## ECE1505H Convex Optimization. Lecture 6: First and second order conditions. Taught by Prof.\ Stark Draper

### Disclaimer

Peeter’s lecture notes from class. These may be incoherent and rough.

These are notes for the UofT course ECE1505H, Convex Optimization, taught by Prof. Stark Draper, from [1].

### Today

• First and second order conditions for convexity of differentiable functions.
• Consequences of convexity: local and global optimality.
• Properties.

### Quasi-convex

$$F_1$$ and $$F_2$$ convex implies $$\max( F_1, F_2)$$ convex.

fig. 1. Min and Max

Note that $$\min(F_1, F_2)$$ is NOT convex.

If $$F : \mathbb{R}^n \rightarrow \mathbb{R}$$ is convex, then $$F( \Bx_0 + t \Bv )$$ is convex in $$t\,\forall t \in \mathbb{R}, \Bx_0 \in \mathbb{R}^n, \Bv \in \mathbb{R}^n$$, provided $$\Bx_0 + t \Bv \in \textrm{dom} F$$.

Idea: Restrict to a line (line segment) in $$\textrm{dom} F$$. Take a cross section or slice through $$F$$ alone the line. If the result is a 1D convex function for all slices, then $$F$$ is convex.

This is nice since it allows for checking for convexity, and is also nice numerically. Attempting to test a given data set for non-convexity with some random lines can help disprove convexity. However, to show that $$F$$ is convex it is required to test all possible slices (which isn’t possible numerically, but is in some circumstances possible analytically).

### Differentiable (convex) functions

Definition: First order condition.

If

\begin{equation*}
F : \mathbb{R}^n \rightarrow \mathbb{R}
\end{equation*}

is differentiable, then $$F$$ is convex iff $$\textrm{dom} F$$ is a convex set and $$\forall \Bx, \Bx_0 \in \textrm{dom} F$$

\begin{equation*}
F(\Bx) \ge F(\Bx_0) + \lr{\spacegrad F(\Bx_0)}^\T (\Bx – \Bx_0).
\end{equation*}

This is the first order Taylor expansion. If $$n = 1$$, this is $$F(x) \ge F(x_0) + F'(x_0) ( x – x_0)$$.

The first order condition says a convex function \underline{always} lies above its first order approximation, as sketched in fig. 3.

fig. 2. First order approximation lies below convex function

When differentiable, the supporting plane is the tangent plane.

Definition: Second order condition

If $$F : \mathbb{R}^n \rightarrow \mathbb{R}$$ is twice differentiable, then $$F$$ is convex iff $$\textrm{dom} F$$ is a convex set and $$\spacegrad^2 F(\Bx) \ge 0 \,\forall \Bx \in \textrm{dom} F$$.

The Hessian is always symmetric, but is not necessarily positive. Recall that the Hessian is the matrix of the second order partials $$(\spacegrad F)_{ij} = \partial^2 F/(\partial x_i \partial x_j)$$.

The scalar case is $$F”(x) \ge 0 \, \forall x \in \textrm{dom} F$$.

An implication is that if $$F$$ is convex, then $$F(x) \ge F(x_0) + F'(x_0) (x – x_0) \,\forall x, x_0 \in \textrm{dom} F$$

Since $$F$$ is convex, $$\textrm{dom} F$$ is convex.

Consider any 2 points $$x, y \in \textrm{dom} F$$, and $$\theta \in [0,1]$$. Define

\label{eqn:convexOptimizationLecture6:60}
z = (1-\theta) x + \theta y \in \textrm{dom} F,

then since $$\textrm{dom} F$$ is convex

\label{eqn:convexOptimizationLecture6:80}
F(z) =
F( (1-\theta) x + \theta y )
\le
(1-\theta) F(x) + \theta F(y )

Reordering

\label{eqn:convexOptimizationLecture6:220}
\theta F(x) \ge
\theta F(x) + F(z) – F(x),

or
\label{eqn:convexOptimizationLecture6:100}
F(y) \ge
F(x) + \frac{F(x + \theta(y-x)) – F(x)}{\theta},

which is, in the limit,

\label{eqn:convexOptimizationLecture6:120}
F(y) \ge
F(x) + F'(x) (y – x),

completing one direction of the proof.

