## Some slices.

As followup to:

here is a bit more experimentation with Paraview slice filtering. This time I saved all the point data with the escape time counts, and rendered it with a few different contours

The default slice filter places the plane in the x-y orientation:

but we can also tilt it in the Paraview render UI

and suppress the contour view to see just the slice

As a very GUI challenged user, I don’t find the interface particularly intuitive, but have at least figured out this one particular slicing task, which is kind of cool.  It’s impressive that the UI can drive interesting computational tasks without having to regenerate or reload any of the raw data itself.  This time I was using the MacOSX Paraview client, which is nicer looking than the Windows version, but has some weird glitches in the file dialogues.

## Analysis.

The graphing play above shows some apparent rotational symmetry our vector equivalent to the Mandelbrot equation

\Bx \rightarrow \Bx \Be_1 \Bx + \Bc.

It was not clear to me if this symmetry existed, as there were artifacts in the plots that made it appear that there was irregularity. However, some thought shows that this irregularity is strictly due to sampling error, and perhaps also due to limitations in the plotting software, as such an uneven surface is probably tricky to deal with.

To see this, here are the first few iterations of the Mandlebrot sequence for an arbitary starting vector $$\Bc$$.

\begin{aligned}
\Bx_0 &= \Bc \\
\Bx_1 &= \Bc \Be_1 \Bc + \Bc \\
\Bx_2 &= \lr{ \Bc \Be_1 \Bc + \Bc } \Be_1 \lr{ \Bc \Be_1 \Bc + \Bc } + \Bc \Be_1 \Bc + \Bc.
\end{aligned}

Now, what happens when we rotate the starting vector $$\Bc$$ in the $$y-z$$ plane. The rotor for such a rotation is

R = \exp\lr{ e_{23} \theta/2 },

where

\Bc \rightarrow R \Bc \tilde{R}.

Observe that if $$\Bc$$ is parallel to the x-axis, then this rotation leaves the starting point invariant, as $$\Be_1$$ commutes with $$R$$. That is

R \Be_1 \tilde{R} =
\Be_1 R \tilde{R} = \Be_1.

Let $$\Bc’ = R \Bc \tilde{R}$$, so that

\Bx_0′ = R \Bc \tilde{R} = R \Bx_0 \tilde{R} .

\begin{aligned}
\Bx_1′
&= R \Bc \tilde{R} \Be_1 R \Bc \tilde{R} + R \Bc \tilde{R} \\
&= R \Bc \Be_1 \Bc \tilde{R} + R \Bc \tilde{R} \\
&= R \lr{ \Bc \Be_1 \Bc R + \Bc } \tilde{R} \\
&= R \Bx_1 \tilde{R}.
\end{aligned}

\label{eqn:m2:n}
\begin{aligned}
\Bx_2′
&= \Bx_1′ \Be_1 \Bx_1′ + \Bc’ \\
&= R \Bx_1 \tilde{R} \Be_1 R \Bx_1 \tilde{R} + R \Bc \tilde{R} \\
&= R \Bx_1 \Be_1 \Bx_1 \tilde{R} + R \Bc \tilde{R} \\
&= R \lr{ \Bx_1 \Be_1 \Bx_1 + \Bc } \tilde{R} \\
&= R \Bx_2 \tilde{R}.
\end{aligned}

The pattern is clear. If we rotate the starting point in the y-z plane, iterating the Mandelbrot sequence results in precisely the same rotation of the x-y plane Mandelbrot sequence. So the apparent rotational symmetry in the 3D iteration of the Mandelbrot vector equation is exactly that. This is an unfortunately boring 3D fractal. All of the interesting fractal nature occurs in the 2D plane, and the rest is just a consequence of rotating that image around the x-axis. We get some interesting fractal artifacts if we slice the rotated Mandelbrot image.

## A couple more reciprocal frame examples.

[If mathjax doesn’t display properly for you, click here for a PDF of this post]

This post logically follows both of the following:

The PDF linked above above contains all the content from this post plus (1.) above [to be edited later into a more logical sequence.]

## More examples.

Here are a few additional examples of reciprocal frame calculations.

## Problem: Unidirectional arbitrary functional dependence.

Let
\label{eqn:reciprocal:2540}
x = a f(u),

where $$a$$ is a constant vector and $$f(u)$$ is some arbitrary differentiable function with a non-zero derivative in the region of interest.

Here we have just a single tangent space direction (a line in spacetime) with tangent vector
\label{eqn:reciprocal:2400}
\Bx_u = a \PD{u}{f} = a f_u,

so we see that the tangent space vectors are just rescaled values of the direction vector $$a$$.
This is a simple enough parameterization that we can compute the reciprocal frame vector explicitly using the gradient. We expect that $$\Bx^u = 1/\Bx_u$$, and find
\label{eqn:reciprocal:2420}
\inv{a} \cdot x = f(u),

but for constant $$a$$, we know that $$\grad a \cdot x = a$$, so taking gradients of both sides we find
\label{eqn:reciprocal:2440}

so the reciprocal vector is
\label{eqn:reciprocal:2460}
\Bx^u = \grad u = \inv{a f_u},

as expected.

## Problem: Linear two variable parameterization.

Let $$x = a u + b v$$, where $$x \wedge a \wedge b = 0$$ represents spacetime plane (also the tangent space.) Find the curvilinear coordinates and their reciprocals.

The frame vectors are easy to compute, as they are just
\label{eqn:reciprocal:1960}
\begin{aligned}
\Bx_u &= \PD{u}{x} = a \\
\Bx_v &= \PD{v}{x} = b.
\end{aligned}

This is an example of a parametric equation that we can easily invert, as we have
\label{eqn:reciprocal:1980}
\begin{aligned}
x \wedge a &= – v \lr{ a \wedge b } \\
x \wedge b &= u \lr{ a \wedge b },
\end{aligned}

so
\label{eqn:reciprocal:2000}
\begin{aligned}
u
&= \inv{ a \wedge b } \cdot \lr{ x \wedge b } \\
&= \inv{ \lr{a \wedge b}^2 } \lr{ a \wedge b } \cdot \lr{ x \wedge b } \\
&=
\frac{
\lr{b \cdot x} \lr{ a \cdot b }

\lr{a \cdot x} \lr{ b \cdot b }
}{ \lr{a \wedge b}^2 }
\end{aligned}

\label{eqn:reciprocal:2020}
\begin{aligned}
v &= -\inv{ a \wedge b } \cdot \lr{ x \wedge a } \\
&= -\inv{ \lr{a \wedge b}^2 } \lr{ a \wedge b } \cdot \lr{ x \wedge a } \\
&=
-\frac{
\lr{b \cdot x} \lr{ a \cdot a }

\lr{a \cdot x} \lr{ a \cdot b }
}{ \lr{a \wedge b}^2 }
\end{aligned}

Recall that $$\grad \lr{ a \cdot x} = a$$, if $$a$$ is a constant, so our gradients are just
\label{eqn:reciprocal:2040}
\begin{aligned}
&=
\frac{
b \lr{ a \cdot b }

a
\lr{ b \cdot b }
}{ \lr{a \wedge b}^2 } \\
&=
b \cdot \inv{ a \wedge b },
\end{aligned}

and
\label{eqn:reciprocal:2060}
\begin{aligned}
&=
-\frac{
b \lr{ a \cdot a }

a \lr{ a \cdot b }
}{ \lr{a \wedge b}^2 } \\
&=
-a \cdot \inv{ a \wedge b }.
\end{aligned}

Expressed in terms of the frame vectors, this is just
\label{eqn:reciprocal:2080}
\begin{aligned}
\Bx^u &= \Bx_v \cdot \inv{ \Bx_u \wedge \Bx_v } \\
\Bx^v &= -\Bx_u \cdot \inv{ \Bx_u \wedge \Bx_v },
\end{aligned}

so we were able to show, for this special two parameter linear case, that the explicit evaluation of the gradients has the exact structure that we intuited that the reciprocals must have, provided they are constrained to the spacetime plane $$a \wedge b$$. It is interesting to observe how this structure falls out of the linear system solution so directly. Also note that these reciprocals are not defined at the origin of the $$(u,v)$$ parameter space.

