desired, leaving

\begin{equation}\label{eqn:potentialMethods:760}
\boxed{
\grad^2 {A^{\mathrm{m}}} – \grad \lr{ \grad \cdot {A^{\mathrm{m}}} }
=
M.
}
\end{equation}

So the general solution with both electric and magnetic sources is

\begin{equation}\label{eqn:potentialMethods:800}
\boxed{
\boldsymbol{\mathcal{F}} = \grad \wedge {A^{\mathrm{e}}} + I (\grad \wedge {A^{\mathrm{m}}}),
}
\end{equation}

subject to the constraints of \ref{eqn:potentialMethods:560} and \ref{eqn:potentialMethods:760}. As before the four-potential \( {A^{\mathrm{m}}} \) can be put into correspondence with the conventional scalar and vector potentials by left multiplying with \( \gamma_0 \), which gives

\begin{equation}\label{eqn:potentialMethods:820}
\lr{ \inv{v^2} \partial_{tt} – \spacegrad^2 } \lr{ {A^{\mathrm{m}}}_0 + \BA^{\mathrm{m}} } – \lr{ \inv{v} \partial_t + \spacegrad }\lr{ \inv{v} \partial_t {A^{\mathrm{m}}}_0 – \spacegrad \cdot \BA^{\mathrm{m}} } = v q_m – \boldsymbol{\mathcal{M}},
\end{equation}

or
\begin{equation}\label{eqn:potentialMethods:860}
\lr{ \inv{v^2} \partial_{tt} – \spacegrad^2 } \BA^{\mathrm{m}} – \spacegrad \lr{ \inv{v} \partial_t {A^{\mathrm{m}}}_0 – \spacegrad \cdot \BA^{\mathrm{m}} } = – \boldsymbol{\mathcal{M}}
\end{equation}
\begin{equation}\label{eqn:potentialMethods:880}
\spacegrad^2 {A^{\mathrm{m}}}_0 – \inv{v} \partial_t \spacegrad \cdot \BA^{\mathrm{m}} = -v q_m.
\end{equation}

Comparing with \ref{eqn:potentialMethods:260} shows that \( {A^{\mathrm{m}}}_0/v = \mu \phi_m \) and \( -\ifrac{\BA^{\mathrm{m}}}{v^2} = \mu \boldsymbol{\mathcal{A}}^{\mathrm{m}} \), or

\begin{equation}\label{eqn:potentialMethods:900}
\boxed{
{A^{\mathrm{m}}} = \gamma_0 \eta \lr{ \phi_m – v \boldsymbol{\mathcal{A}}^{\mathrm{m}} }.
}
\end{equation}

Potential operator structure

Observe that there is an underlying uniform structure of the differential operator that acts on the potential to produce the electromagnetic field. Expressed as a linear operator of the
gradient and the potentials, that is

\( \boldsymbol{\mathcal{F}} = L(\lrgrad, {A^{\mathrm{e}}}, {A^{\mathrm{m}}}) \)

\begin{equation}\label{eqn:potentialMethods:980}
\begin{aligned}
\boldsymbol{\mathcal{F}}
&=
L(\grad, {A^{\mathrm{e}}}, {A^{\mathrm{m}}}) \\
&= \grad \wedge {A^{\mathrm{e}}} + I (\grad \wedge {A^{\mathrm{m}}}) \\
&=
\inv{2} \lr{ \rgrad {A^{\mathrm{e}}} – {A^{\mathrm{e}}} \lgrad }
+ \frac{I}{2} \lr{ \rgrad {A^{\mathrm{m}}} – {A^{\mathrm{m}}} \lgrad } \\
&=
\inv{2} \lr{ \rgrad {A^{\mathrm{e}}} – {A^{\mathrm{e}}} \lgrad }
+ \frac{1}{2} \lr{ -\rgrad I {A^{\mathrm{m}}} – I {A^{\mathrm{m}}} \lgrad } \\
&=
\inv{2} \lr{ \rgrad ({A^{\mathrm{e}}} -I {A^{\mathrm{m}}}) – ({A^{\mathrm{e}}} + I {A^{\mathrm{m}}}) \lgrad }
,
\end{aligned}
\end{equation}

or
\begin{equation}\label{eqn:potentialMethods:1000}
\boxed{
\boldsymbol{\mathcal{F}}
=
\inv{2} \lr{ \rgrad ({A^{\mathrm{e}}} -I {A^{\mathrm{m}}}) – ({A^{\mathrm{e}}} – I {A^{\mathrm{m}}})^\dagger \lgrad }
.
}
\end{equation}

Observe that \ref{eqn:potentialMethods:1000} can be
put into correspondence with \ref{eqn:potentialMethods:1080} using a factoring of unity \( 1 = \gamma_0 \gamma_0 \)

\begin{equation}\label{eqn:potentialMethods:1100}
\boldsymbol{\mathcal{F}}
=
\inv{2} \lr{ (-\rgrad \gamma_0) (-\gamma_0 ({A^{\mathrm{e}}} -I {A^{\mathrm{m}}})) – (({A^{\mathrm{e}}} + I {A^{\mathrm{m}}}) \gamma_0)(\gamma_0 \lgrad) },
\end{equation}

where

\begin{equation}\label{eqn:potentialMethods:1140}
\begin{aligned}
-\grad \gamma_0
&=
-(\gamma^0 \partial_0 + \gamma^k \partial_k) \gamma_0 \\
&=
-\partial_0 – \gamma^k \gamma_0 \partial_k \\
&=
\spacegrad
-\inv{v} \partial_t
,
\end{aligned}
\end{equation}
\begin{equation}\label{eqn:potentialMethods:1160}
\begin{aligned}
\gamma_0 \grad
&=
\gamma_0 (\gamma^0 \partial_0 + \gamma^k \partial_k) \\
&=
\partial_0 – \gamma^k \gamma_0 \partial_k \\
&=
\spacegrad
+ \inv{v} \partial_t
,
\end{aligned}
\end{equation}

and
\begin{equation}\label{eqn:potentialMethods:1200}
\begin{aligned}
-\gamma_0 ( {A^{\mathrm{e}}} – I {A^{\mathrm{m}}} )
&=
-\gamma_0 \gamma_0 \lr{ \phi -v \boldsymbol{\mathcal{A}}^{\mathrm{e}} + \eta I \lr{ \phi_m – v \boldsymbol{\mathcal{A}}^{\mathrm{m}} } } \\
&=
-\lr{ \phi -v \boldsymbol{\mathcal{A}}^{\mathrm{e}} + \eta I \phi_m – \eta v I \boldsymbol{\mathcal{A}}^{\mathrm{m}} } \\
&=
– \phi
+ v \boldsymbol{\mathcal{A}}^{\mathrm{e}}
+ \eta v I \boldsymbol{\mathcal{A}}^{\mathrm{m}}
– \eta I \phi_m
\end{aligned}
\end{equation}
\begin{equation}\label{eqn:potentialMethods:1220}
\begin{aligned}
( {A^{\mathrm{e}}} + I {A^{\mathrm{m}}} )\gamma_0
&=
\lr{ \gamma_0 \lr{ \phi -v \boldsymbol{\mathcal{A}}^{\mathrm{e}} } + I \gamma_0 \eta \lr{ \phi_m – v \boldsymbol{\mathcal{A}}^{\mathrm{m}} } } \gamma_0 \\
&=
\phi + v \boldsymbol{\mathcal{A}}^{\mathrm{e}} + I \eta \phi_m + I \eta v \boldsymbol{\mathcal{A}}^{\mathrm{m}} \\
&=
\phi
+ v \boldsymbol{\mathcal{A}}^{\mathrm{e}}
+ \eta v I \boldsymbol{\mathcal{A}}^{\mathrm{m}}
+ \eta I \phi_m
,
\end{aligned}
\end{equation}

This recovers \ref{eqn:potentialMethods:1080} as desired.

Potentials in the 3D Euclidean formalism

In the conventional scalar plus vector differential representation of Maxwell’s equations \ref{eqn:chapter3Notes:20}…, given electric(magnetic) sources the structure of the electric(magnetic) potential follows from first setting the magnetic(electric) field equal to the curl of a vector potential. The procedure for the STA GA form of Maxwell’s equation was similar, where it was immediately evident that the field could be set to the four-curl of a four-vector potential (or the dual of such a curl for magnetic sources).

In the 3D GA representation, there is no immediate rationale for introducing a curl or the equivalent to a four-curl representation of the field. Reconciliation of this is possible by recognizing that the fact that the field (or a component of it) may be represented by a curl is not actually fundamental. Instead, observe that the two sided gradient action on a potential to generate the electromagnetic field in the STA representation of \ref{eqn:potentialMethods:1000} serves to select the grade two component product of the gradient and the multivector potential \( {A^{\mathrm{e}}} – I {A^{\mathrm{m}}} \), and that this can in fact be written as
a single sided gradient operation on a potential, provided the multivector product is filtered with a four-bivector grade selection operation

\begin{equation}\label{eqn:potentialMethods:1240}
\boxed{
\boldsymbol{\mathcal{F}} = \gpgradetwo{ \grad \lr{ {A^{\mathrm{e}}} – I {A^{\mathrm{m}}} } }.
}
\end{equation}

Similarly, it can be observed that the
specific function of the conjugate structure in the two sided potential representation of
\ref{eqn:potentialMethods:1080}
is to discard all the scalar and pseudoscalar grades in the multivector product. This means that a single sided potential can also be used, provided it is wrapped in a grade selection operation

\begin{equation}\label{eqn:potentialMethods:1260}
\boxed{
\boldsymbol{\mathcal{F}} =
\gpgrade{ \lr{ \spacegrad – \inv{v} \PD{t}{} }
\lr{
– \phi
+ v \boldsymbol{\mathcal{A}}^{\mathrm{e}}
+ \eta I v \boldsymbol{\mathcal{A}}^{\mathrm{m}}
– \eta I \phi_m
} }{1,2}.
}
\end{equation}

It is this grade selection operation that is really the fundamental defining action in the potential of the STA and conventional 3D representations of Maxwell’s equations. So, given Maxwell’s equation in the 3D GA representation, defining a potential representation for the field is really just a demand that the field have the structure

\begin{equation}\label{eqn:potentialMethods:1320}
\boldsymbol{\mathcal{F}} = \gpgrade{ (\alpha \spacegrad + \beta \partial_t)( A_0 + A_1 + I( A_0′ + A_1′ ) }{1,2}.
\end{equation}

This is a mandate that the electromagnetic field is the grades 1 and 2 components of the vector product of space and time derivative operators on a multivector field \( A = \sum_{k=0}^3 A_k = A_0 + A_1 + I( A_0′ + A_1′ ) \) that can potentially have any grade components. There are more degrees of freedom in this specification than required, since the multivector can absorb one of the \( \alpha \) or \( \beta \) coefficients, so without loss of generality, one of these (say \( \alpha\)) can be set to 1.