To prove the other direction, showing that

\label{eqn:convexOptimizationLecture6:140}
F(x) \ge F(x_0) + F'(x_0) (x – x_0),

implies that $$F$$ is convex. Take any $$x, y \in \textrm{dom} F$$ and any $$\theta \in [0,1]$$. Define

\label{eqn:convexOptimizationLecture6:160}
z = \theta x + (1 -\theta) y,

which is in $$\textrm{dom} F$$ by assumption. We want to show that

\label{eqn:convexOptimizationLecture6:180}
F(z) \le \theta F(x) + (1-\theta) F(y).

By assumption

1. $$F(x) \ge F(z) + F'(z) (x – z)$$
2. $$F(y) \ge F(z) + F'(z) (y – z)$$

Compute

\label{eqn:convexOptimizationLecture6:200}
\begin{aligned}
\theta F(x) + (1-\theta) F(y)
&\ge
\theta \lr{ F(z) + F'(z) (x – z) }
+ (1-\theta) \lr{ F(z) + F'(z) (y – z) } \\
&=
F(z) + F'(z) \lr{ \theta( x – z) + (1-\theta) (y-z) } \\
&=
F(z) + F'(z) \lr{ \theta x + (1-\theta) y – \theta z – (1 -\theta) z } \\
&=
F(z) + F'(z) \lr{ \theta x + (1-\theta) y – z} \\
&=
F(z) + F'(z) \lr{ z – z} \\
&= F(z).
\end{aligned}

### Proof of the 2nd order case for $$n = 1$$

Want to prove that if

\label{eqn:convexOptimizationLecture6:240}
F : \mathbb{R} \rightarrow \mathbb{R}

is a convex function, then $$F”(x) \ge 0 \,\forall x \in \textrm{dom} F$$.

By the first order conditions $$\forall x \ne y \in \textrm{dom} F$$

\label{eqn:convexOptimizationLecture6:260}
\begin{aligned}
F(y) &\ge F(x) + F'(x) (y – x)
F(x) &\ge F(y) + F'(y) (x – y)
\end{aligned}

Can combine and get

\label{eqn:convexOptimizationLecture6:280}
F'(x) (y-x) \le F(y) – F(x) \le F'(y)(y-x)

Subtract the two derivative terms for

\label{eqn:convexOptimizationLecture6:340}
\frac{(F'(y) – F'(x))(y – x)}{(y – x)^2} \ge 0,

or
\label{eqn:convexOptimizationLecture6:300}
\frac{F'(y) – F'(x)}{y – x} \ge 0.

In the limit as $$y \rightarrow x$$, this is
\label{eqn:convexOptimizationLecture6:320}
\boxed{
F”(x) \ge 0 \,\forall x \in \textrm{dom} F.
}

Now prove the reverse condition:

If $$F”(x) \ge 0 \,\forall x \in \textrm{dom} F \subseteq \mathbb{R}$$, implies that $$F : \mathbb{R} \rightarrow \mathbb{R}$$ is convex.

Note that if $$F”(x) \ge 0$$, then $$F'(x)$$ is non-decreasing in $$x$$.

i.e. If $$x < y$$, where $$x, y \in \textrm{dom} F$$, then

\label{eqn:convexOptimizationLecture6:360}
F'(x) \le F'(y).

Consider any $$x,y \in \textrm{dom} F$$ such that $$x < y$$, where

\label{eqn:convexOptimizationLecture6:380}
F(y) – F(x) = \int_x^y F'(t) dt \ge F'(x) \int_x^y 1 dt = F'(x) (y-x).

This tells us that

\label{eqn:convexOptimizationLecture6:400}
F(y) \ge F(x) + F'(x)(y – x),

which is the first order condition. Similarly consider any $$x,y \in \textrm{dom} F$$ such that $$x < y$$, where

\label{eqn:convexOptimizationLecture6:420}
F(y) – F(x) = \int_x^y F'(t) dt \le F'(y) \int_x^y 1 dt = F'(y) (y-x).