## Problem: Quadratic two variable parameterization.

Now consider a variation of the previous problem, with $$x = a u^2 + b v^2$$. Find the curvilinear coordinates and their reciprocals.

\label{eqn:reciprocal:2100}
\begin{aligned}
\Bx_u &= \PD{u}{x} = 2 u a \\
\Bx_v &= \PD{v}{x} = 2 v b.
\end{aligned}

Our tangent space is still the $$a \wedge b$$ plane (as is the surface itself), but the spacing of the cells starts getting wider in proportion to $$u, v$$.
Utilizing the work from the previous problem, we have
\label{eqn:reciprocal:2120}
\begin{aligned}
b \cdot \inv{ a \wedge b } \\
-a \cdot \inv{ a \wedge b }.
\end{aligned}

A bit of rearrangement can show that this is equivalent to the reciprocal frame identities. This is a second demonstration that the gradient and the algebraic formulations for the reciprocals match, at least for these special cases of linear non-coupled parameterizations.

## Problem: Reciprocal frame for generalized cylindrical parameterization.

Let the vector parameterization be $$x(\rho,\theta) = \rho e^{-i\theta/2} x(\rho_0, \theta_0) e^{i \theta}$$, where $$i^2 = \pm 1$$ is a unit bivector ($$+1$$ for a boost, and $$-1$$ for a rotation), and where $$\theta, \rho$$ are scalars. Find the tangent space vectors and their reciprocals.

fig. 1. “Cylindrical” boost parameterization.

Note that this is cylindrical parameterization for the rotation case, and traces out hyperbolic regions for the boost case. The boost case is illustrated in fig. 1 where hyperbolas in the light cone are found for boosts of $$\gamma_0$$ with various values of $$\rho$$, and the spacelike hyperbolas are boosts of $$\gamma_1$$, again for various values of $$\rho$$.

The tangent space vectors are
\label{eqn:reciprocal:2480}
\Bx_\rho = \frac{x}{\rho},

and

\label{eqn:reciprocal:2500}
\begin{aligned}
\Bx_\theta
&= -\frac{i}{2} x + x \frac{i}{2} \\
&= x \cdot i.
\end{aligned}

Recall that $$x \cdot i$$ lies perpendicular to $$x$$ (in the plane $$i$$), as illustrated in fig. 2. This means that $$\Bx_\rho$$ and $$\Bx_\theta$$ are orthogonal, so we can find the reciprocal vectors by just inverting them
\label{eqn:reciprocal:2520}
\begin{aligned}
\Bx^\rho &= \frac{\rho}{x} \\
\Bx^\theta &= \frac{1}{x \cdot i}.
\end{aligned}

fig. 2. Projection and rejection geometry.

## Parameterization of a general linear transformation.

Given $$N$$ parameters $$u^0, u^1, \cdots u^{N-1}$$, a general linear transformation from the parameter space to the vector space has the form
\label{eqn:reciprocal:2160}
x =
{a^\alpha}_\beta \gamma_\alpha u^\beta,

where $$\beta \in [0, \cdots, N-1]$$ and $$\alpha \in [0,3]$$.
For such a general transformation, observe that the curvilinear basis vectors are
\label{eqn:reciprocal:2180}
\begin{aligned}
\Bx_\mu
&= \PD{u^\mu}{x} \\
&= \PD{u^\mu}{}
{a^\alpha}_\beta \gamma_\alpha u^\beta \\
&=
{a^\alpha}_\mu \gamma_\alpha.
\end{aligned}

We find an interpretation of $${a^\alpha}_\mu$$ by dotting $$\Bx_\mu$$ with the reciprocal frame vectors of the standard basis
\label{eqn:reciprocal:2200}
\begin{aligned}
\Bx_\mu \cdot \gamma^\nu
&=
{a^\alpha}_\mu \lr{ \gamma_\alpha \cdot \gamma^\nu } \\
&=
{a^\nu}_\mu,
\end{aligned}

so
\label{eqn:reciprocal:2220}
x = \Bx_\mu u^\mu.

We are able to reinterpret \ref{eqn:reciprocal:2160} as a contraction of the tangent space vectors with the parameters, scaling and summing these direction vectors to characterize all the points in the tangent plane.

## Theorem 1.1: Projecting onto the tangent space.

Let $$T$$ represent the tangent space. The projection of a vector onto the tangent space has the form
\label{eqn:reciprocal:2560}
\textrm{Proj}_{\textrm{T}} y = \lr{ y \cdot \Bx^\mu } \Bx_\mu = \lr{ y \cdot \Bx_\mu } \Bx^\mu.

### Start proof:

Let’s designate $$a$$ as the portion of the vector $$y$$ that lies outside of the tangent space
\label{eqn:reciprocal:2260}
y = y^\mu \Bx_\mu + a.

If we knew the coordinates $$y^\mu$$, we would have a recipe for the projection.
Algebraically, requiring that $$a$$ lies outside of the tangent space, is equivalent to stating $$a \cdot \Bx_\mu = a \cdot \Bx^\mu = 0$$. We use that fact, and then take dot products
\label{eqn:reciprocal:2280}
\begin{aligned}
y \cdot \Bx^\nu
&= \lr{ y^\mu \Bx_\mu + a } \cdot \Bx^\nu \\
&= y^\nu,
\end{aligned}

so
\label{eqn:reciprocal:2300}
y = \lr{ y \cdot \Bx^\mu } \Bx_\mu + a.

Similarly, the tangent space projection can be expressed as a linear combination of reciprocal basis elements
\label{eqn:reciprocal:2320}
y = y_\mu \Bx^\mu + a.

Dotting with $$\Bx_\mu$$, we have
\label{eqn:reciprocal:2340}
\begin{aligned}
y \cdot \Bx^\mu
&= \lr{ y_\alpha \Bx^\alpha + a } \cdot \Bx_\mu \\
&= y_\mu,
\end{aligned}

so
\label{eqn:reciprocal:2360}
y = \lr{ y \cdot \Bx^\mu } \Bx_\mu + a.

We find the two stated ways of computing the projection.

Observe that, for the special case that all of $$\setlr{ \Bx_\mu }$$ are orthogonal, the equivalence of these two projection methods follows directly, since
\label{eqn:reciprocal:2380}
\begin{aligned}
\lr{ y \cdot \Bx^\mu } \Bx_\mu
&=
\lr{ y \cdot \inv{\Bx_\mu} } \inv{\Bx^\mu} \\
&=
\lr{ y \cdot \frac{\Bx_\mu}{\lr{\Bx_\mu}^2 } } \frac{\Bx^\mu}{\lr{\Bx^\mu}^2} \\
&=
\lr{ y \cdot \Bx_\mu } \Bx^\mu.
\end{aligned}

## Lorentz transformations in Space Time Algebra (STA)

[If mathjax doesn’t display properly for you, click here for a PDF of this post]

## Motivation.

One of the remarkable features of geometric algebra are the complex exponential sandwiches that can be used to encode rotations in any dimension, or rotation like operations like Lorentz transformations in Minkowski spaces. In this post, we show some examples that unpack the geometric algebra expressions for Lorentz transformations operations of this sort. In particular, we will look at the exponential sandwich operations for spatial rotations and Lorentz boosts in the Dirac algebra, known as Space Time Algebra (STA) in geometric algebra circles, and demonstrate that these sandwiches do have the desired effects.

## Theorem 1.1: Lorentz transformation.

The transformation
\label{eqn:lorentzTransform:580}
x \rightarrow e^{B} x e^{-B} = x’,

where $$B = a \wedge b$$, is an STA 2-blade for any two linearly independent four-vectors $$a, b$$, is a norm preserving, that is
\label{eqn:lorentzTransform:600}
x^2 = {x’}^2.