Expanding \ref{eqn:potentialMethods:1320} gives

\begin{equation}\label{eqn:potentialMethods:1340}
\begin{aligned}
\boldsymbol{\mathcal{F}}
&=
\spacegrad A_0
+ \beta \partial_t A_1
– \spacegrad \cross A_1′
+ I (\spacegrad \cross A_1
+ \beta \partial_t A_1′
+ \spacegrad A_0′) \\
&=
\boldsymbol{\mathcal{E}} + I \eta \boldsymbol{\mathcal{H}}.
\end{aligned}
\end{equation}

This naturally has all the right mixes of curls, gradients and time derivatives, all following as direct consequences of applying a grade selection operation to the action of a “spacetime gradient” on a general multivector potential.

The conclusion is that the potential representation of the field is

\begin{equation}\label{eqn:potentialMethods:1360}
\boldsymbol{\mathcal{F}} =
\gpgrade{ \lr{ \spacegrad – \inv{v} \PD{t}{} } A }{1,2},
\end{equation}

where \( A \) is a multivector potentially containing all grades, where grades 0,1 are required for electric sources, and grades 2,3 are required for magnetic sources. When it is desirable to refer back to the conventional scalar and vector potentials this multivector potential can be written as \( A = -\phi + v \boldsymbol{\mathcal{A}}^{\mathrm{e}} + \eta I \lr{ -\phi_m + v \boldsymbol{\mathcal{A}}^{\mathrm{m}} } \).

Gauge transformations

Recall that for electric sources the magnetic field is of the form

\begin{equation}\label{eqn:potentialMethods:1380}
\boldsymbol{\mathcal{B}} = \spacegrad \cross \boldsymbol{\mathcal{A}},
\end{equation}

so adding the gradient of any scalar field to the potential \( \boldsymbol{\mathcal{A}}’ = \boldsymbol{\mathcal{A}} + \spacegrad \psi \)
does not change the magnetic field

\begin{equation}\label{eqn:potentialMethods:1400}
\begin{aligned}
\boldsymbol{\mathcal{B}}’
&= \spacegrad \cross \lr{ \boldsymbol{\mathcal{A}} + \spacegrad \psi } \\
&= \spacegrad \cross \boldsymbol{\mathcal{A}} \\
&= \boldsymbol{\mathcal{B}}.
\end{aligned}
\end{equation}

The electric field with this changed potential is

\begin{equation}\label{eqn:potentialMethods:1420}
\begin{aligned}
\boldsymbol{\mathcal{E}}’
&= -\spacegrad \phi – \partial_t \lr{ \BA + \spacegrad \psi} \\
&= -\spacegrad \lr{ \phi + \partial_t \psi } – \partial_t \BA,
\end{aligned}
\end{equation}

so if
\begin{equation}\label{eqn:potentialMethods:1440}
\phi = \phi’ – \partial_t \psi,
\end{equation}

the electric field will also be unaltered by this transformation.

In the STA representation, the field can similarly be altered by adding any (four)gradient to the potential. For example with only electric sources

\begin{equation}\label{eqn:potentialMethods:1460}
\boldsymbol{\mathcal{F}} = \grad \wedge (A + \grad \psi) = \grad \wedge A
\end{equation}

and for electric or magnetic sources

\begin{equation}\label{eqn:potentialMethods:1480}
\boldsymbol{\mathcal{F}} = \gpgradetwo{ \grad (A + \grad \psi) } = \gpgradetwo{ \grad A }.
\end{equation}

In the 3D GA representation, where the field is given by \ref{eqn:potentialMethods:1360}, there is no field that is being curled to add a gradient to. However, if the scalar and vector potentials transform as

\begin{equation}\label{eqn:potentialMethods:1500}
\begin{aligned}
\boldsymbol{\mathcal{A}} &\rightarrow \boldsymbol{\mathcal{A}} + \spacegrad \psi \\
\phi &\rightarrow \phi – \partial_t \psi,
\end{aligned}
\end{equation}

then the multivector potential transforms as
\begin{equation}\label{eqn:potentialMethods:1520}
-\phi + v \boldsymbol{\mathcal{A}}
\rightarrow -\phi + v \boldsymbol{\mathcal{A}} + \partial_t \psi + v \spacegrad \psi,
\end{equation}

so the electromagnetic field is unchanged when the multivector potential is transformed as

\begin{equation}\label{eqn:potentialMethods:1540}
A \rightarrow A + \lr{ \spacegrad + \inv{v} \partial_t } \psi,
\end{equation}

where \( \psi \) is any field that has scalar or pseudoscalar grades. Viewed in terms of grade selection, this makes perfect sense, since the transformed field is

\begin{equation}\label{eqn:potentialMethods:1560}
\begin{aligned}
\boldsymbol{\mathcal{F}}
&\rightarrow
\gpgrade{ \lr{ \spacegrad – \inv{v} \PD{t}{} } \lr{ A + \lr{ \spacegrad + \inv{v} \partial_t } \psi } }{1,2} \\
&=
\gpgrade{ \lr{ \spacegrad – \inv{v} \PD{t}{} } A + \lr{ \spacegrad^2 – \inv{v^2} \partial_{tt} } \psi }{1,2} \\
&=
\gpgrade{ \lr{ \spacegrad – \inv{v} \PD{t}{} } A }{1,2}.
\end{aligned}
\end{equation}

The \( \psi \) contribution to the grade selection operator is killed because it has scalar or pseudoscalar grades.

Lorenz gauge

Maxwell’s equations are completely decoupled if the potential can be found such that

\begin{equation}\label{eqn:potentialMethods:1580}
\begin{aligned}
\boldsymbol{\mathcal{F}}
&=
\gpgrade{ \lr{ \spacegrad – \inv{v} \PD{t}{} } A }{1,2} \\
&=
\lr{ \spacegrad – \inv{v} \PD{t}{} } A.
\end{aligned}
\end{equation}

When this is the case, Maxwell’s equations are reduced to four non-homogeneous potential wave equations

\begin{equation}\label{eqn:potentialMethods:1620}
\lr{ \spacegrad^2 – \inv{v^2} \PDSq{t}{} } A = J,
\end{equation}

that is

\begin{equation}\label{eqn:potentialMethods:1600}
\begin{aligned}
\lr{ \spacegrad^2 – \inv{v^2} \PDSq{t}{} } \phi &= – \inv{\epsilon} q_e \\
\lr{ \spacegrad^2 – \inv{v^2} \PDSq{t}{} } \boldsymbol{\mathcal{A}}^{\mathrm{e}} &= – \mu \boldsymbol{\mathcal{J}} \\
\lr{ \spacegrad^2 – \inv{v^2} \PDSq{t}{} } \phi_m &= – \frac{I}{\mu} q_m \\
\lr{ \spacegrad^2 – \inv{v^2} \PDSq{t}{} } \boldsymbol{\mathcal{A}}^{\mathrm{m}} &= – I \epsilon \boldsymbol{\mathcal{M}}.
\end{aligned}
\end{equation}

There should be no a-priori assumption that such a field representation has no scalar, nor no pseudoscalar components. That explicit expansion in grades is

\begin{equation}\label{eqn:potentialMethods:1640}
\begin{aligned}
\lr{ \spacegrad – \inv{v} \PD{t}{} } A
&=
\lr{ \spacegrad – \inv{v} \PD{t}{} } \lr{ -\phi + v \boldsymbol{\mathcal{A}}^{\mathrm{e}} + \eta I \lr{ -\phi_m + v \boldsymbol{\mathcal{A}}^{\mathrm{m}} } } \\
&=
\inv{v} \partial_t \phi
+ v \spacegrad \cdot \boldsymbol{\mathcal{A}}^{\mathrm{e}} \\
&-\spacegrad \phi
+ I \eta v \spacegrad \wedge \boldsymbol{\mathcal{A}}^{\mathrm{m}}
– \partial_t \boldsymbol{\mathcal{A}}^{\mathrm{e}} \\
&+ v \spacegrad \wedge \boldsymbol{\mathcal{A}}^{\mathrm{e}}
– \eta I \spacegrad \phi_m
– I \eta \partial_t \boldsymbol{\mathcal{A}}^{\mathrm{m}} \\
&+ \eta I \inv{v} \partial_t \phi_m
+ I \eta v \spacegrad \cdot \boldsymbol{\mathcal{A}}^{\mathrm{m}},
\end{aligned}
\end{equation}

so if this potential representation has only vector and bivector grades, it must be true that

\begin{equation}\label{eqn:potentialMethods:1660}
\begin{aligned}
\inv{v} \partial_t \phi + v \spacegrad \cdot \boldsymbol{\mathcal{A}}^{\mathrm{e}} &= 0 \\
\inv{v} \partial_t \phi_m + v \spacegrad \cdot \boldsymbol{\mathcal{A}}^{\mathrm{m}} &= 0.
\end{aligned}
\end{equation}

The first is the well known Lorenz gauge condition, whereas the second is the dual of that condition for magnetic sources.