This tells us that

\label{eqn:convexOptimizationLecture6:440}
F(x) \ge F(y) + F'(y)(x – y).

### Vector proof:

$$F$$ is convex iff $$F(\Bx + t \Bv)$$ is convex $$\forall \Bx,\Bv \in \mathbb{R}^n, t \in \mathbb{R}$$, keeping $$\Bx + t \Bv \in \textrm{dom} F$$.

Let
\label{eqn:convexOptimizationLecture6:460}
h(t ; \Bx, \Bv) = F(\Bx + t \Bv)

then $$h(t)$$ satisfies scalar first and second order conditions for all $$\Bx, \Bv$$.

\label{eqn:convexOptimizationLecture6:480}
h(t) = F(\Bx + t \Bv) = F(g(t)),

where $$g(t) = \Bx + t \Bv$$, where

\label{eqn:convexOptimizationLecture6:500}
\begin{aligned}
F &: \mathbb{R}^n \rightarrow \mathbb{R} \\
g &: \mathbb{R} \rightarrow \mathbb{R}^n.
\end{aligned}

This is expressing $$h(t)$$ as a composition of two functions. By the first order condition for scalar functions we know that

\label{eqn:convexOptimizationLecture6:520}
h(t) \ge h(0) + h'(0) t.

Note that

\label{eqn:convexOptimizationLecture6:540}
h(0) = \evalbar{F(\Bx + t \Bv)}{t = 0} = F(\Bx).

Let’s figure out what $$h'(0)$$ is. Recall hat for any $$\tilde{F} : \mathbb{R}^n \rightarrow \mathbb{R}^m$$

\label{eqn:convexOptimizationLecture6:560}
D \tilde{F} \in \mathbb{R}^{m \times n},

and
\label{eqn:convexOptimizationLecture6:580}
{D \tilde{F}(\Bx)}_{ij} = \PD{x_j}{\tilde{F_i}(\Bx)}

This is one function per row, for $$i \in [1,m], j \in [1,n]$$. This gives

\label{eqn:convexOptimizationLecture6:600}
\begin{aligned}
\frac{d}{dt} F(\Bx + \Bv t)
&=
\frac{d}{dt} F( g(t) ) \\
&=
\frac{d}{dt} h(t) \\
&= D h(t) \\
&= D F(g(t)) \cdot D g(t)
\end{aligned}

The first matrix is in $$\mathbb{R}^{1\times n}$$ whereas the second is in $$\mathbb{R}^{n\times 1}$$, since $$F : \mathbb{R}^n \rightarrow \mathbb{R}$$ and $$g : \mathbb{R} \rightarrow \mathbb{R}^n$$. This gives

\label{eqn:convexOptimizationLecture6:620}
\frac{d}{dt} F(\Bx + \Bv t)
= \evalbar{D F(\tilde{\Bx})}{\tilde{\Bx} = g(t)} \cdot D g(t).

That first matrix is

\label{eqn:convexOptimizationLecture6:640}
\begin{aligned}
\evalbar{D F(\tilde{\Bx})}{\tilde{\Bx} = g(t)}
&=
\evalbar{
\lr{\begin{bmatrix}
\PD{\tilde{x}_1}{ F(\tilde{\Bx})} &
\PD{\tilde{x}_2}{ F(\tilde{\Bx})} & \cdots
\PD{\tilde{x}_n}{ F(\tilde{\Bx})}
\end{bmatrix}
}}{ \tilde{\Bx} = g(t) = \Bx + t \Bv } \\
&=
\evalbar{
}{
\tilde{\Bx} = g(t)
} \\
=
\end{aligned}

The second Jacobian is

\label{eqn:convexOptimizationLecture6:660}
D g(t)
=
D
\begin{bmatrix}
g_1(t) \\
g_2(t) \\
\vdots \\
g_n(t) \\
\end{bmatrix}
=
D
\begin{bmatrix}
x_1 + t v_1 \\
x_2 + t v_2 \\
\vdots \\
x_n + t v_n \\
\end{bmatrix}
=
\begin{bmatrix}
v_1 \\
v_1 \\
\vdots \\
v_n \\
\end{bmatrix}
=
\Bv.