### Start proof:

The proof is disturbingly trivial in this geometric algebra form
\label{eqn:lorentzTransform:40}
\begin{aligned}
{x’}^2
&=
e^{B} x e^{-B} e^{B} x e^{-B} \\
&=
e^{B} x x e^{-B} \\
&=
x^2 e^{B} e^{-B} \\
&=
x^2.
\end{aligned}

### End proof.

In particular, observe that we did not need to construct the usual infinitesimal representations of rotation and boost transformation matrices or tensors in order to demonstrate that we have spacetime invariance for the transformations. The rough idea of such a transformation is that the exponential commutes with components of the four-vector that lie off the spacetime plane specified by the bivector $$B$$, and anticommutes with components of the four-vector that lie in the plane. The end result is that the sandwich operation simplifies to
\label{eqn:lorentzTransform:60}
x’ = x_\parallel e^{-B} + x_\perp,

where $$x = x_\perp + x_\parallel$$ and $$x_\perp \cdot B = 0$$, and $$x_\parallel \wedge B = 0$$. In particular, using $$x = x B B^{-1} = \lr{ x \cdot B + x \wedge B } B^{-1}$$, we find that
\label{eqn:lorentzTransform:80}
\begin{aligned}
x_\parallel &= \lr{ x \cdot B } B^{-1} \\
x_\perp &= \lr{ x \wedge B } B^{-1}.
\end{aligned}

When $$B$$ is a spacetime plane $$B = b \wedge \gamma_0$$, then this exponential has a hyperbolic nature, and we end up with a Lorentz boost. When $$B$$ is a spatial bivector, we end up with a single complex exponential, encoding our plane old 3D rotation. More general $$B$$’s that encode composite boosts and rotations are also possible, but $$B$$ must be invertible (it should have no lightlike factors.) The rough geometry of these projections is illustrated in fig 1, where the spacetime plane is represented by $$B$$.

fig 1. Projection and rejection geometry.

What is not so obvious is how to pick $$B$$’s that correspond to specific rotation axes or boost directions. Let’s consider each of those cases in turn.

## Theorem 1.2: Boost.

The boost along a direction vector $$\vcap$$ and rapidity $$\alpha$$ is given by
\label{eqn:lorentzTransform:620}
x’ = e^{-\vcap \alpha/2} x e^{\vcap \alpha/2},

where $$\vcap = \gamma_{k0} \cos\theta^k$$ is an STA bivector representing a spatial direction with direction cosines $$\cos\theta^k$$.

### Start proof:

We want to demonstrate that this is equivalent to the usual boost formulation. We can start with decomposition of the four-vector $$x$$ into components that lie in and off of the spacetime plane $$\vcap$$.
\label{eqn:lorentzTransform:100}
\begin{aligned}
x
&= \lr{ x^0 + \Bx } \gamma_0 \\
&= \lr{ x^0 + \Bx \vcap^2 } \gamma_0 \\
&= \lr{ x^0 + \lr{ \Bx \cdot \vcap} \vcap + \lr{ \Bx \wedge \vcap} \vcap } \gamma_0,
\end{aligned}

where $$\Bx = x \wedge \gamma_0$$. The first two components lie in the boost plane, whereas the last is the spatial component of the vector that lies perpendicular to the boost plane. Observe that $$\vcap$$ anticommutes with the dot product term and commutes with he wedge product term, so we have
\label{eqn:lorentzTransform:120}
\begin{aligned}
x’
&=
\lr{ x^0 + \lr{ \Bx \cdot \vcap } \vcap } \gamma_0
e^{\vcap \alpha/2 }
e^{\vcap \alpha/2 }
+
\lr{ \Bx \wedge \vcap } \vcap \gamma_0
e^{-\vcap \alpha/2 }
e^{\vcap \alpha/2 } \\
&=
\lr{ x^0 + \lr{ \Bx \cdot \vcap } \vcap } \gamma_0
e^{\vcap \alpha }
+
\lr{ \Bx \wedge \vcap } \vcap \gamma_0.
\end{aligned}

Noting that $$\vcap^2 = 1$$, we may expand the exponential in hyperbolic functions, and find that the boosted portion of the vector expands as
\label{eqn:lorentzTransform:260}
\begin{aligned}
\lr{ x^0 + \lr{ \Bx \cdot \vcap} \vcap } \gamma_0 e^{\vcap \alpha}
&=
\lr{ x^0 + \lr{ \Bx \cdot \vcap} \vcap } \gamma_0 \lr{ \cosh\alpha + \vcap \sinh \alpha} \\
&=
\lr{ x^0 + \lr{ \Bx \cdot \vcap} \vcap } \lr{ \cosh\alpha – \vcap \sinh \alpha} \gamma_0 \\
&=
\lr{ x^0 \cosh\alpha – \lr{ \Bx \cdot \vcap} \sinh \alpha} \gamma_0
+
\lr{ -x^0 \sinh \alpha + \lr{ \Bx \cdot \vcap} \cosh \alpha } \vcap \gamma_0.
\end{aligned}

We are left with
\label{eqn:lorentzTransform:320}
\begin{aligned}
x’
&=
\lr{ x^0 \cosh\alpha – \lr{ \Bx \cdot \vcap} \sinh \alpha} \gamma_0
+
\lr{ \lr{ \Bx \cdot \vcap} \cosh \alpha -x^0 \sinh \alpha } \vcap \gamma_0
+
\lr{ \Bx \wedge \vcap} \vcap \gamma_0 \\
&=
\begin{bmatrix}
\gamma_0 & \vcap \gamma_0
\end{bmatrix}
\begin{bmatrix}
\cosh\alpha & – \sinh\alpha \\
-\sinh\alpha & \cosh\alpha
\end{bmatrix}
\begin{bmatrix}
x^0 \\
\Bx \cdot \vcap
\end{bmatrix}
+
\lr{ \Bx \wedge \vcap} \vcap \gamma_0,
\end{aligned}

which has the desired Lorentz boost structure. Of course, this is usually seen with $$\vcap = \gamma_{10}$$ so that the components in the coordinate column vector are $$(ct, x)$$.

## Theorem 1.3: Spatial rotation.

Given two linearly independent spatial bivectors $$\Ba = a^k \gamma_{k0}, \Bb = b^k \gamma_{k0}$$, a rotation of $$\theta$$ radians in the plane of $$\Ba, \Bb$$ from $$\Ba$$ towards $$\Bb$$, is given by
\label{eqn:lorentzTransform:640}
x’ = e^{-i\theta} x e^{i\theta},

where $$i = (\Ba \wedge \Bb)/\Abs{\Ba \wedge \Bb}$$, is a unit (spatial) bivector.

### Start proof:

Without loss of generality, we may pick $$i = \acap \bcap$$, where $$\acap^2 = \bcap^2 = 1$$, and $$\acap \cdot \bcap = 0$$. With such an orthonormal basis for the plane, we can decompose our four vector into portions that lie in and off the plane
\label{eqn:lorentzTransform:400}
\begin{aligned}
x
&= \lr{ x^0 + \Bx } \gamma_0 \\
&= \lr{ x^0 + \Bx i i^{-1} } \gamma_0 \\
&= \lr{ x^0 + \lr{ \Bx \cdot i } i^{-1} + \lr{ \Bx \wedge i } i^{-1} } \gamma_0.
\end{aligned}

The projective term lies in the plane of rotation, whereas the timelike and spatial rejection term are perpendicular. That is
\label{eqn:lorentzTransform:420}
\begin{aligned}
x_\parallel &= \lr{ \Bx \cdot i } i^{-1} \gamma_0 \\
x_\perp &= \lr{ x^0 + \lr{ \Bx \wedge i } i^{-1} } \gamma_0,
\end{aligned}

where $$x_\parallel \wedge i = 0$$, and $$x_\perp \cdot i = 0$$. The plane pseudoscalar $$i$$ anticommutes with $$x_\parallel$$, and commutes with $$x_\perp$$, so
\label{eqn:lorentzTransform:440}
\begin{aligned}
x’
&= e^{-i\theta/2} \lr{ x_\parallel + x_\perp } e^{i\theta/2} \\
&= x_\parallel e^{i\theta} + x_\perp.
\end{aligned}