Should one of these conditions, say the Lorenz condition for the electric source potentials, be non-zero, then it is possible to make a potential transformation for which this condition is zero

\begin{equation}\label{eqn:potentialMethods:1680}
\begin{aligned}
0
&\ne
\inv{v} \partial_t \phi + v \spacegrad \cdot \boldsymbol{\mathcal{A}}^{\mathrm{e}} \\
&=
\inv{v} \partial_t (\phi’ – \partial_t \psi) + v \spacegrad \cdot (\boldsymbol{\mathcal{A}}’ + \spacegrad \psi) \\
&=
\inv{v} \partial_t \phi’ + v \spacegrad \boldsymbol{\mathcal{A}}’
+ v \lr{ \spacegrad^2 – \inv{v^2} \partial_{tt} } \psi,
\end{aligned}
\end{equation}

so if \( \inv{v} \partial_t \phi’ + v \spacegrad \boldsymbol{\mathcal{A}}’ \) is zero, \( \psi \) must be found such that
\begin{equation}\label{eqn:potentialMethods:1700}
\inv{v} \partial_t \phi + v \spacegrad \cdot \boldsymbol{\mathcal{A}}^{\mathrm{e}}
= v \lr{ \spacegrad^2 – \inv{v^2} \partial_{tt} } \psi.
\end{equation}

References

[1] Constantine A Balanis. Antenna theory: analysis and design. John Wiley \& Sons, 3rd edition, 2005.

[2] C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University Press New York, Cambridge, UK, 1st edition, 2003.

[3] David M Pozar. Microwave engineering. John Wiley \& Sons, 2009.

Transverse gauge

November 16, 2016 math and physics play No comments , , , , , , , , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

Jackson [1] has an interesting presentation of the transverse gauge. I’d like to walk through the details of this, but first want to translate the preliminaries to SI units (if I had the 3rd edition I’d not have to do this translation step).

Gauge freedom

The starting point is noting that \( \spacegrad \cdot \BB = 0 \) the magnetic field can be expressed as a curl

\begin{equation}\label{eqn:transverseGauge:20}
\BB = \spacegrad \cross \BA.
\end{equation}

Faraday’s law now takes the form
\begin{equation}\label{eqn:transverseGauge:40}
\begin{aligned}
0
&= \spacegrad \cross \BE + \PD{t}{\BB} \\
&= \spacegrad \cross \BE + \PD{t}{} \lr{ \spacegrad \cross \BA } \\
&= \spacegrad \cross \lr{ \BE + \PD{t}{\BA} }.
\end{aligned}
\end{equation}

Because this curl is zero, the interior sum can be expressed as a gradient

\begin{equation}\label{eqn:transverseGauge:60}
\BE + \PD{t}{\BA} \equiv -\spacegrad \Phi.
\end{equation}

This can now be substituted into the remaining two Maxwell’s equations.

\begin{equation}\label{eqn:transverseGauge:80}
\begin{aligned}
\spacegrad \cdot \BD &= \rho_v \\
\spacegrad \cross \BH &= \BJ + \PD{t}{\BD} \\
\end{aligned}
\end{equation}

For Gauss’s law, in simple media, we have

\begin{equation}\label{eqn:transverseGauge:140}
\begin{aligned}
\rho_v
&=
\epsilon \spacegrad \cdot \BE \\
&=
\epsilon \spacegrad \cdot \lr{ -\spacegrad \Phi – \PD{t}{\BA} }
\end{aligned}
\end{equation}

For simple media again, the Ampere-Maxwell equation is

\begin{equation}\label{eqn:transverseGauge:100}
\inv{\mu} \spacegrad \cross \lr{ \spacegrad \cross \BA } = \BJ + \epsilon \PD{t}{} \lr{ -\spacegrad \Phi – \PD{t}{\BA} }.
\end{equation}

Expanding \( \spacegrad \cross \lr{ \spacegrad \cross \BA } = -\spacegrad^2 \BA + \spacegrad \lr{ \spacegrad \cdot \BA } \) gives
\begin{equation}\label{eqn:transverseGauge:120}
-\spacegrad^2 \BA + \spacegrad \lr{ \spacegrad \cdot \BA } + \epsilon \mu \PDSq{t}{\BA} = \mu \BJ – \epsilon \mu \spacegrad \PD{t}{\Phi}.
\end{equation}

Maxwell’s equations are now reduced to
\begin{equation}\label{eqn:transverseGauge:180}
\boxed{
\begin{aligned}
\spacegrad^2 \BA – \spacegrad \lr{ \spacegrad \cdot \BA + \epsilon \mu \PD{t}{\Phi}} – \epsilon \mu \PDSq{t}{\BA} &= -\mu \BJ \\
\spacegrad^2 \Phi + \PD{t}{\spacegrad \cdot \BA} &= -\frac{\rho_v }{\epsilon}.
\end{aligned}
}
\end{equation}

There are two obvious constraints that we can impose
\begin{equation}\label{eqn:transverseGauge:200}
\spacegrad \cdot \BA – \epsilon \mu \PD{t}{\Phi} = 0,
\end{equation}

or
\begin{equation}\label{eqn:transverseGauge:220}
\spacegrad \cdot \BA = 0.
\end{equation}

The first constraint is the Lorentz gauge, which I’ve played with previously. It happens to be really nice in a relativistic context since, in vacuum with a four-vector potential \( A = (\Phi/c, \BA) \), that is a requirement that the four-divergence of the four-potential vanishes (\( \partial_\mu A^\mu = 0 \)).

Transverse gauge

Jackson identifies the latter constraint as the transverse gauge, which I’m less familiar with. With this gauge selection, we have

\begin{equation}\label{eqn:transverseGauge:260}
\spacegrad^2 \BA – \epsilon \mu \PDSq{t}{\BA} = -\mu \BJ + \epsilon\mu \spacegrad \PD{t}{\Phi}
\end{equation}
\begin{equation}\label{eqn:transverseGauge:280}
\spacegrad^2 \Phi = -\frac{\rho_v }{\epsilon}.
\end{equation}

What’s not obvious is the fact that the irrotational (zero curl) contribution due to \(\Phi\) in \ref{eqn:transverseGauge:260} cancels the corresponding irrotational term from the current. Jackson uses a transverse and longitudinal decomposition of the current, related to the Helmholtz theorem to allude to this.

That decomposition follows from expanding \( \spacegrad^2 J/R \) in two ways using the delta function \( -4 \pi \delta(\Bx – \Bx’) = \spacegrad^2 1/R \) representation, as well as directly

\begin{equation}\label{eqn:transverseGauge:300}
\begin{aligned}
– 4 \pi \BJ(\Bx)
&=
\int \spacegrad^2 \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’ \\
&=
\spacegrad
\int \spacegrad \cdot \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’
+
\spacegrad \cdot
\int \spacegrad \wedge \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’ \\
&=
-\spacegrad
\int \BJ(\Bx’) \cdot \spacegrad’ \inv{\Abs{\Bx – \Bx’}} d^3 x’
+
\spacegrad \cdot \lr{ \spacegrad \wedge
\int \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’
} \\
&=
-\spacegrad
\int \spacegrad’ \cdot \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’
+\spacegrad
\int \frac{\spacegrad’ \cdot \BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’

\spacegrad \cross \lr{
\spacegrad \cross
\int \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’
}
\end{aligned}
\end{equation}

The first term can be converted to a surface integral

\begin{equation}\label{eqn:transverseGauge:320}
-\spacegrad
\int \spacegrad’ \cdot \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’
=
-\spacegrad
\int d\BA’ \cdot \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}},
\end{equation}

so provided the currents are either localized or \( \Abs{\BJ}/R \rightarrow 0 \) on an infinite sphere, we can make the identification

\begin{equation}\label{eqn:transverseGauge:340}
\BJ(\Bx)
=
-\spacegrad \inv{4 \pi} \int \frac{\spacegrad’ \cdot \BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’
+
\spacegrad \cross \spacegrad \cross \inv{4 \pi} \int \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’
\equiv
\BJ_l +
\BJ_t,
\end{equation}

where \( \spacegrad \cross \BJ_l = 0 \) (irrotational, or longitudinal), whereas \( \spacegrad \cdot \BJ_t = 0 \) (solenoidal or transverse). The irrotational property is clear from inspection, and the transverse property can be verified readily

\begin{equation}\label{eqn:transverseGauge:360}
\begin{aligned}
\spacegrad \cdot \lr{ \spacegrad \cross \lr{ \spacegrad \cross \BX } }
&=
-\spacegrad \cdot \lr{ \spacegrad \cdot \lr{ \spacegrad \wedge \BX } } \\
&=
-\spacegrad \cdot \lr{ \spacegrad^2 \BX – \spacegrad \lr{ \spacegrad \cdot \BX } } \\
&=
-\spacegrad \cdot \lr{\spacegrad^2 \BX} + \spacegrad^2 \lr{ \spacegrad \cdot \BX } \\
&= 0.
\end{aligned}
\end{equation}

Since

\begin{equation}\label{eqn:transverseGauge:380}
\Phi(\Bx, t)
=
\inv{4 \pi \epsilon} \int \frac{\rho_v(\Bx’, t)}{\Abs{\Bx – \Bx’}} d^3 x’,
\end{equation}

we have

\begin{equation}\label{eqn:transverseGauge:400}
\begin{aligned}
\spacegrad \PD{t}{\Phi}
&=
\inv{4 \pi \epsilon} \spacegrad \int \frac{\partial_t \rho_v(\Bx’, t)}{\Abs{\Bx – \Bx’}} d^3 x’ \\
&=
\inv{4 \pi \epsilon} \spacegrad \int \frac{-\spacegrad’ \cdot \BJ}{\Abs{\Bx – \Bx’}} d^3 x’ \\
&=
\frac{\BJ_l}{\epsilon}.
\end{aligned}
\end{equation}

This means that the Ampere-Maxwell equation takes the form

\begin{equation}\label{eqn:transverseGauge:420}
\spacegrad^2 \BA – \epsilon \mu \PDSq{t}{\BA}
= -\mu \BJ + \mu \BJ_l
= -\mu \BJ_t.
\end{equation}

This justifies the transverse in the label transverse gauge.

References

[1] JD Jackson. Classical Electrodynamics. John Wiley and Sons, 2nd edition, 1975.

Line charge field and potential.