so

\label{eqn:convexOptimizationLecture6:680}
h'(t) = D h(t) = \lr{ \spacegrad F(g(t))}^\T \Bv,

and
\label{eqn:convexOptimizationLecture6:700}
h'(0) = \lr{ \spacegrad F(g(0))}^\T \Bv
=

Finally

\label{eqn:convexOptimizationLecture6:720}
\begin{aligned}
F(\Bx + t \Bv)
&\ge h(0) + h'(0) t \\
&= F(\Bx) + \lr{ \spacegrad F(\Bx) }^\T (t \Bv) \\
&= F(\Bx) + \innerprod{ \spacegrad F(\Bx) }{ t \Bv}.
\end{aligned}

Which is true for all $$\Bx, \Bx + t \Bv \in \textrm{dom} F$$. Note that the quantity $$t \Bv$$ is a shift.

### Epigraph

Recall that if $$(\Bx, t) \in \textrm{epi} F$$ then $$t \ge F(\Bx)$$.

\label{eqn:convexOptimizationLecture6:740}
t \ge F(\Bx) \ge F(\Bx_0) + \lr{\spacegrad F(\Bx_0) }^\T (\Bx – \Bx_0),

or

\label{eqn:convexOptimizationLecture6:760}
0 \ge
-(t – F(\Bx_0)) + \lr{\spacegrad F(\Bx_0) }^\T (\Bx – \Bx_0),

In block matrix form

\label{eqn:convexOptimizationLecture6:780}
0 \ge
\begin{bmatrix}
\lr{ \spacegrad F(\Bx_0) }^\T & -1
\end{bmatrix}
\begin{bmatrix}
\Bx – \Bx_0 \\
t – F(\Bx_0)
\end{bmatrix}

With $$\Bw = \begin{bmatrix} \lr{ \spacegrad F(\Bx_0) }^\T & -1 \end{bmatrix}$$, the geometry of the epigraph relation to the half plane is sketched in fig. 3.

fig. 3. Half planes and epigraph.

# References

[1] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

## Disclaimer

Peeter’s lecture notes from class. These may be incoherent and rough.

These are notes for the UofT course ECE1505H, Convex Optimization, taught by Prof. Stark Draper, from [1].

## Last time

• examples of sets: planes, half spaces, balls, ellipses, cone of positive semi-definite matrices
• generalized inequalities
• examples of convexity preserving operations

## Today

• more examples of convexity preserving operations
• separating and supporting hyperplanes
• basic definitions of convex functions
• epigraphs, quasi-convexity, sublevel sets
• first and second order conditions for convexity of differentiable functions.

## Operations that preserve convexity

If $$S_\alpha$$ is convex $$\forall \alpha \in A$$, then

\label{eqn:convexOptimizationLecture5:40}
\cup_{\alpha \in A} S_\alpha,

is convex.

Example:

\label{eqn:convexOptimizationLecture5:60}
F(\Bx) = A \Bx + \Bb

\label{eqn:convexOptimizationLecture5:80}
\begin{aligned}
\Bx &\in \mathbb{R}^n \\
A &\in \mathbb{R}^{m \times n} \\
F &: \mathbb{R}^{n} \rightarrow \mathbb{R}^m \\
\Bb &\in \mathbb{R}^m
\end{aligned}

1. If $$S \in \mathbb{R}^n$$ is convex, then\label{eqn:convexOptimizationLecture5:100}
F(S) = \setlr{ F(\Bx) | \Bx \in S }
is convex if $$F$$ is affine.
2. If $$S \in \mathbb{R}^m$$ is convex, then\label{eqn:convexOptimizationLecture5:120}
F^{-1}(S) = \setlr{ \Bx | F(\Bx) \in S }

is convex.