However
\label{eqn:lorentzTransform:460}
\begin{aligned}
\lr{ \Bx \cdot i } i^{-1}
&=
\lr{ \Bx \cdot \lr{ \acap \wedge \bcap } } \bcap \acap \\
&=
\lr{\Bx \cdot \acap} \bcap \bcap \acap
-\lr{\Bx \cdot \bcap} \acap \bcap \acap \\
&=
\lr{\Bx \cdot \acap} \acap
+\lr{\Bx \cdot \bcap} \bcap,
\end{aligned}

so
\label{eqn:lorentzTransform:480}
\begin{aligned}
x_\parallel e^{i\theta}
&=
\lr{
\lr{\Bx \cdot \acap} \acap
+
\lr{\Bx \cdot \bcap} \bcap
}
\gamma_0
\lr{
\cos\theta + \acap \bcap \sin\theta
} \\
&=
\acap \lr{
\lr{\Bx \cdot \acap} \cos\theta

\lr{\Bx \cdot \bcap} \sin\theta
}
\gamma_0
+
\bcap \lr{
\lr{\Bx \cdot \acap} \sin\theta
+
\lr{\Bx \cdot \bcap} \cos\theta
}
\gamma_0,
\end{aligned}

so
\label{eqn:lorentzTransform:500}
x’
=
\begin{bmatrix}
\acap & \bcap
\end{bmatrix}
\begin{bmatrix}
\cos\theta & – \sin\theta \\
\sin\theta & \cos\theta
\end{bmatrix}
\begin{bmatrix}
\Bx \cdot \acap \\
\Bx \cdot \bcap \\
\end{bmatrix}
\gamma_0
+
\lr{ x \wedge i} i^{-1} \gamma_0.

Observe that this rejection term can be explicitly expanded to
\label{eqn:lorentzTransform:520}
\lr{ \Bx \wedge i} i^{-1} \gamma_0 =
x –
\lr{ \Bx \cdot \acap } \acap \gamma_0

\lr{ \Bx \cdot \acap } \acap \gamma_0.

This is the timelike component of the vector, plus the spatial component that is normal to the plane. This exponential sandwich transformation rotates only the portion of the vector that lies in the plane, and leaves the rest (timelike and normal) untouched.

## Problem: Verify components relative to boost direction.

In the proof of thm. 1.2, the vector $$x$$ was expanded in terms of the spacetime split. An alternate approach, is to expand as
\label{eqn:lorentzTransform:340}
\begin{aligned}
x
&= x \vcap^2 \\
&= \lr{ x \cdot \vcap + x \wedge \vcap } \vcap \\
&= \lr{ x \cdot \vcap } \vcap + \lr{ x \wedge \vcap } \vcap.
\end{aligned}

Show that
\label{eqn:lorentzTransform:360}
\lr{ x \cdot \vcap } \vcap
=
\lr{ x^0 + \lr{ \Bx \cdot \vcap} \vcap } \gamma_0,

and
\label{eqn:lorentzTransform:380}
\lr{ x \wedge \vcap } \vcap
=
\lr{ \Bx \wedge \vcap} \vcap \gamma_0.

Let $$x = x^\mu \gamma_\mu$$, so that
\label{eqn:lorentzTransform:160}
\begin{aligned}
x \cdot \vcap
&=
\gpgradeone{ x^\mu \gamma_\mu \cos\theta^b \gamma_{b 0} } \\
&=
x^\mu \cos\theta^b \gpgradeone{ \gamma_\mu \gamma_{b 0} }
.
\end{aligned}

The $$\mu = 0$$ component of this grade selection is
\label{eqn:lorentzTransform:180}
=
-\gamma_b,

and for $$\mu = a \ne 0$$, we have
\label{eqn:lorentzTransform:200}
=
-\delta_{a b} \gamma_0,

so we have
\label{eqn:lorentzTransform:220}
\begin{aligned}
x \cdot \vcap
&=
x^0 \cos\theta^b (-\gamma_b)
+
x^a \cos\theta^b (-\delta_{ab} \gamma_0 ) \\
&=
-x^0 \vcap \gamma_0

x^b \cos\theta^b \gamma_0 \\
&=
– \lr{ x^0 \vcap + \Bx \cdot \vcap } \gamma_0,
\end{aligned}

where $$\Bx = x \wedge \gamma_0$$ is the spatial portion of the four vector $$x$$ relative to the stationary observer frame. Since $$\vcap$$ anticommutes with $$\gamma_0$$, the component of $$x$$ in the spacetime plane $$\vcap$$ is
\label{eqn:lorentzTransform:240}
\lr{ x \cdot \vcap } \vcap =
\lr{ x^0 + \lr{ \Bx \cdot \vcap} \vcap } \gamma_0,

as expected.

For the rejection term, we have
\label{eqn:lorentzTransform:280}
x \wedge \vcap
=
x^\mu \cos\theta^s \gpgradethree{ \gamma_\mu \gamma_{s 0} }.

The $$\mu = 0$$ term clearly contributes nothing, leaving us with:
\label{eqn:lorentzTransform:300}
\begin{aligned}
\lr{ x \wedge \vcap } \vcap
&=
\lr{ x \wedge \vcap } \cdot \vcap \\
&=
x^r \cos\theta^s \cos\theta^t \lr{ \lr{ \gamma_r \wedge \gamma_{s}} \gamma_0 } \cdot \lr{ \gamma_{t0} } \\
&=
\lr{ \gamma_r \wedge \gamma_{s} } \gamma_0 \gamma_{t0}
} \\
&=
-x^r \cos\theta^s \cos\theta^t \lr{ \gamma_r \wedge \gamma_{s}} \cdot \gamma_t \\
&=
-x^r \cos\theta^s \cos\theta^t \lr{ -\gamma_r \delta_{st} + \gamma_s \delta_{rt} } \\
&=
x^r \cos\theta^t \cos\theta^t \gamma_r

x^t \cos\theta^s \cos\theta^t \gamma_s \\
&=
\Bx \gamma_0
– (\Bx \cdot \vcap) \vcap \gamma_0 \\
&=
\lr{ \Bx \wedge \vcap} \vcap \gamma_0,
\end{aligned}

as expected. Is there a clever way to demonstrate this without resorting to coordinates?

## Problem: Rotation transformation components.

Given a unit spatial bivector $$i = \acap \bcap$$, where $$\acap \cdot \bcap = 0$$ and $$i^2 = -1$$, show that
\label{eqn:lorentzTransform:540}
\lr{ x \cdot i } i^{-1}
=
\lr{ \Bx \cdot i } i^{-1} \gamma_0
=
\lr{\Bx \cdot \acap } \acap \gamma_0
+
\lr{\Bx \cdot \bcap } \bcap \gamma_0,

and
\label{eqn:lorentzTransform:560}
\lr{ x \wedge i } i^{-1}
=
\lr{ \Bx \wedge i } i^{-1} \gamma_0
=
x –
\lr{\Bx \cdot \acap } \acap \gamma_0

\lr{\Bx \cdot \bcap } \bcap \gamma_0.

Also show that $$i$$ anticommutes with $$\lr{ x \cdot i } i^{-1}$$ and commutes with $$\lr{ x \wedge i } i^{-1}$$.

This problem is left for the reader, as I don’t feel like typing out my solution.

The first part of this problem can be done in the tedious coordinate approach used above, but hopefully there is a better way.

For the last (commutation) part of the problem, here is a hint. Let $$x \wedge i = n i$$, where $$n \cdot i = 0$$. The result then follows easily.