October 26, 2016 math and physics play No comments , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

When computing the most general solution of the electrostatic potential in a plane, Jackson [1] mentions that \( -2 \lambda_0 \ln \rho \) is the well known potential for an infinite line charge (up to the unit specific factor). Checking that statement, since I didn’t recall what that potential was offhand, I encountered some inconsistencies and non-convergent integrals, and thought it was worthwhile to explore those a bit more carefully. This will be done here.

Using Gauss’s law.

For an infinite length line charge, we can find the radial field contribution using Gauss’s law, imagining a cylinder of length \( \Delta l \) of radius \( \rho \) surrounding this charge with the midpoint at the origin. Ignoring any non-radial field contribution, we have

\begin{equation}\label{eqn:lineCharge:20}
\int_{-\Delta l/2}^{\Delta l/2} \ncap \cdot \BE (2 \pi \rho) dl = \frac{\lambda_0}{\epsilon_0} \Delta l,
\end{equation}

or

\begin{equation}\label{eqn:lineCharge:40}
\BE = \frac{\lambda_0}{2 \pi \epsilon_0} \frac{\rhocap}{\rho}.
\end{equation}

Since

\begin{equation}\label{eqn:lineCharge:60}
\frac{\rhocap}{\rho} = \spacegrad \ln \rho,
\end{equation}

this means that the potential is

\begin{equation}\label{eqn:lineCharge:80}
\phi = -\frac{2 \lambda_0}{4 \pi \epsilon_0} \ln \rho.
\end{equation}

Finite line charge potential.

Let’s try both these calculations for a finite charge distribution. Gauss’s law looses its usefulness, but we can evaluate the integrals directly. For the electric field

\begin{equation}\label{eqn:lineCharge:100}
\BE
= \frac{\lambda_0}{4 \pi \epsilon_0} \int \frac{(\Bx – \Bx’)}{\Abs{\Bx – \Bx’}^3} dl’.
\end{equation}

Using cylindrical coordinates with the field point \( \Bx = \rho \rhocap \) for convience, the charge point \( \Bx’ = z’ \zcap \), and a the charge distributed over \( [a,b] \) this is

\begin{equation}\label{eqn:lineCharge:120}
\BE
= \frac{\lambda_0}{4 \pi \epsilon_0} \int_a^b \frac{(\rho \rhocap – z’ \zcap)}{\lr{\rho^2 + (z’)^2}^{3/2}} dz’.
\end{equation}

When the charge is uniformly distributed around the origin \( [a,b] = b[-1,1] \) the \( \zcap \) component of this field is killed because the integrand is odd. This justifies ignoring such contributions in the Gaussing cylinder analysis above. The general solution to this integral is found to be

\begin{equation}\label{eqn:lineCharge:140}
\BE
=
\frac{\lambda_0}{4 \pi \epsilon_0}
\evalrange{
\lr{
\frac{z’ \rhocap }{\rho \sqrt{ \rho^2 + (z’)^2 } }
+\frac{\zcap}{ \sqrt{ \rho^2 + (z’)^2 } }
}
}{a}{b},
\end{equation}

or
\begin{equation}\label{eqn:lineCharge:240}
\boxed{
\BE
=
\frac{\lambda_0}{4 \pi \epsilon_0}
\lr{
\frac{\rhocap }{\rho}
\lr{
\frac{b}{\sqrt{ \rho^2 + b^2 } }
-\frac{a}{\sqrt{ \rho^2 + a^2 } }
}
+ \zcap
\lr{
\frac{1}{ \sqrt{ \rho^2 + b^2 } }
-\frac{1}{ \sqrt{ \rho^2 + a^2 } }
}
}.
}
\end{equation}

When \( b = -a = \Delta l/2 \), this reduces to

\begin{equation}\label{eqn:lineCharge:160}
\BE
=
\frac{\lambda_0}{4 \pi \epsilon_0}
\frac{\rhocap }{\rho}
\frac{\Delta l}{\sqrt{ \rho^2 + (\Delta l/2)^2 } },
\end{equation}

which further reduces to \ref{eqn:lineCharge:40} when \( \Delta l \gg \rho \).

Finite line charge potential. Wrong but illuminating.

Again, putting the field point at \( z’ = 0 \), we have

\begin{equation}\label{eqn:lineCharge:180}
\phi(\rho)
= \frac{\lambda_0}{4 \pi \epsilon_0} \int_a^b \frac{dz’}{\lr{\rho^2 + (z’)^2}^{1/2}},
\end{equation}

which integrates to
\begin{equation}\label{eqn:lineCharge:260}
\phi(\rho)
= \frac{\lambda_0}{4 \pi \epsilon_0 }
\ln \frac{ b + \sqrt{ \rho^2 + b^2 }}{ a + \sqrt{\rho^2 + a^2}}.
\end{equation}

With \( b = -a = \Delta l/2 \), this approaches

\begin{equation}\label{eqn:lineCharge:200}
\phi
\approx
\frac{\lambda_0}{4 \pi \epsilon_0 }
\ln \frac{ (\Delta l/2) }{ \rho^2/2\Abs{\Delta l/2}}
=
\frac{-2 \lambda_0}{4 \pi \epsilon_0 } \ln \rho
+
\frac{\lambda_0}{4 \pi \epsilon_0 }
\ln \lr{ (\Delta l)^2/2 }.
\end{equation}

Before \( \Delta l \) is allowed to tend to infinity, this is identical (up to a difference in the reference potential) to \ref{eqn:lineCharge:80} found using Gauss’s law. It is, strictly speaking, singular when \( \Delta l \rightarrow \infty \), so it does not seem right to infinity as a reference point for the potential.

There’s another weird thing about this result. Since this has no \( z \) dependence, it is not obvious how we would recover the non-radial portion of the electric field from this potential using \( \BE = -\spacegrad \phi \)? Let’s calculate the elecric field from \ref{eqn:lineCharge:180} explicitly

\begin{equation}\label{eqn:lineCharge:220}
\begin{aligned}
\BE
&=
-\frac{\lambda_0}{4 \pi \epsilon_0}
\spacegrad
\ln \frac{ b + \sqrt{ \rho^2 + b^2 }}{ a + \sqrt{\rho^2 + a^2}} \\
&=
-\frac{\lambda_0 \rhocap}{4 \pi \epsilon_0 }
\PD{\rho}{}
\ln \frac{ b + \sqrt{ \rho^2 + b^2 }}{ a + \sqrt{\rho^2 + a^2}} \\
&=
-\frac{\lambda_0 \rhocap}{4 \pi \epsilon_0}
\lr{
\inv{ b + \sqrt{ \rho^2 + b^2 }} \frac{ \rho }{\sqrt{ \rho^2 + b^2 }}
-\inv{ a + \sqrt{ \rho^2 + a^2 }} \frac{ \rho }{\sqrt{ \rho^2 + a^2 }}
} \\
&=
-\frac{\lambda_0 \rhocap}{4 \pi \epsilon_0 \rho}
\lr{
\frac{ -b + \sqrt{ \rho^2 + b^2 }}{\sqrt{ \rho^2 + b^2 }}
-\frac{ -a + \sqrt{ \rho^2 + a^2 }}{\sqrt{ \rho^2 + a^2 }}
} \\
&=
\frac{\lambda_0 \rhocap}{4 \pi \epsilon_0 \rho}
\lr{
\frac{ b }{\sqrt{ \rho^2 + b^2 }}
-\frac{ a }{\sqrt{ \rho^2 + a^2 }}
}.
\end{aligned}
\end{equation}

This recovers the radial component of the field from \ref{eqn:lineCharge:240}, but where did the \( \zcap \) component go? The required potential appears to be

\begin{equation}\label{eqn:lineCharge:340}
\phi(\rho, z)
=
\frac{\lambda_0}{4 \pi \epsilon_0 }
\ln \frac{ b + \sqrt{ \rho^2 + b^2 }}{ a + \sqrt{\rho^2 + a^2}}

\frac{z \lambda_0}{4 \pi \epsilon_0 }
\lr{ \frac{1}{\sqrt{\rho^2 + b^2}}
-\frac{1}{\sqrt{\rho^2 + a^2}}
}.
\end{equation}

When computing the electric field \( \BE(\rho, \theta, z) \), it was convienent to pick the coordinate system so that \( z = 0 \). Doing this with the potential gives the wrong answers. The reason for this appears to be that this kills the potential term that is linear in \( z \) before taking its gradient, and we need that term to have the \( \zcap \) field component that is expected for a charge distribution that is non-symmetric about the origin on the z-axis!

Finite line charge potential. Take II.

Let the point at which the potential is evaluated be

\begin{equation}\label{eqn:lineCharge:360}
\Bx = \rho \rhocap + z \zcap,
\end{equation}

and the charge point be
\begin{equation}\label{eqn:lineCharge:380}
\Bx’ = z’ \zcap.
\end{equation}

This gives

\begin{equation}\label{eqn:lineCharge:400}
\begin{aligned}
\phi(\rho, z)
&= \frac{\lambda_0}{4\pi \epsilon_0} \int_a^b \frac{dz’}{\Abs{\rho^2 + (z – z’)^2 }} \\
&= \frac{\lambda_0}{4\pi \epsilon_0} \int_{a-z}^{b-z} \frac{du}{ \Abs{\rho^2 + u^2} } \\
&= \frac{\lambda_0}{4\pi \epsilon_0}
\evalrange{\ln \lr{ u + \sqrt{ \rho^2 + u^2 }}}{b-z}{a-z} \\
&=
\frac{\lambda_0}{4\pi \epsilon_0}
\ln \frac
{ b-z + \sqrt{ \rho^2 + (b-z)^2 }}
{ a-z + \sqrt{ \rho^2 + (a-z)^2 }}.
\end{aligned}
\end{equation}

The limit of this potential \( a = -\Delta/2 \rightarrow -\infty, b = \Delta/2 \rightarrow \infty \) doesn’t exist in any strict sense. If we are cavilier about the limits, as in \ref{eqn:lineCharge:200}, this can be evaluated as

\begin{equation}\label{eqn:lineCharge:n}
\phi \approx
\frac{\lambda_0}{4\pi \epsilon_0} \lr{ -2 \ln \rho + \textrm{constant} }.
\end{equation}

however, the constant (\( \ln \Delta^2/2 \)) is infinite, so there isn’t really a good justification for using that constant as the potential reference point directly.