Example:

\label{eqn:convexOptimizationLecture5:140}
\setlr{ \By | \By = A \Bx + \Bb, \Norm{\Bx} \le 1}

is convex. Here $$A \Bx + \Bb$$ is an affine function ($$F(\Bx)$$. This is the image of a (convex) unit ball, through an affine map.

Earlier saw when defining ellipses

\label{eqn:convexOptimizationLecture5:160}
\By = P^{1/2} \Bx + \Bx_c

Example :

\label{eqn:convexOptimizationLecture5:180}
\setlr{ \Bx | \Norm{ A \Bx + \Bb } \le 1 },

is convex. This can be seen by writing

\label{eqn:convexOptimizationLecture5:200}
\begin{aligned}
\setlr{ \Bx | \Norm{ A \Bx + \Bb } \le 1 }
&=
\setlr{ \Bx | \Norm{ F(\Bx) } \le 1 } \\
&=
\setlr{ \Bx | F(\Bx) \in \mathcal{B} },
\end{aligned}

where $$\mathcal{B} = \setlr{ \By | \Norm{\By} \le 1 }$$. This is the pre-image (under $$F()$$) of a unit norm ball.

Example:

\label{eqn:convexOptimizationLecture5:220}
\setlr{ \Bx \in \mathbb{R}^n | x_1 A_1 + x_2 A_2 + \cdots x_n A_n \le \mathcal{B} }

where $$A_i \in S^m$$ and $$\mathcal{B} \in S^m$$, and the inequality is a matrix inequality. This is a convex set. The constraint is a “linear matrix inequality” (LMI).

This has to do with an affine map:

\label{eqn:convexOptimizationLecture5:240}
F(\Bx) = B – 1 x_1 A_1 – x_2 A_2 – \cdots x_n A_n \ge 0

(positive semi-definite inequality). This is a mapping

\label{eqn:convexOptimizationLecture5:480}
F : \mathbb{R}^n \rightarrow S^m,

since all $$A_i$$ and $$B$$ are in $$S^m$$.

This $$F(\Bx) = B – A(\Bx)$$ is a constant and a factor linear in x, so is affine. Can be written

\label{eqn:convexOptimizationLecture5:260}
\setlr{ \Bx | B – A(\Bx) \ge 0 }
=
\setlr{ \Bx | B – A(\Bx) \in S^m_{+} }

This is a pre-image of a cone of PSD matrices, which is convex. Therefore, this is a convex set.

## Separating hyperplanes

Theorem: Separating hyperplanes

If $$S, T \subseteq \mathbb{R}^n$$ are convex and disjoint
i.e. $$S \cup T = 0$$, then
there exists on $$\Ba \in \mathbb{R}^n$$ $$\Ba \ne 0$$ and a $$\Bb \in \mathbb{R}^n$$ such that

\begin{equation*}
\Ba^\T \Bx \ge \Bb \, \forall \Bx \in S
\end{equation*}

and
\begin{equation*}
\Ba^\T \Bx < \Bb \,\forall \Bx \in T.
\end{equation*}

An example of a hyperplanes that separates two sets and two sets that are not separable is sketched in fig 1.1

Proof in the book.

Theorem: Supporting hyperplane
If $$S$$ is convex then $$\forall x_0 \in \partial S = \textrm{cl}(S) \ \textrm{int}(S)$$, where
$$\partial S$$ is the boundary of $$S$$, then $$\exists$$ an $$\Ba \ne 0 \in \mathbb{R}^n$$ such that $$\Ba^\T \Bx \le \Ba^\T x_0 \, \forall \Bx \in S$$.

Here $$\$$ denotes “without”.

An example is sketched in fig. 3, for which

fig. 3. Supporting hyperplane.

• The vector $$\Ba$$ perpendicular to tangent plane.
• inner product $$\Ba^\T (\Bx – \Bx_0) \le 0$$.

A set with a supporting hyperplane is sketched in fig 4a whereas fig 4b shows that there is not necessarily a unique supporting hyperplane at any given point, even if $$S$$ is convex.

fig 4a. Set with supporting hyperplane.

fig 4b. No unique supporting hyperplane possible.