## PHY2403H Quantum Field Theory. Lecture 22: Dirac sea, charges, angular momentum, spin, U(1) symmetries, electrons and positrons. Taught by Prof. Erich Poppitz

This post is a synopsis of the material from the second last lecture of QFT I. I missed that class, but worked from notes kindly provided by Emily Tyhurst, and Stefan Divic, filling in enough details that it made sense to me.

[Click here for an unabrided PDF of my full notes on this day’s lecture material.]

Topics covered include

• The Hamiltonian action on single particle states showed that the Hamiltonian was an energy eigenoperator
\label{eqn:qftLecture22:140}
H \ket{\Bp, r}
=
\omega_\Bp \ket{\Bp, r}.
• The conserved Noether current and charge for spatial translations, the momentum operator, was found to be
\label{eqn:momentumDirac:260}
\BP =
\int d^3 x

which could be written in creation and anhillation operator form as
\label{eqn:momentumDirac:261}
\BP = \sum_{s = 1}^2
\int \frac{d^3 q}{(2\pi)^3} \Bp \lr{
a_\Bp^{s\dagger}
a_\Bp^{s}
+
b_\Bp^{s\dagger}
b_\Bp^{s}
}.

Single particle states were found to be the eigenvectors of this operator, with momentum eigenvalues
\label{eqn:momentumDirac:262}
\BP a_\Bq^{s\dagger} \ket{0} = \Bq (a_\Bq^{s\dagger} \ket{0}).
• The conserved Noether current and charge for a rotation was found. That charge is
\label{eqn:qftLecture22:920}
\BJ = \int d^3 x \Psi^\dagger(x) \lr{ \underbrace{\Bx \cross (-i \spacegrad)}_{\text{orbital angular momentum}} + \inv{2} \underbrace{\mathbf{1} \otimes \Bsigma}_{\text{spin angular momentum}} } \Psi,

where
\label{eqn:qftLecture22:260}
\mathbf{1} \otimes \Bsigma =
\begin{bmatrix}
\Bsigma & 0 \\
0 & \Bsigma
\end{bmatrix},

which has distinct orbital and spin angular momentum components. Unlike NRQM, we see both types of angular momentum as components of a single operator. It is argued in [3] that for a particle at rest the single particle state is an eigenvector of this operator, with eigenvalues $$\pm 1/2$$ — the Fermion spin eigenvalues!
• We examined two $$U(1)$$ global symmetries. The Noether charge for the “vector” $$U(1)$$ symmetry is
\label{eqn:qftLecture22:380}
Q
=
\int \frac{d^3 q}{(2\pi)^3} \sum_{s = 1}^2
\lr{
a_\Bp^{s \dagger} a_\Bp^s

b_\Bp^{s \dagger}
b_\Bp^s
},

This charge operator characterizes the $$a, b$$ operators. $$a$$ particles have charge $$+1$$, and $$b$$ particles have charge $$-1$$, or vice-versa depending on convention. We call $$a$$ the operator for the electron, and $$b$$ the operator for the positron.
• CPT (Charge-Parity-TimeReversal) symmetries were also mentioned, but not covered in class. We were pointed to [2], [3], [4] to start studying that topic.

# References

[1] C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University Press New York, Cambridge, UK, 1st edition, 2003.

[2] Dr. Michael Luke. Quantum Field Theory., 2011. URL https://www.physics.utoronto.ca/~luke/PHY2403F/References_files/lecturenotes.pdf. [Online; accessed 05-Dec-2018].

[3] Michael E Peskin and Daniel V Schroeder. An introduction to Quantum Field Theory. Westview, 1995.

[4] Dr. David Tong. Quantum Field Theory. URL http://www.damtp.cam.ac.uk/user/tong/qft.html.

## PHY2403H Quantum Field Theory. Lecture 9: Unbroken and spontaneously broken symmetries, Higgs Lagrangian, scale invariance, Lorentz invariance, angular momentum quantization. Taught by Prof. Erich Poppitz

[Click here for a PDF of this post with nicer formatting (and a Mathematica listing that I didn’t include in this blog post’s latex export)]

### DISCLAIMER: Very rough notes from class, with some additional side notes.

These are notes for the UofT course PHY2403H, Quantum Field Theory I, taught by Prof. Erich Poppitz fall 2018.

## Last time

We followed a sequence of operations

1. Noether’s theorem
2. $$\rightarrow$$ conserved currents
3. $$\rightarrow$$ charges (classical)
4. $$\rightarrow$$ “correspondence principle”
5. $$\rightarrow \hatQ$$
• Hermitian operators
• “generators of symmetry”
\label{eqn:qftLecture9:20}
\hatU(\alpha) = e^{i \alpha \hatQ}

We found
\label{eqn:qftLecture9:40}
\hatU(\alpha) \phihat \hatU^\dagger(\alpha) = \phihat + i \alpha \antisymmetric{\hatQ}{\phihat} + \cdots

### Example: internal symmetries:

(non-spacetime), such as $$O(N)$$ or $$U(1)$$.

In QFT internal symmetries can have different “\underline{modes of realization}”.

[I]

1. “Wigner mode”. These are also called “unbroken symmetries”.
\label{eqn:qftLecture9:60}
\hatQ \ket{0} = 0

i.e. $$\hatU(\alpha) \ket{0} = 0$$.
Ground state invariant. Formally $$:\hatQ:$$ annihilates $$\ket{0}$$.
$$\antisymmetric{\hatQ}{\hatH} = 0$$ implies that all eigenstates are eigenstates of $$\hatQ$$ in $$U(1)$$. Example from HW 1
\label{eqn:qftLecture9:80}
\hatQ = \text{“charge” under $$U(1)$$}.

All states have definite charge, just live in QU.
2. “Nambu-Goldstone mode” (Landau-ginsburg). This is also called a “spontaneously broken symmetry”\footnote{
First encounter example (HWII, $$SU(2) \times SU(2) \rightarrow SU(2)$$). Here a $$U(1)$$ spontaneous broken symmetry.}.
$$H$$ or $$L$$ is invariant under symmetry, but ground state is not.

fig. 1. Mexican hat potential.

fig. 2. Degenerate Mexican hat potential ( v = 0)

Example:
\label{eqn:qftLecture9:100}
\LL = \partial_\mu \phi^\conj \partial^\mu \phi – V(\Abs{\phi}),

where
\label{eqn:qftLecture9:120}
V(\Abs{\phi}) = m^2 \phi^\conj \phi + \frac{\lambda}{4} \lr{ \phi^\conj \phi }^2.

When $$m^2 > 0$$ we have a Wigner mode, but when $$m^2 < 0$$ we have an issue: $$\phi = 0$$ is not a minimum of potential.
When $$m^2 < 0$$ we write
\label{eqn:qftLecture9:140}
\begin{aligned}
V(\phi)
&= – m^2 \phi^\conj \phi + \frac{\lambda}{4} \lr{ \phi^\conj \phi}^2 \\
&= \frac{\lambda}{4} \lr{
\lr{ \phi^\conj \phi}^2 – \frac{4}{\lambda} m^2 } \\
&= \frac{\lambda}{4} \lr{
\phi^\conj \phi – \frac{2}{\lambda} m^2 }^2 – \frac{4 m^4}{\lambda^2},
\end{aligned}

or simply
\label{eqn:qftLecture9:780}
V(\phi)
=
\frac{\lambda}{4} \lr{ \phi^\conj \phi – v^2 }^2 + \text{const}.