It seems that the “right” way to calculate the potential for the infinite distribution, is to

  • Calculate the field from the potential.
  • Take the PV limit of that field with the charge distribution extending to infinity.
  • Compute the corresponding potential from this limiting value of the field.

Doing that doesn’t blow up. That field calculation, for the finite case, should include a \( \zcap \) component. To verify, let’s take the respective derivatives

\begin{equation}\label{eqn:lineCharge:420}
\begin{aligned}
-\PD{z}{} \phi
&=
-\frac{\lambda_0}{4\pi \epsilon_0}
\lr{
\frac{ -1 + \frac{z – b}{\sqrt{ \rho^2 + (b-z)^2 }} }{
b-z + \sqrt{ \rho^2 + (b-z)^2 }
}

\frac{ -1 + \frac{z – a}{\sqrt{ \rho^2 + (a-z)^2 }} }{
a-z + \sqrt{ \rho^2 + (a-z)^2 }
}
} \\
&=
\frac{\lambda_0}{4\pi \epsilon_0}
\lr{
\frac{ 1 + \frac{b – z}{\sqrt{ \rho^2 + (b-z)^2 }} }{
b-z + \sqrt{ \rho^2 + (b-z)^2 }
}

\frac{ 1 + \frac{a – z}{\sqrt{ \rho^2 + (a-z)^2 }} }{
a-z + \sqrt{ \rho^2 + (a-z)^2 }
}
} \\
&=
\frac{\lambda_0}{4\pi \epsilon_0}
\lr{
\inv{\sqrt{ \rho^2 + (b-z)^2 }}
-\inv{\sqrt{ \rho^2 + (a-z)^2 }}
},
\end{aligned}
\end{equation}

and

\begin{equation}\label{eqn:lineCharge:440}
\begin{aligned}
-\PD{\rho}{} \phi
&=
-\frac{\lambda_0}{4\pi \epsilon_0}
\lr{
\frac{ \frac{\rho}{\sqrt{ \rho^2 + (b-z)^2 }} }{
b-z + \sqrt{ \rho^2 + (b-z)^2 }
}

\frac{ \frac{\rho}{\sqrt{ \rho^2 + (a-z)^2 }} }{
a-z + \sqrt{ \rho^2 + (a-z)^2 }
}
} \\
&=
-\frac{\lambda_0}{4\pi \epsilon_0}
\lr{
\frac{\rho \lr{
-(b-z) + \sqrt{ \rho^2 + (b-z)^2 }
}}{ \rho^2 \sqrt{ \rho^2 + (b-z)^2 } }

\frac{\rho \lr{
-(a-z) + \sqrt{ \rho^2 + (a-z)^2 }
}}{ \rho^2 \sqrt{ \rho^2 + (a-z)^2 } }
} \\
&=
\frac{\lambda_0}{4\pi \epsilon_0 \rho}
\lr{
\frac{b-z}{\sqrt{ \rho^2 + (b-z)^2 }}
-\frac{a-z}{\sqrt{ \rho^2 + (a-z)^2 }}
}
.
\end{aligned}
\end{equation}

Putting the pieces together, the electric field is
\begin{equation}\label{eqn:lineCharge:460}
\BE =
\frac{\lambda_0}{4\pi \epsilon_0}
\lr{
\frac{\rhocap}{\rho} \lr{
\frac{b-z}{\sqrt{ \rho^2 + (b-z)^2 }}
-\frac{a-z}{\sqrt{ \rho^2 + (a-z)^2 }}
}
+
\zcap \lr{
\inv{\sqrt{ \rho^2 + (b-z)^2 }}
-\inv{\sqrt{ \rho^2 + (a-z)^2 }}
}
}.
\end{equation}

For has a PV limit of \ref{eqn:lineCharge:40} at \( z = 0 \), and also for the finite case, has the \( \zcap \) field component that was obtained when the field was obtained by direct integration.

Conclusions

  • We have to evaluate the potential at all points in space, not just on the axis that we evaluate the field on (should we choose to do so).
  • In this case, we found that it was not directly meaningful to take the limit of a potential distribution. We can, however, compute the field from a potential for a finite charge distribution,
    take the limit of that field, and then calculate the corresponding potential for the infinite distribution.

Is there a more robust mechanism that can be used to directly calculate the potential for an infinite charge distribution, instead of calculating the potential from the field of such an infinite distribution?

I think that were things go wrong is that the integral of \ref{eqn:lineCharge:180} does not apply to charge distributions that are not finite on the infinite range \( z \in [-\infty, \infty] \). That solution was obtained by utilizing an all-space Green’s function, and the boundary term in that Green’s analysis was assumed to tend to zero. That isn’t the case when the charge distribution is \( \lambda_0 \delta( z ) \).

References

[1] JD Jackson. Classical Electrodynamics. John Wiley and Sons, 2nd edition, 1975.

Updated notes for ece1229 antenna theory

March 16, 2015 ece1229 No comments , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

I’ve now posted a first update of my notes for the antenna theory course that I am taking this term at UofT.

Unlike most of the other classes I have taken, I am not attempting to take comprehensive notes for this class. The class is taught on slides which go by faster than I can easily take notes for (and some of which match the textbook closely). In class I have annotated my copy of textbook with little details instead. This set of notes contains musings of details that were unclear, or in some cases, details that were provided in class, but are not in the text (and too long to pencil into my book), as well as some notes Geometric Algebra formalism for Maxwell’s equations with magnetic sources (something I’ve encountered for the first time in any real detail in this class).

The notes compilation linked above includes all of the following separate notes, some of which have been posted separately on this blog:

Notes for ece1229 antenna theory

February 4, 2015 ece1229 No comments , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

I’ve now posted a first set of notes for the antenna theory course that I am taking this term at UofT.

Unlike most of the other classes I have taken, I am not attempting to take comprehensive notes for this class. The class is taught on slides that match the textbook so closely, there is little value to me taking notes that just replicate the text. Instead, I am annotating my copy of textbook with little details instead. My usual notes collection for the class will contain musings of details that were unclear, or in some cases, details that were provided in class, but are not in the text (and too long to pencil into my book.)

The notes linked above include:

  • Reading notes for chapter 2 (Fundamental Parameters of Antennas) and chapter 3 (Radiation Integrals and Auxiliary Potential Functions) of the class text.
  • Geometric Algebra musings.  How to do formulate Maxwell’s equations when magnetic sources are also included (those modeling magnetic dipoles).
  • Some problems for chapter 2 content.

Dual-Maxwell’s (phasor) equations in Geometric Algebra

February 3, 2015 ece1229 No comments , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

These notes repeat (mostly word for word) the previous notes Maxwell’s (phasor) equations in Geometric Algebra. Electric charges and currents have been replaced with magnetic charges and currents, and the appropriate relations modified accordingly.

In [1] section 3.3, treating magnetic charges and currents, and no electric charges and currents, is a demonstration of the required (curl) form for the electric field, and potential form for the electric field. Not knowing what to name this, I’ll call the associated equations the dual-Maxwell’s equations.

I was wondering how this derivation would proceed using the Geometric Algebra (GA) formalism.

Dual-Maxwell’s equation in GA phasor form.

The dual-Maxwell’s equations, omitting electric charges and currents, are

\begin{equation}\label{eqn:phasorDualMaxwellsGA:20}
\spacegrad \cross \boldsymbol{\mathcal{E}} = -\PD{t}{\boldsymbol{\mathcal{B}}} -\BM
\end{equation}
\begin{equation}\label{eqn:phasorDualMaxwellsGA:40}
\spacegrad \cross \boldsymbol{\mathcal{H}} = \PD{t}{\boldsymbol{\mathcal{D}}}
\end{equation}
\begin{equation}\label{eqn:phasorDualMaxwellsGA:60}
\spacegrad \cdot \boldsymbol{\mathcal{D}} = 0
\end{equation}
\begin{equation}\label{eqn:phasorDualMaxwellsGA:80}
\spacegrad \cdot \boldsymbol{\mathcal{B}} = \rho_m.
\end{equation}

Assuming linear media \( \boldsymbol{\mathcal{B}} = \mu_0
\boldsymbol{\mathcal{H}} \), \( \boldsymbol{\mathcal{D}} = \epsilon_0
\boldsymbol{\mathcal{E}} \), and phasor relationships of the form \(
\boldsymbol{\mathcal{E}} = \textrm{Re} \lr{ \BE(\Br) e^{j \omega t}} \) for the fields and the currents, these reduce to

\begin{equation}\label{eqn:phasorDualMaxwellsGA:100}
\spacegrad \cross \BE = – j \omega \BB – \BM
\end{equation}
\begin{equation}\label{eqn:phasorDualMaxwellsGA:120}
\spacegrad \cross \BB = j \omega \epsilon_0 \mu_0 \BE
\end{equation}
\begin{equation}\label{eqn:phasorDualMaxwellsGA:140}
\spacegrad \cdot \BE = 0
\end{equation}
\begin{equation}\label{eqn:phasorDualMaxwellsGA:160}
\spacegrad \cdot \BB = \rho_m.
\end{equation}

These four equations can be assembled into a single equation form using the GA identities

\begin{equation}\label{eqn:phasorDualMaxwellsGA:200}
\Bf \Bg
= \Bf \cdot \Bg + \Bf \wedge \Bg
= \Bf \cdot \Bg + I \Bf \cross \Bg.
\end{equation}
\begin{equation}\label{eqn:phasorDualMaxwellsGA:220}
I = \xcap \ycap \zcap.
\end{equation}

The electric and magnetic field equations, respectively, are

\begin{equation}\label{eqn:phasorDualMaxwellsGA:260}
\spacegrad \BE = – \lr{ \BM + j k c \BB} I
\end{equation}
\begin{equation}\label{eqn:phasorDualMaxwellsGA:280}
\spacegrad c \BB = c \rho_m + j k \BE I
\end{equation}

where \( \omega = k c \), and \( 1 = c^2 \epsilon_0 \mu_0 \) have also been used to eliminate some of the mess of constants.