## basic definitions of convex functions

Theorem: Convex functions
If $$F : \mathbb{R}^n \rightarrow \mathbb{R}$$ is defined on a convex domain (i.e. $$\textrm{dom} F \subseteq \mathbb{R}^n$$ is a convex set), then $$F$$ is convex if $$\forall \Bx, \By \in \textrm{dom} F$$, $$\forall \theta \in [0,1] \in \mathbb{R}$$

\label{eqn:convexOptimizationLecture5:340}
F( \theta \Bx + (1-\theta) \By \le \theta F(\Bx) + (1-\theta) F(\By)

An example is sketched in fig. 5.

fig. 5. Example of convex function.

Remarks

• Require $$\textrm{dom} F$$ to be a convex set. This is required so that the function at the point $$\theta u + (1-\theta) v$$ can be evaluated. i.e. so that $$F(\theta u + (1-\theta) v)$$ is well defined. Example: $$\textrm{dom} F = (-\infty, 0] \cup [1, \infty)$$ is not okay, because a linear combination in $$(0,1)$$ would be undesirable.
• Parameter $$\theta$$ is “how much up” the line segment connecting $$(u, F(u)$$ and $$(v, F(v)$$. This line segment never below the bottom of the bowl.
The function is \underlineAndIndex{concave}, if $$-F$$ is convex.
i.e. If the convex function is flipped upside down. That is\label{eqn:convexOptimizationLecture5:360}
F(\theta \Bx + (1-\theta) \By ) \ge \theta F(\Bx) + (1-\theta) F(\By) \,\forall \Bx,\By \in \textrm{dom} F, \theta \in [0,1].
• a “strictly” convex function means $$\forall \theta \in [0,1]$$\label{eqn:convexOptimizationLecture5:380}
F(\theta \Bx + (1-\theta) \By ) < \theta F(\Bx) + (1-theta) F(\By).
• Strictly concave function $$F$$ means $$-F$$ is strictly convex.
• Examples:\imageFigure{../figures/ece1505-convex-optimization/l5Fig6a}{}{fig:l5:l5Fig6a}{0.2}

fig 6a. Not convex or concave.

fig 6b. Not strictly convex

Definition: Epigraph of a function

The epigraph $$\textrm{epi} F$$ of a function $$F : \mathbb{R}^n \rightarrow \mathbb{R}$$ is

\begin{equation*}
\textrm{epi} F = \setlr{ (\Bx,t) \in \mathbb{R}^{n +1} | \Bx \in \textrm{dom} F, t \ge F(\Bx) },
\end{equation*}

where $$\Bx \in \mathbb{R}^n, t \in \mathbb{R}$$.

fig. 7. Epigraph.

Theorem: Convexity and epigraph.
If $$F$$ is convex implies $$\textrm{epi} F$$ is a convex set.

Proof:

For convex function, a line segment connecting any 2 points on function is above the function. i.e. it is $$\textrm{epi} F$$.

Many authors will go the other way around, showing \ref{dfn:convexOptimizationLecture5:400} from \ref{thm:convexOptimizationLecture5:420}. That is:

Pick any 2 points in $$\textrm{epi} F$$, $$(\Bx,\mu) \in \textrm{epi} F$$ and $$(\By, \nu) \in \textrm{epi} F$$. Consider convex combination

\label{eqn:convexOptimizationLecture5:420}
\theta( \Bx, \mu ) + (1-\theta) (\By, \nu) =
(\theta \Bx (1-\theta) \By, \theta \mu (1-\theta) \nu )
\in \textrm{epi} F,

since $$\textrm{epi} F$$ is a convex set.

By definition of $$\textrm{epi} F$$

\label{eqn:convexOptimizationLecture5:440}
F( \theta \Bx (1-\theta) \By ) \le \theta \mu (1-\theta) \nu.

Picking $$\mu = F(\Bx), \nu = F(\By)$$ gives
\label{eqn:convexOptimizationLecture5:460}
F( \theta \Bx (1-\theta) \By ) \le \theta F(\Bx) (1-\theta) F(\By).