The potential (called the Mexican hat potential) is illustrated in fig. 1 for non-zero $$v$$, and in
fig. 2 for $$v = 0$$.
We choose to expand around some point on the minimum ring (it doesn’t matter which one).
When there is no potential, we call the field massless (i.e. if we are in the minimum ring).
We expand as
\label{eqn:qftLecture9:160}
\phi(x) = v \lr{ 1 + \frac{\rho(x)}{v} } e^{i \alpha(x)/v },

so
\label{eqn:qftLecture9:180}
\begin{aligned}
\frac{\lambda}{4}
\lr{\phi^\conj \phi – v^2}^2
&=
\lr{
v^2 \lr{ 1 + \frac{\rho(x)}{v} }^2
– v^2
}^2 \\
&=
\frac{\lambda}{4}
v^4 \lr{ \lr{ 1 + \frac{\rho(x)}{v} }^2 – 1 } \\
&=
\frac{\lambda}{4}
v^4
\lr{
\frac{2 \rho}{v} + \frac{\rho^2}{v^2}
}^2.
\end{aligned}

\label{eqn:qftLecture9:200}
\partial_\mu \phi =
\lr{
v \lr{ 1 + \frac{\rho(x)}{v} } \frac{i}{v} \partial_\mu \alpha
+ \partial_\mu \rho
} e^{i \alpha}

so
\label{eqn:qftLecture9:220}
\begin{aligned}
\LL
&= \Abs{\partial \phi^\conj}^2 – \frac{\lambda}{4} \lr{ \Abs{\phi^\conj}^2 – v^2 }^2 \\
&=
\partial_\mu \rho \partial^\mu \rho + \partial_\mu \alpha \partial^\mu \alpha \lr{ 1 + \frac{\rho}{v} }

\frac{\lambda v^4}{4} \frac{ 4\rho^2}{v^2} + O(\rho^3) \\
&=
\partial_\mu \rho \partial^\mu \rho
– \lambda v^2\rho^2
+
\partial_\mu \alpha \partial^\mu \alpha \lr{ 1 + \frac{\rho}{v} }.
\end{aligned}

We have two fields, $$\rho$$ : a massive scalar field, the “Higgs”, and a massless field $$\alpha$$ (the Goldstone Boson).

$$U(1)$$ symmetry acts on $$\phi(x) \rightarrow e^{i \omega } \phi(x)$$ i.t.o $$\alpha(x) \rightarrow \alpha(x) + v \omega$$.
$$U(1)$$ global symmetry (broken) acts on the Goldstone field $$\alpha(x)$$ by a constant shift. ($$U(1)$$ is still a symmetry of the Lagrangian.)

The current of the $$U(1)$$ symmetry is:
\label{eqn:qftLecture9:240}
j_\mu = \partial_\mu \alpha \lr{ 1 + \text{higher dimensional $$\rho$$ terms} }.

When we quantize
\label{eqn:qftLecture9:260}
\alpha(x) =
\int \frac{d^3p}{(2\pi)^3 \sqrt{ 2 \omega_p }} e^{i \omega_p t – i \Bp \cdot \Bx} \hat{a}_\Bp^\dagger +
\int \frac{d^3p}{(2\pi)^3 \sqrt{ 2 \omega_p }} e^{-i \omega_p t + i \Bp \cdot \Bx} \hat{a}_\Bp

\label{eqn:qftLecture9:280}
j^\mu(x) = \partial^\mu \alpha(x) =
\int \frac{d^3p}{(2\pi)^3 \sqrt{ 2 \omega_p }} \lr{ i \omega_\Bp – i \Bp } e^{i \omega_p t – i \Bp \cdot \Bx} \hat{a}_\Bp^\dagger +
\int \frac{d^3p}{(2\pi)^3 \sqrt{ 2 \omega_p }} \lr{ -i \omega_\Bp + i \Bp } e^{-i \omega_p t + i \Bp \cdot \Bx} \hat{a}_\Bp.

\label{eqn:qftLecture9:300}
j^\mu(x) \ket{0} \ne 0,

instead it creates a single particle state.

## Examples of symmetries

In particle physics, examples of Wigner vs Nambu-Goldstone, ignoring gravity the only exact internal symmetry in the standard module is
$$(B\# – L\#)$$, believed to be a $$U(1)$$ symmetry in Wigner mode.

Here $$B\#$$ is the Baryon number, and $$L\#$$ is the Lepton number. Examples:

• $$B(p) = 1$$, proton.
• $$B(q) = 1/3$$, quark
• $$B(e) = 1$$, electron
• $$B(n) = 1$$, neutron.
• $$L(p) = 1$$, proton.
• $$L(q) = 0$$, quark.
• $$L(e) = 0$$, electron.

The major use of global internal symmetries in the standard model is as “approximate” ones. They become symmetries when one neglects some effect( “terms in $$\LL$$”).
There are other approximate symmetries (use of group theory to find the Balmer series).

### Example from HW2:

QCD in limit
\label{eqn:qftLecture9:320}
m_u = m_d = 0.

$$m_u m_d \ll m_p$$ (the products of the up-quark mass and the down-quark mass are much less than a composite one (name?)).
$$SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$$

### EWSB (Electro-Weak-Symmetry-Breaking) sector

When the couplings $$g_2, g_1 = 0$$. ($$g_2 \in SU(2), g_1 \in U(1)$$).

## Scale invariance

\label{eqn:qftLecture9:340}
\begin{aligned}
x &\rightarrow e^{\lambda} x \\
\phi &\rightarrow e^{-\lambda} \phi \\
A_\mu &\rightarrow e^{-\lambda} A_\mu
\end{aligned}

Any unitary theory which is scale invariant is also \underline{conformal} invariant. Conformal invariance means that angles are preserved.
The point here is that there is more than scale invariance.

We have classical internal global continuous symmetries.
These can be either

1. “unbroken” (Wigner mode)
\label{eqn:qftLecture9:360}
\hatQ\ket{0} = 0.
2. “spontaneously broken”
\label{eqn:qftLecture9:380}
j^\mu(x) \ket{0} \ne 0

(creates Goldstone modes).
3. “anomalous”. Classical symmetries are not a symmetry of QFT.
Examples:

• Scale symmetry (to be studied in QFT II), although this is not truly internal.
• In QCD again when $$\omega_\Bq = 0$$, a $$U(1$$ symmetry (chiral symmetry) becomes exact, and cannot be preserved in QFT.
• In the standard model (E.W sector), the Baryon number and Lepton numbers are not symmetries, but their difference $$B\# – L\#$$ is a symmetry.

## Lorentz invariance.

We’d like to study the action of Lorentz symmetries on quantum states. We are going to “go by the book”, finding symmetries, currents, quantize, find generators, and so forth.

Under a Lorentz transformation
\label{eqn:qftLecture9:400}
x^\mu \rightarrow {x’}^\mu = {\Lambda^\mu}_\nu x^\nu,

We are going to consider infinitesimal Lorentz transformations
\label{eqn:qftLecture9:420}
{\Lambda^\mu}_\nu \approx
{\delta^\mu}_\nu + {\omega^\mu}_\nu
,

where $${\omega^\mu}_\nu$$ is small.
A Lorentz transformation $$\Lambda$$ must satisfy $$\Lambda^\T G \Lambda = G$$, or
\label{eqn:qftLecture9:800}
g_{\mu\nu} = {{\Lambda}^\alpha}_\mu g_{\alpha \beta} {{\Lambda}^\beta}_\nu,

into which we insert the infinitesimal transformation representation
\label{eqn:qftLecture9:820}
\begin{aligned}
0
&=
– g_{\mu\nu} +
\lr{ {\delta^\alpha}_\mu + {\omega^\alpha}_\mu }
g_{\alpha \beta}
\lr{ {\delta^\beta}_\nu + {\omega^\beta}_\nu } \\
&=
– g_{\mu\nu} +
\lr{
g_{\mu \beta}
+
\omega_{\beta\mu}
}
\lr{ {\delta^\beta}_\nu + {\omega^\beta}_\nu } \\
&=
– g_{\mu\nu} +
g_{\mu \nu}
+
\omega_{\nu\mu}
+
\omega_{\mu\nu}
+
\omega_{\beta\mu}
{\omega^\beta}_\nu.
\end{aligned}

The quadratic term can be ignored, leaving just
\label{eqn:qftLecture9:840}
0 =
\omega_{\nu\mu}
+
\omega_{\mu\nu},

or
\label{eqn:qftLecture9:860}
\omega_{\nu\mu} = – \omega_{\mu\nu}.