Summing these (first scaling \ref{eqn:phasorDualMaxwellsGA:280} by \( I \)), gives Maxwell’s equation in its GA phasor form

\begin{equation}\label{eqn:phasorDualMaxwellsGA:300}
\boxed{
\lr{ \spacegrad + j k } \lr{ \BE + I c \BB } = \lr{c \rho – \BM} I.
}
\end{equation}

Preliminaries. Dual magnetic form of Maxwell’s equations.

The arguments of the text showing that a potential representation for the electric and magnetic fields is possible easily translates into GA. To perform this translation, some duality lemmas are required

First consider the cross product of two vectors \( \Bx, \By \) and the right handed dual \( -\By I \) of \( \By \), a bivector, of one of these vectors. Noting that the Euclidean pseudoscalar \( I \) commutes with all grade multivectors in a Euclidean geometric algebra space, the cross product can be written

\begin{equation}\label{eqn:phasorDualMaxwellsGA:320}
\begin{aligned}
\lr{ \Bx \cross \By }
&=
-I \lr{ \Bx \wedge \By } \\
&=
-I \inv{2} \lr{ \Bx \By – \By \Bx } \\
&=
\inv{2} \lr{ \Bx (-\By I) – (-\By I) \Bx } \\
&=
\Bx \cdot \lr{ -\By I }.
\end{aligned}
\end{equation}

The last step makes use of the fact that the wedge product of a vector and vector is antisymmetric, whereas the dot product (vector grade selection) of a vector and bivector is antisymmetric. Details on grade selection operators and how to characterize symmetric and antisymmetric products of vectors with blades as either dot or wedge products can be found in [3], [2].

Similarly, the dual of the dot product can be written as

\begin{equation}\label{eqn:phasorDualMaxwellsGA:440}
\begin{aligned}
-I \lr{ \Bx \cdot \By }
&=
-I \inv{2} \lr{ \Bx \By + \By \Bx } \\
&=
\inv{2} \lr{ \Bx (-\By I) + (-\By I) \Bx } \\
&=
\Bx \wedge \lr{ -\By I }.
\end{aligned}
\end{equation}

These duality transformations are motivated by the observation that in the GA form of Maxwell’s equation the magnetic field shows up in its dual form, a bivector. Spelled out in terms of the dual magnetic field, those equations are

\begin{equation}\label{eqn:phasorDualMaxwellsGA:360}
\spacegrad \cdot (-\BE I)= – j \omega \BB – \BM
\end{equation}
\begin{equation}\label{eqn:phasorDualMaxwellsGA:380}
\spacegrad \wedge \BH = j \omega \epsilon_0 \BE I
\end{equation}
\begin{equation}\label{eqn:phasorDualMaxwellsGA:400}
\spacegrad \wedge (-\BE I) = 0
\end{equation}
\begin{equation}\label{eqn:phasorDualMaxwellsGA:420}
\spacegrad \cdot \BB = \rho_m.
\end{equation}

Constructing a potential representation.

The starting point of the argument in the text was the observation that the triple product \( \spacegrad \cdot \lr{ \spacegrad \cross \Bx } = 0 \) for any (sufficiently continuous) vector \( \Bx \). This triple product is a completely antisymmetric sum, and the equivalent statement in GA is \( \spacegrad \wedge \spacegrad \wedge \Bx = 0 \) for any vector \( \Bx \). This follows from \( \Ba \wedge \Ba = 0 \), true for any vector \( \Ba \), including the gradient operator \( \spacegrad \), provided those gradients are acting on a sufficiently continuous blade.

In the absence of electric charges,
\ref{eqn:phasorDualMaxwellsGA:400} shows that the divergence of the dual electric field is zero. It it therefore possible to find a potential \( \BF \) such that

\begin{equation}\label{eqn:phasorDualMaxwellsGA:460}
-\epsilon_0 \BE I = \spacegrad \wedge \BF.
\end{equation}

Substituting this \ref{eqn:phasorDualMaxwellsGA:380} gives

\begin{equation}\label{eqn:phasorDualMaxwellsGA:480}
\spacegrad \wedge \lr{ \BH + j \omega \BF } = 0.
\end{equation}

This relation is a bivector identity with zero, so will be satisfied if

\begin{equation}\label{eqn:phasorDualMaxwellsGA:500}
\BH + j \omega \BF = -\spacegrad \phi_m,
\end{equation}

for some scalar \( \phi_m \). Unlike the \( -\epsilon_0 \BE I = \spacegrad \wedge \BF \) solution to \ref{eqn:phasorDualMaxwellsGA:400}, the grade of \( \phi_m \) is fixed by the requirement that \( \BE + j \omega \BF \) is unity (a vector), so
a \( \BE + j \omega \BF = \spacegrad \wedge \psi \), for a higher grade blade \( \psi \) would not work, despite satisfying the condition \( \spacegrad \wedge \spacegrad \wedge \psi = 0 \).

Substitution of \ref{eqn:phasorDualMaxwellsGA:500} and \ref{eqn:phasorDualMaxwellsGA:460} into \ref{eqn:phasorDualMaxwellsGA:380} gives

\begin{equation}\label{eqn:phasorDualMaxwellsGA:520}
\begin{aligned}
\spacegrad \cdot \lr{ \spacegrad \wedge \BF } &= -\epsilon_0 \BM – j \omega \epsilon_0 \mu_0 \lr{ -\spacegrad \phi_m -j \omega \BF } \\
\spacegrad^2 \BF – \spacegrad \lr{\spacegrad \cdot \BF} &=
\end{aligned}
\end{equation}

Rearranging gives

\begin{equation}\label{eqn:phasorDualMaxwellsGA:540}
\spacegrad^2 \BF + k^2 \BF = -\epsilon_0 \BM + \spacegrad \lr{ \spacegrad \cdot \BF + j \frac{k}{c} \phi_m }.
\end{equation}

The fields \( \BF \) and \( \phi_m \) are assumed to be phasors, say \( \boldsymbol{\mathcal{A}} = \textrm{Re} \BF e^{j k c t} \) and \( \varphi = \textrm{Re} \phi_m e^{j k c t} \). Grouping the scalar and vector potentials into the standard four vector form
\( F^\mu = \lr{\phi_m/c, \BF} \), and expanding the Lorentz gauge condition

\begin{equation}\label{eqn:phasorDualMaxwellsGA:580}
\begin{aligned}
0
&= \partial_\mu \lr{ F^\mu e^{j k c t}} \\
&= \partial_a \lr{ F^a e^{j k c t}} + \inv{c}\PD{t}{} \lr{ \frac{\phi_m}{c}
e^{j k c t}} \\
&= \spacegrad \cdot \BF e^{j k c t} + \inv{c} j k \phi_m e^{j k c t} \\
&= \lr{ \spacegrad \cdot \BF + j k \phi_m/c } e^{j k c t},
\end{aligned}
\end{equation}

shows that in
\ref{eqn:phasorDualMaxwellsGA:540}
the quantity in braces is in fact the Lorentz gauge condition, so in the Lorentz gauge, the vector potential satisfies a non-homogeneous Helmholtz equation.

\begin{equation}\label{eqn:phasorDualMaxwellsGA:550}
\boxed{
\spacegrad^2 \BF + k^2 \BF = -\epsilon_0 \BM.
}
\end{equation}

Maxwell’s equation in Four vector form

The four vector form of Maxwell’s equation follows from \ref{eqn:phasorDualMaxwellsGA:300} after pre-multiplying by \( \gamma^0 \).

With

\begin{equation}\label{eqn:phasorDualMaxwellsGA:620}
F = F^\mu \gamma_\mu = \lr{ \phi_m/c, \BF }
\end{equation}
\begin{equation}\label{eqn:phasorDualMaxwellsGA:640}
G = \grad \wedge F = – \epsilon_0 \lr{ \BE + c \BB I } I
\end{equation}
\begin{equation}\label{eqn:phasorDualMaxwellsGA:660}
\grad = \gamma^\mu \partial_\mu = \gamma^0 \lr{ \spacegrad + j k }
\end{equation}
\begin{equation}\label{eqn:phasorDualMaxwellsGA:680}
M = M^\mu \gamma_\mu = \lr{ c \rho_m, \BM },
\end{equation}

Maxwell’s equation is

\begin{equation}\label{eqn:phasorDualMaxwellsGA:720}
\boxed{
\grad G = -\epsilon_0 M.
}
\end{equation}

Here \( \setlr{ \gamma_\mu } \) is used as the basis of the four vector Minkowski space, with \( \gamma_0^2 = -\gamma_k^2 = 1 \) (i.e. \(\gamma^\mu \cdot \gamma_\nu = {\delta^\mu}_\nu \)), and \( \gamma_a \gamma_0 = \sigma_a \) where \( \setlr{ \sigma_a} \) is the Pauli basic (i.e. standard basis vectors for \R{3}).