## Extended value function

Sometimes convenient to work with “extended value function”

\label{eqn:convexOptimizationLecture5:500}
\tilde{F}(\Bx) =
\left\{
\begin{array}{l l}
F(\Bx) & \quad \mbox{If $$\Bx \in \textrm{dom} F$$} \\
\end{array}
\right.

Examples:

• Linear (affine) functions (fig. 8) are both convex and concave.

fig. 8. Linear functions.

• $$x^2$$ is convex, sketched in fig. 9.

• $$\log x, \textrm{dom} F = \mathbb{R}_{+}$$ concave, sketched in fig. 10.

fig. 10. Concave (logarithm.)

• $$\Norm{\Bx}$$ is convex. $$\Norm{ \theta \Bx + (1-\theta) \By } \le \theta \Norm{ \Bx } + (1-\theta) \Norm{\By }$$.
• $$1/x$$ is convex on $$\setlr{ x | x > 0 } = \textrm{dom} F$$, and concave on $$\setlr{ x | x < 0 } = \textrm{dom} F$$. \label{eqn:convexOptimizationLecture5:520} \tilde{F}(x) = \left\{ \begin{array}{l l} \inv{x} & \quad \mbox{If $$x > 0$$} \\
\end{array}
\right.

Definition: Sublevel

The sublevel set of a function $$F : \mathbb{R}^n \rightarrow \mathbb{R}$$ is

\begin{equation*}
C(\alpha) = \setlr{ \Bx \in \textrm{dom} F | F(\Bx) \le \alpha }
\end{equation*}

Convex sublevel

Non-convex sublevel.

Theorem:
If $$F$$ is convex then $$C(\alpha)$$ is a convex set $$\forall \alpha$$.

This is not an if and only if condition, as illustrated in fig. 12.

fig. 12. Convex sublevel does not imply convexity.

There $$C(\alpha)$$ is convex, but the function itself is not.

Proof:

Since $$F$$ is convex, then $$\textrm{epi} F$$ is a convex set.

• Let\label{eqn:convexOptimizationLecture5:580}
\mathcal{A} = \setlr{ (\Bx,t) | t = \alpha }
is a convex set.
• $$\mathcal{A} \cap \textrm{epi} F$$is a convex set since it is the intersection of convex sets.
• Project $$\mathcal{A} \cap \textrm{epi} F$$ onto \R{n} (i.e. domain of $$F$$ ). The projection is an affine mapping. Image of a convex set through affine mapping is a convex set.

Definition: Quasi-convex.

A function is quasi-convex if \underline{all} of its sublevel sets are convex.

## Composing convex functions

Properties of convex functions:

• If $$F$$ is convex, then $$\alpha F$$ is convex $$\forall \alpha > 0$$.
• If $$F_1, F_2$$ are convex, then the sum $$F_1 + F_2$$ is convex.
• If $$F$$ is convex, then $$g(\Bx) = F(A \Bx + \Bb)$$ is convex $$\forall \Bx \in \setlr{ \Bx | A \Bx + \Bb \in \textrm{dom} F }$$.

Note: for the last

\label{eqn:convexOptimizationLecture5:620}
\begin{aligned}
g &: \mathbb{R}^m \rightarrow \mathbb{R} \\
F &: \mathbb{R}^n \rightarrow \mathbb{R} \\
\Bx &\in \mathbb{R}^m \\
A &\in \mathbb{R}^{n \times m} \\
\Bb &\in \mathbb{R}^n
\end{aligned}

Proof (of last):

\label{eqn:convexOptimizationLecture5:640}
\begin{aligned}
g( \theta \Bx + (1-\theta) \By )
&=
F( \theta (A \Bx + \Bb) + (1-\theta) (A \By + \Bb) ) \\
&\le
\theta F( A \Bx + \Bb) + (1-\theta) F (A \By + \Bb) \\
&= \theta g(\Bx) + (1-\theta) g(\By).
\end{aligned}

# References

[1] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.