Note that $$\omega$$ is a completely antisymmetric tensor, and like $$F_{\mu\nu}$$ this has only 6 elements.
This means that the
infinitesimal transformation of the coordinates is
\label{eqn:qftLecture9:440}
x^\mu \rightarrow {x’}^\mu \approx x^\mu + \omega^{\mu\nu} x_\nu,

the field transforms as
\label{eqn:qftLecture9:460}
\phi(x) \rightarrow \phi'(x’) = \phi(x)

or
\label{eqn:qftLecture9:760}
\phi'(x^\mu + \omega^{\mu\nu} x_\nu) =
\phi'(x) + \omega^{\mu\nu} x_\nu \partial_\mu\phi(x) = \phi(x),

so
\label{eqn:qftLecture9:480}
\delta \phi = \phi'(x) – \phi(x) =
-\omega^{\mu\nu} x_\nu \partial_\mu \phi.

Since $$\LL$$ is a scalar
\label{eqn:qftLecture9:500}
\begin{aligned}
\delta \LL
&=
-\omega^{\mu\nu} x_\nu \partial_\mu \LL \\
&=

\partial_\mu \lr{
\omega^{\mu\nu} x_\nu \LL
}
+
(\partial_\mu x_\nu) \omega^{\mu\nu} \LL \\
&=
\partial_\mu \lr{

\omega^{\mu\nu} x_\nu \LL
},
\end{aligned}

since $$\partial_\nu x_\mu = g_{\nu\mu}$$ is symmetric, and $$\omega$$ is antisymmetric.
Our current is
\label{eqn:qftLecture9:520}
J^\mu_\omega
=

\omega^{\mu\nu} x_\mu \LL
.

Our Noether current is
\label{eqn:qftLecture9:540}
\begin{aligned}
j^\nu_{\omega^{\mu\rho}}
&= \PD{\phi_{,\nu}}{\LL} \delta \phi – J^\mu_\omega \\
&=
\partial^\nu \phi\lr{ – \omega^{\mu\rho} x_\rho \partial_\mu \phi } + \omega^{\nu \rho} x_\rho \LL \\
&=
\omega^{\mu\rho}
\lr{
\partial^\nu \phi\lr{ – x_\rho \partial_\mu \phi } + {\delta^{\nu}}_\mu x_\rho \LL
} \\
&=
\omega^{\mu\rho} x_\rho
\lr{
-\partial^\nu \phi \partial_\mu \phi + {\delta^{\nu}}_\mu \LL
}
\end{aligned}

We identify
\label{eqn:qftLecture9:560}

{T^\nu}_\mu =
-\partial^\nu \phi \partial_\mu \phi + {\delta^{\nu}}_\mu \LL,

so the current is
\label{eqn:qftLecture9:580}
\begin{aligned}
j^\nu_{\omega_{\mu\rho}}
&=
-\omega^{\mu\rho} x_\rho
{T^\nu}_\mu \\
&=
-\omega_{\mu\rho} x^\rho
T^{\nu\mu}
.
\end{aligned}

Define
\label{eqn:qftLecture9:600}
j^{\nu\mu\rho} = \inv{2} \lr{ x^\rho T^{\nu\mu} – x^{\mu} T^{\nu\rho} },

which retains the antisymmetry in $$\mu \rho$$ yet still drops the parameter $$\omega^{\mu\rho}$$.
To check that this makes sense, we can contract
$$j^{\nu\mu\rho}$$ with $$\omega_{\rho\mu}$$
\label{eqn:qftLecture9:880}
\begin{aligned}
j^{\nu\mu\rho} \omega_{\rho\mu}
&= -\inv{2} \lr{ x^\rho T^{\nu\mu} – x^{\mu} T^{\nu\rho} }
\omega_{\mu\rho} \\
&=
-\inv{2} x^\rho T^{\nu\mu}
\omega_{\mu\rho}
– \inv{2} x^{\mu} T^{\nu\rho}
\omega_{\rho\mu} \\
&=
-\inv{2} x^\rho T^{\nu\mu}
\omega_{\mu\rho}
– \inv{2} x^{\rho} T^{\nu\mu}
\omega_{\mu\rho} \\
&=
– x^{\rho} T^{\nu\mu}
\omega_{\mu\rho},
\end{aligned}

which matches \ref{eqn:qftLecture9:580} as desired.

### Example. Rotations $$\mu\rho = ij$$

\label{eqn:qftLecture9:620}
\begin{aligned}
J^{0 i j} \epsilon_{ijk}
&=
\inv{2} \lr{ x^i T^{0j} – x^{j} T^{0i} } \epsilon_{ijk} \\
&=
x^i T^{0j} \epsilon_{ijk}.
\end{aligned}

Observe that this has the structure of $$(\Bx \cross \Bp)_k$$, where $$\Bp$$ is the momentum density of the field.
Let
\label{eqn:qftLecture9:640}
L_k \equiv Q_k = \int d^3 x J^{0ij} \epsilon_{ijk}.

We can now quantize and build a generator
\label{eqn:qftLecture9:660}
\begin{aligned}
\hatU(\Balpha)
&= e^{i \Balpha \cdot \hat{\BL}} \\
&= \exp\lr{i \alpha_k
\int d^3 x x^i \hat{T}^{0j} \epsilon_{ijk}
}
\end{aligned}

From \ref{eqn:qftLecture9:560} we can quantize with $$T^{0j} = \partial^0 \phi \partial^j \phi \rightarrow \hat{\pi} \lr{\spacegrad \phihat}_j$$, or
\label{eqn:qftLecture9:900}
\begin{aligned}
\hatU(\Balpha)
&=
\exp\lr{i \alpha_k
\int d^3 x x^i \hat{\pi} (\spacegrad \phihat)_j \epsilon_{ijk}
} \\
&=
\exp\lr{i \Balpha \cdot
\int d^3 x \hat{\pi} \spacegrad \phihat \cross \Bx
}
\end{aligned}

\label{eqn:qftLecture9:680}
\begin{aligned}
\phihat(\By) \rightarrow \hatU(\alpha) \phihat(\By) \hatU^\dagger(\alpha)
&\approx
\phihat(\By) +
i \Balpha \cdot
\antisymmetric{
\int d^3 x \hat{\pi}(\Bx) \spacegrad \phihat(\Bx) \cross \Bx
}
{
\phihat(\By)
} \\
&=
\phihat(\By) +
i \Balpha \cdot
\int d^3 x
(-i) \delta^3(\Bx – \By)
&=
\phihat(\By) +
\Balpha \cdot \lr{ \spacegrad \phihat(\By ) \cross \By}
\end{aligned}

Explicitly, in coordinates, this is
\label{eqn:qftLecture9:700}
\begin{aligned}
\phihat(\By)
&\rightarrow
\phihat(\By) +
\alpha^i
\lr{
\partial^j \phihat(\By) y^k \epsilon_{jki}
} \\
&=
\phihat(\By) –
\epsilon_{ikj} \alpha^i y^k \partial^j \phihat \\
&=
\phihat( y^j – \epsilon^{ikj} \alpha^i y^k ).
\end{aligned}

This is a rotation. To illustrate, pick $$\Balpha = (0, 0, \alpha)$$, so $$y^j \rightarrow y^j – \epsilon^{ikj} \alpha y^k \delta_{i3} = y^j – \epsilon^{3kj} \alpha y^k$$, or
\label{eqn:qftLecture9:n}
\begin{aligned}
y^1 &\rightarrow y^1 – \epsilon^{3k1} \alpha y^k = y^1 + \alpha y^2 \\
y^2 &\rightarrow y^2 – \epsilon^{3k2} \alpha y^k = y^2 – \alpha y^1 \\
y^3 &\rightarrow y^3 – \epsilon^{3k3} \alpha y^k = y^3,
\end{aligned}

or in matrix form
\label{eqn:qftLecture9:720}
\begin{bmatrix}
y^1 \\
y^2 \\
y^3 \\
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & \alpha & 0 \\
-\alpha & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
y^1 \\
y^2 \\
y^3 \\
\end{bmatrix}.