Let’s demonstrate this, one piece at a time. Observe that the action of the spacetime gradient on a phasor, assuming that all time dependence is in the exponential, is

\begin{equation}\label{eqn:phasorDualMaxwellsGA:740}
\begin{aligned}
\gamma^\mu \partial_\mu \lr{ \psi e^{j k c t} }
&=
\lr{ \gamma^a \partial_a + \gamma_0 \partial_{c t} } \lr{ \psi e^{j k c t} }
\\
&=
\gamma_0 \lr{ \gamma_0 \gamma^a \partial_a + j k } \lr{ \psi e^{j k c t} } \\
&=
\gamma_0 \lr{ \sigma_a \partial_a + j k } \psi e^{j k c t} \\
&=
\gamma_0 \lr{ \spacegrad + j k } \psi e^{j k c t}
\end{aligned}
\end{equation}

This allows the operator identification of \ref{eqn:phasorDualMaxwellsGA:660}. The four current portion of the equation comes from

\begin{equation}\label{eqn:phasorDualMaxwellsGA:760}
\begin{aligned}
c \rho_m – \BM
&=
\gamma_0 \lr{ \gamma_0 c \rho_m – \gamma_0 \gamma_a \gamma_0 M^a } \\
&=
\gamma_0 \lr{ \gamma_0 c \rho_m + \gamma_a M^a } \\
&=
\gamma_0 \lr{ \gamma_\mu M^\mu } \\
&= \gamma_0 M.
\end{aligned}
\end{equation}

Taking the curl of the four potential gives

\begin{equation}\label{eqn:phasorDualMaxwellsGA:780}
\begin{aligned}
\grad \wedge F
&=
\lr{ \gamma^a \partial_a + \gamma_0 j k } \wedge \lr{ \gamma_0 \phi_m/c +
\gamma_b F^b } \\
&=
– \sigma_a \partial_a \phi_m/c + \gamma^a \wedge \gamma_b \partial_a F^b – j k
\sigma_b F^b \\
&=
– \sigma_a \partial_a \phi_m/c + \sigma_a \wedge \sigma_b \partial_a F^b – j k
\sigma_b F^b \\
&= \inv{c} \lr{ – \spacegrad \phi_m – j \omega \BF + c \spacegrad \wedge \BF }
\\
&= \epsilon_0 \lr{ c \BB – \BE I } \\
&= – \epsilon_0 \lr{ \BE + c \BB I } I.
\end{aligned}
\end{equation}

Substituting all of these into Maxwell’s \ref{eqn:phasorDualMaxwellsGA:300} gives

\begin{equation}\label{eqn:phasorDualMaxwellsGA:800}
-\frac{\gamma_0}{\epsilon_0}\grad G = \gamma_0 M,
\end{equation}

which recovers \ref{eqn:phasorDualMaxwellsGA:700} as desired.

Helmholtz equation directly from the GA form.

It is easier to find \ref{eqn:phasorDualMaxwellsGA:550} from the GA form of Maxwell’s \ref{eqn:phasorDualMaxwellsGA:700} than the traditional curl and divergence equations. Note that

\begin{equation}\label{eqn:phasorDualMaxwellsGA:820}
\begin{aligned}
\grad G
&=
\grad \lr{ \grad \wedge F } \\
&=
\grad \cdot \lr{ \grad \wedge F } \\
+
\grad \wedge \lr{ \grad \wedge F } \\
&=
\grad^2 F – \grad \lr{ \grad \cdot F },
\end{aligned}
\end{equation}

however, the Lorentz gauge condition \( \partial_\mu F^\mu = \grad \cdot F = 0 \) kills the latter term above. This leaves

\begin{equation}\label{eqn:phasorDualMaxwellsGA:840}
\begin{aligned}
\grad G
&=
\grad^2 F \\
&=
\gamma_0 \lr{ \spacegrad + j k }
\gamma_0 \lr{ \spacegrad + j k } F \\
&=
\gamma_0^2 \lr{ -\spacegrad + j k }
\lr{ \spacegrad + j k } F \\
&=
-\lr{ \spacegrad^2 + k^2 } F = -\epsilon_0 M.
\end{aligned}
\end{equation}

The timelike component of this gives

\begin{equation}\label{eqn:phasorDualMaxwellsGA:860}
\lr{ \spacegrad^2 + k^2 } \phi_m = -\epsilon_0 c \rho_m,
\end{equation}

and the spacelike components give

\begin{equation}\label{eqn:phasorDualMaxwellsGA:880}
\lr{ \spacegrad^2 + k^2 } \BF = -\epsilon_0 \BM,
\end{equation}

recovering \ref{eqn:phasorDualMaxwellsGA:550} as desired.

References

[1] Constantine A Balanis. Antenna theory: analysis and design. John Wiley \& Sons, 3rd edition, 2005.

[2] C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University Press New York, Cambridge, UK, 1st edition, 2003.

[3] D. Hestenes. New Foundations for Classical Mechanics. Kluwer Academic Publishers, 1999.

Maxwell’s (phasor) equations in Geometric Algebra

February 1, 2015 ece1229 1 comment , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

In [1] section 3.2 is a demonstration of the required (curl) form for the magnetic field, and potential form for the electric field.

I was wondering how this derivation would proceed using the Geometric Algebra (GA) formalism.

Maxwell’s equation in GA phasor form.

Maxwell’s equations, omitting magnetic charges and currents, are

\begin{equation}\label{eqn:phasorMaxwellsGA:20}
\spacegrad \cross \boldsymbol{\mathcal{E}} = -\PD{t}{\boldsymbol{\mathcal{B}}}
\end{equation}
\begin{equation}\label{eqn:phasorMaxwellsGA:40}
\spacegrad \cross \boldsymbol{\mathcal{H}} = \boldsymbol{\mathcal{J}} + \PD{t}{\boldsymbol{\mathcal{D}}}
\end{equation}
\begin{equation}\label{eqn:phasorMaxwellsGA:60}
\spacegrad \cdot \boldsymbol{\mathcal{D}} = \rho
\end{equation}
\begin{equation}\label{eqn:phasorMaxwellsGA:80}
\spacegrad \cdot \boldsymbol{\mathcal{B}} = 0.
\end{equation}

Assuming linear media \( \boldsymbol{\mathcal{B}} = \mu_0 \boldsymbol{\mathcal{H}} \), \( \boldsymbol{\mathcal{D}} = \epsilon_0 \boldsymbol{\mathcal{E}} \), and phasor relationships of the form \( \boldsymbol{\mathcal{E}} = \textrm{Re} \lr{ \BE(\Br) e^{j \omega t}} \) for the fields and the currents, these reduce to

\begin{equation}\label{eqn:phasorMaxwellsGA:100}
\spacegrad \cross \BE = – j \omega \BB
\end{equation}
\begin{equation}\label{eqn:phasorMaxwellsGA:120}
\spacegrad \cross \BB = \mu_0 \BJ + j \omega \epsilon_0 \mu_0 \BE
\end{equation}
\begin{equation}\label{eqn:phasorMaxwellsGA:140}
\spacegrad \cdot \BE = \rho/\epsilon_0
\end{equation}
\begin{equation}\label{eqn:phasorMaxwellsGA:160}
\spacegrad \cdot \BB = 0.
\end{equation}

These four equations can be assembled into a single equation form using the GA identities

\begin{equation}\label{eqn:phasorMaxwellsGA:200}
\Bf \Bg
= \Bf \cdot \Bg + \Bf \wedge \Bg
= \Bf \cdot \Bg + I \Bf \cross \Bg.
\end{equation}
\begin{equation}\label{eqn:phasorMaxwellsGA:220}
I = \xcap \ycap \zcap.
\end{equation}

The electric and magnetic field equations, respectively, are

\begin{equation}\label{eqn:phasorMaxwellsGA:260}
\spacegrad \BE = \rho/\epsilon_0 -j k c \BB I
\end{equation}
\begin{equation}\label{eqn:phasorMaxwellsGA:280}
\spacegrad c \BB = \frac{I}{\epsilon_0 c} \BJ + j k \BE I
\end{equation}

where \( \omega = k c \), and \( 1 = c^2 \epsilon_0 \mu_0 \) have also been used to eliminate some of the mess of constants.

Summing these (first scaling \ref{eqn:phasorMaxwellsGA:280} by \( I \)), gives Maxwell’s equation in its GA phasor form

\begin{equation}\label{eqn:phasorMaxwellsGA:300}
\boxed{
\lr{ \spacegrad + j k } \lr{ \BE + I c \BB } = \inv{\epsilon_0 c}\lr{c \rho – \BJ}.
}
\end{equation}

Preliminaries. Dual magnetic form of Maxwell’s equations.

The arguments of the text showing that a potential representation for the electric and magnetic fields is possible easily translates into GA. To perform this translation, some duality lemmas are required

First consider the cross product of two vectors \( \Bx, \By \) and the right handed dual \( -\By I \) of \( \By \), a bivector, of one of these vectors. Noting that the Euclidean pseudoscalar \( I \) commutes with all grade multivectors in a Euclidean geometric algebra space, the cross product can be written

\begin{equation}\label{eqn:phasorMaxwellsGA:320}
\begin{aligned}
\lr{ \Bx \cross \By }
&=
-I \lr{ \Bx \wedge \By } \\
&=
-I \inv{2} \lr{ \Bx \By – \By \Bx } \\
&=
\inv{2} \lr{ \Bx (-\By I) – (-\By I) \Bx } \\
&=
\Bx \cdot \lr{ -\By I }.
\end{aligned}
\end{equation}

The last step makes use of the fact that the wedge product of a vector and vector is antisymmetric, whereas the dot product (vector grade selection) of a vector and bivector is antisymmetric. Details on grade selection operators and how to characterize symmetric and antisymmetric products of vectors with blades as either dot or wedge products can be found in [3], [2].

Similarly, the dual of the dot product can be written as

\begin{equation}\label{eqn:phasorMaxwellsGA:440}
\begin{aligned}
-I \lr{ \Bx \cdot \By }
&=
-I \inv{2} \lr{ \Bx \By + \By \Bx } \\
&=
\inv{2} \lr{ \Bx (-\By I) + (-\By I) \Bx } \\
&=
\Bx \wedge \lr{ -\By I }.
\end{aligned}
\end{equation}

These duality transformations are motivated by the observation that in the GA form of Maxwell’s equation the magnetic field shows up in its dual form, a bivector. Spelled out in terms of the dual magnetic field, those equations are

\begin{equation}\label{eqn:phasorMaxwellsGA:360}
\spacegrad \wedge \BE = – j \omega \BB I
\end{equation}
\begin{equation}\label{eqn:phasorMaxwellsGA:380}
\spacegrad \cdot \lr{ -\BB I } = \mu_0 \BJ + j \omega \epsilon_0 \mu_0 \BE
\end{equation}
\begin{equation}\label{eqn:phasorMaxwellsGA:400}
\spacegrad \cdot \BE = \rho/\epsilon_0
\end{equation}
\begin{equation}\label{eqn:phasorMaxwellsGA:420}
\spacegrad \wedge (-\BB I) = 0.
\end{equation}

Constructing a potential representation.

The starting point of the argument in the text was the observation that the triple product \( \spacegrad \cdot \lr{ \spacegrad \cross \Bx } = 0 \) for any (sufficiently continuous) vector \( \Bx \). This triple product is a completely antisymmetric sum, and the equivalent statement in GA is \( \spacegrad \wedge \spacegrad \wedge \Bx = 0 \) for any vector \( \Bx \). This follows from \( \Ba \wedge \Ba = 0 \), true for any vector \( \Ba \), including the gradient operator \( \spacegrad \), provided those gradients are acting on a sufficiently continuous blade.

In the absence of magnetic charges, \ref{eqn:phasorMaxwellsGA:420} shows that the divergence of the dual magnetic field is zero. It it therefore possible to find a potential \( \BA \) such that

\begin{equation}\label{eqn:phasorMaxwellsGA:460}
\BB I = \spacegrad \wedge \BA.
\end{equation}

Substituting this into Maxwell-Faraday \ref{eqn:phasorMaxwellsGA:360} gives

\begin{equation}\label{eqn:phasorMaxwellsGA:480}
\spacegrad \wedge \lr{ \BE + j \omega \BA } = 0.
\end{equation}

This relation is a bivector identity with zero, so will be satisfied if

\begin{equation}\label{eqn:phasorMaxwellsGA:500}
\BE + j \omega \BA = -\spacegrad \phi,
\end{equation}

for some scalar \( \phi \). Unlike the \( \BB I = \spacegrad \wedge \BA \) solution to \ref{eqn:phasorMaxwellsGA:420}, the grade of \( \phi \) is fixed by the requirement that \( \BE + j \omega \BA \) is unity (a vector), so a \( \BE + j \omega \BA = \spacegrad \wedge \psi \), for a higher grade blade \( \psi \) would not work, despite satisifying the condition \( \spacegrad \wedge \spacegrad \wedge \psi = 0 \).

Substitution of \ref{eqn:phasorMaxwellsGA:500} and \ref{eqn:phasorMaxwellsGA:460} into Ampere’s law \ref{eqn:phasorMaxwellsGA:380} gives

\begin{equation}\label{eqn:phasorMaxwellsGA:520}
\begin{aligned}
-\spacegrad \cdot \lr{ \spacegrad \wedge \BA } &= \mu_0 \BJ + j \omega \epsilon_0 \mu_0 \lr{ -\spacegrad \phi -j \omega \BA } \\
-\spacegrad^2 \BA – \spacegrad \lr{\spacegrad \cdot \BA} &=
\end{aligned}
\end{equation}

Rearranging gives

\begin{equation}\label{eqn:phasorMaxwellsGA:540}
\spacegrad^2 \BA + k^2 \BA = -\mu_0 \BJ – \spacegrad \lr{ \spacegrad \cdot \BA + j \frac{k}{c} \phi }.
\end{equation}

The fields \( \BA \) and \( \phi \) are assumed to be phasors, say \( \boldsymbol{\mathcal{A}} = \textrm{Re} \BA e^{j k c t} \) and \( \varphi = \textrm{Re} \phi e^{j k c t} \). Grouping the scalar and vector potentials into the standard four vector form \( A^\mu = \lr{\phi/c, \BA} \), and expanding the Lorentz gauge condition

\begin{equation}\label{eqn:phasorMaxwellsGA:580}
\begin{aligned}
0
&= \partial_\mu \lr{ A^\mu e^{j k c t}} \\
&= \partial_a \lr{ A^a e^{j k c t}} + \inv{c}\PD{t}{} \lr{ \frac{\phi}{c} e^{j k c t}} \\
&= \spacegrad \cdot \BA e^{j k c t} + \inv{c} j k \phi e^{j k c t} \\
&= \lr{ \spacegrad \cdot \BA + j k \phi/c } e^{j k c t},
\end{aligned}
\end{equation}

shows that in \ref{eqn:phasorMaxwellsGA:540} the quantity in braces is in fact the Lorentz gauge condition, so in the Lorentz gauge, the vector potential satisfies a non-homogeneous Helmholtz equation.

\begin{equation}\label{eqn:phasorMaxwellsGA:550}
\boxed{
\spacegrad^2 \BA + k^2 \BA = -\mu_0 \BJ.
}
\end{equation}

Maxwell’s equation in Four vector form

The four vector form of Maxwell’s equation follows from \ref{eqn:phasorMaxwellsGA:300} after pre-multiplying by \( \gamma^0 \).

With

\begin{equation}\label{eqn:phasorMaxwellsGA:620}
A = A^\mu \gamma_\mu = \lr{ \phi/c, \BA }
\end{equation}
\begin{equation}\label{eqn:phasorMaxwellsGA:640}
F = \grad \wedge A = \inv{c} \lr{ \BE + c \BB I }
\end{equation}
\begin{equation}\label{eqn:phasorMaxwellsGA:660}
\grad = \gamma^\mu \partial_\mu = \gamma^0 \lr{ \spacegrad + j k }
\end{equation}
\begin{equation}\label{eqn:phasorMaxwellsGA:680}
J = J^\mu \gamma_\mu = \lr{ c \rho, \BJ },
\end{equation}

Maxwell’s equation is

\begin{equation}\label{eqn:phasorMaxwellsGA:700}
\boxed{
\grad F = \mu_0 J.
}
\end{equation}

Here \( \setlr{ \gamma_\mu } \) is used as the basis of the four vector Minkowski space, with \( \gamma_0^2 = -\gamma_k^2 = 1 \) (i.e. \(\gamma^\mu \cdot \gamma_\nu = {\delta^\mu}_\nu \)), and \( \gamma_a \gamma_0 = \sigma_a \) where \( \setlr{ \sigma_a} \) is the Pauli basic (i.e. standard basis vectors for \R{3}).

Let’s demonstrate this, one piece at a time. Observe that the action of the spacetime gradient on a phasor, assuming that all time dependence is in the exponential, is

\begin{equation}\label{eqn:phasorMaxwellsGA:740}
\begin{aligned}
\gamma^\mu \partial_\mu \lr{ \psi e^{j k c t} }
&=
\lr{ \gamma^a \partial_a + \gamma_0 \partial_{c t} } \lr{ \psi e^{j k c t} }
\\
&=
\gamma_0 \lr{ \gamma_0 \gamma^a \partial_a + j k } \lr{ \psi e^{j k c t} } \\
&=
\gamma_0 \lr{ \sigma_a \partial_a + j k } \psi e^{j k c t} \\
&=
\gamma_0 \lr{ \spacegrad + j k } \psi e^{j k c t}
\end{aligned}
\end{equation}

This allows the operator identification of \ref{eqn:phasorMaxwellsGA:660}. The four current portion of the equation comes from

\begin{equation}\label{eqn:phasorMaxwellsGA:760}
\begin{aligned}
c \rho – \BJ
&=
\gamma_0 \lr{ \gamma_0 c \rho – \gamma_0 \gamma_a \gamma_0 J^a } \\
&=
\gamma_0 \lr{ \gamma_0 c \rho + \gamma_a J^a } \\
&=
\gamma_0 \lr{ \gamma_\mu J^\mu } \\
&= \gamma_0 J.
\end{aligned}
\end{equation}

Taking the curl of the four potential gives

\begin{equation}\label{eqn:phasorMaxwellsGA:780}
\begin{aligned}
\grad \wedge A
&=
\lr{ \gamma^a \partial_a + \gamma_0 j k } \wedge \lr{ \gamma_0 \phi/c + \gamma_b A^b } \\
&=
– \sigma_a \partial_a \phi/c + \gamma^a \wedge \gamma_b \partial_a A^b – j k
\sigma_b A^b \\
&=
– \sigma_a \partial_a \phi/c + \sigma_a \wedge \sigma_b \partial_a A^b – j k
\sigma_b A^b \\
&= \inv{c} \lr{ – \spacegrad \phi – j \omega \BA + c \spacegrad \wedge \BA }
\\
&= \inv{c} \lr{ \BE + c \BB I }.
\end{aligned}
\end{equation}

Substituting all of these into Maxwell’s \ref{eqn:phasorMaxwellsGA:300} gives

\begin{equation}\label{eqn:phasorMaxwellsGA:800}
\gamma_0 \grad c F = \inv{ \epsilon_0 c } \gamma_0 J,
\end{equation}

which recovers \ref{eqn:phasorMaxwellsGA:700} as desired.

Helmholtz equation directly from the GA form.

It is easier to find \ref{eqn:phasorMaxwellsGA:550} from the GA form of Maxwell’s \ref{eqn:phasorMaxwellsGA:700} than the traditional curl and divergence equations. Note that

\begin{equation}\label{eqn:phasorMaxwellsGA:820}
\grad F
=
\grad \lr{ \grad \wedge A }
=
\grad \cdot \lr{ \grad \wedge A }
+
\grad \wedge \lr{ \grad \wedge A }
=
\grad^2 A – \grad \lr{ \grad \cdot A },
\end{equation}

however, the Lorentz gauge condition \( \partial_\mu A^\mu = \grad \cdot A = 0 \) kills the latter term above. This leaves

\begin{equation}\label{eqn:phasorMaxwellsGA:840}
\begin{aligned}
\grad F
&=
\grad^2 A \\
&=
\gamma_0 \lr{ \spacegrad + j k }
\gamma_0 \lr{ \spacegrad + j k } A \\
&=
\gamma_0^2 \lr{ -\spacegrad + j k }
\lr{ \spacegrad + j k } A \\
&=
-\lr{ \spacegrad^2 + k^2 } A = \mu_0 J.
\end{aligned}
\end{equation}

The timelike component of this gives

\begin{equation}\label{eqn:phasorMaxwellsGA:860}
\lr{ \spacegrad^2 + k^2 } \phi = -\rho/\epsilon_0,
\end{equation}

and the spacelike components give

\begin{equation}\label{eqn:phasorMaxwellsGA:880}
\lr{ \spacegrad^2 + k^2 } \BA = -\mu_0 \BJ,
\end{equation}

recovering \ref{eqn:phasorMaxwellsGA:550} as desired.

References

[1] Constantine A Balanis. Antenna theory: analysis and design. John Wiley & Sons, 3rd edition, 2005.

[2] C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University Press New York, Cambridge, UK, 1st edition, 2003.

[3] D. Hestenes. New Foundations for Classical Mechanics. Kluwer Academic Publishers, 1999.