## Motivation.

The notation I prefer for relativistic geometric algebra uses Hestenes’ space time algebra (STA) [2], where the basis is a four dimensional space $$\setlr{ \gamma_\mu }$$, subject to Dirac matrix like relations $$\gamma_\mu \cdot \gamma_\nu = \eta_{\mu \nu}$$.

In this formalism a four vector is just the sum of the products of coordinates and basis vectors, for example, using summation convention

\label{eqn:boostToParavector:160}
x = x^\mu \gamma_\mu.

The invariant for a four-vector in STA is just the square of that vector

\label{eqn:boostToParavector:180}
\begin{aligned}
x^2
&= (x^\mu \gamma_\mu) \cdot (x^\nu \gamma_\nu) \\
&= \sum_\mu (x^\mu)^2 (\gamma_\mu)^2 \\
&= (x^0)^2 – \sum_{k = 1}^3 (x^k)^2 \\
&= (ct)^2 – \Bx^2.
\end{aligned}

Recall that a four-vector is time-like if this squared-length is positive, spacelike if negative, and light-like when zero.

Time-like projections are possible by dotting with the “lab-frame” time like basis vector $$\gamma_0$$

\label{eqn:boostToParavector:200}
ct = x \cdot \gamma_0 = x^0,

and space-like projections are wedges with the same

\label{eqn:boostToParavector:220}
\Bx = x \cdot \gamma_0 = x^k \sigma_k,

where sums over Latin indexes $$k \in \setlr{1,2,3}$$ are implied, and where the elements $$\sigma_k$$

\label{eqn:boostToParavector:80}
\sigma_k = \gamma_k \gamma_0.

which are bivectors in STA, can be viewed as an Euclidean vector basis $$\setlr{ \sigma_k }$$.

Rotations in STA involve exponentials of space like bivectors $$\theta = a_{ij} \gamma_i \wedge \gamma_j$$

\label{eqn:boostToParavector:240}
x’ = e^{ \theta/2 } x e^{ -\theta/2 }.

Boosts, on the other hand, have exactly the same form, but the exponentials are with respect to space-time bivectors arguments, such as $$\theta = a \wedge \gamma_0$$, where $$a$$ is any four-vector.

Observe that both boosts and rotations necessarily conserve the space-time length of a four vector (or any multivector with a scalar square).

\label{eqn:boostToParavector:260}
\begin{aligned}
\lr{x’}^2
&=
\lr{ e^{ \theta/2 } x e^{ -\theta/2 } } \lr{ e^{ \theta/2 } x e^{ -\theta/2 } } \\
&=
e^{ \theta/2 } x \lr{ e^{ -\theta/2 } e^{ \theta/2 } } x e^{ -\theta/2 } \\
&=
e^{ \theta/2 } x^2 e^{ -\theta/2 } \\
&=
x^2 e^{ \theta/2 } e^{ -\theta/2 } \\
&=
x^2.
\end{aligned}

## Paravectors.

Paravectors, as used by Baylis [1], represent four-vectors using a Euclidean multivector basis $$\setlr{ \Be_\mu }$$, where $$\Be_0 = 1$$. The conversion between STA and paravector notation requires only multiplication with the timelike basis vector for the lab frame $$\gamma_0$$

\label{eqn:boostToParavector:40}
\begin{aligned}
X
&= x \gamma_0 \\
&= \lr{ x^0 \gamma_0 + x^k \gamma_k } \gamma_0 \\
&= x^0 + x^k \gamma_k \gamma_0 \\
&= x^0 + \Bx \\
&= c t + \Bx,
\end{aligned}

We need a different structure for the invariant length in paravector form. That invariant length is
\label{eqn:boostToParavector:280}
\begin{aligned}
x^2
&=
\lr{ \lr{ ct + \Bx } \gamma_0 }
\lr{ \lr{ ct + \Bx } \gamma_0 } \\
&=
\lr{ \lr{ ct + \Bx } \gamma_0 }
\lr{ \gamma_0 \lr{ ct – \Bx } } \\
&=
\lr{ ct + \Bx }
\lr{ ct – \Bx }.
\end{aligned}

Baylis introduces an involution operator $$\overline{{M}}$$ which toggles the sign of any vector or bivector grades of a multivector. For example, if $$M = a + \Ba + I \Bb + I c$$, where $$a,c \in \mathbb{R}$$ and $$\Ba, \Bb \in \mathbb{R}^3$$ is a multivector with all grades $$0,1,2,3$$, then the involution of $$M$$ is

\label{eqn:boostToParavector:300}
\overline{{M}} = a – \Ba – I \Bb + I c.

Utilizing this operator, the invariant length for a paravector $$X$$ is $$X \overline{{X}}$$.

Let’s consider how boosts and rotations can be expressed in the paravector form. The half angle operator for a boost along the spacelike $$\Bv = v \vcap$$ direction has the form

\label{eqn:boostToParavector:120}
L = e^{ -\vcap \phi/2 },

\label{eqn:boostToParavector:140}
\begin{aligned}
X’
&=
c t’ + \Bx’ \\
&=
x’ \gamma_0 \\
&=
L x L^\dagger \\
&=
e^{ -\vcap \phi/2 } x^\mu \gamma_\mu
e^{ \vcap \phi/2 } \gamma_0 \\
&=
e^{ -\vcap \phi/2 } x^\mu \gamma_\mu \gamma_0
e^{ -\vcap \phi/2 } \\
&=
e^{ -\vcap \phi/2 } \lr{ x^0 + \Bx } e^{ -\vcap \phi/2 } \\
&=
L X L.
\end{aligned}

Because the involution operator toggles the sign of vector grades, it is easy to see that the required invariance is maintained

\label{eqn:boostToParavector:320}
\begin{aligned}
X’ \overline{{X’}}
&=
L X L
\overline{{ L X L }} \\
&=
L X L
\overline{{ L }} \overline{{ X }} \overline{{ L }} \\
&=
L X \overline{{ X }} \overline{{ L }} \\
&=
X \overline{{ X }} L \overline{{ L }} \\
&=
X \overline{{ X }}.
\end{aligned}

Let’s explicitly expand the transformation of \ref{eqn:boostToParavector:140}, so we can relate the rapidity angle $$\phi$$ to the magnitude of the velocity. This is most easily done by splitting the spacelike component $$\Bx$$ of the four vector into its projective and rejective components

\label{eqn:boostToParavector:340}
\begin{aligned}
\Bx
&= \vcap \vcap \Bx \\
&= \vcap \lr{ \vcap \cdot \Bx + \vcap \wedge \Bx } \\
&= \vcap \lr{ \vcap \cdot \Bx } + \vcap \lr{ \vcap \wedge \Bx } \\
&= \Bx_\parallel + \Bx_\perp.
\end{aligned}

The exponential

\label{eqn:boostToParavector:360}
e^{-\vcap \phi/2}
=
\cosh\lr{ \phi/2 }
– \vcap \sinh\lr{ \phi/2 },

commutes with any scalar grades and with $$\Bx_\parallel$$, but anticommutes with $$\Bx_\perp$$, so

\label{eqn:boostToParavector:380}
\begin{aligned}
X’
&=
\lr{ c t + \Bx_\parallel } e^{ -\vcap \phi/2 } e^{ -\vcap \phi/2 }
+
\Bx_\perp e^{ \vcap \phi/2 } e^{ -\vcap \phi/2 } \\
&=
\lr{ c t + \Bx_\parallel } e^{ -\vcap \phi }
+
\Bx_\perp \\
&=
\lr{ c t + \vcap \lr{ \vcap \cdot \Bx } } \lr{ \cosh \phi – \vcap \sinh \phi }
+
\Bx_\perp \\
&=
\Bx_\perp
+
\lr{ c t \cosh\phi – \lr{ \vcap \cdot \Bx} \sinh \phi }
+
\vcap \lr{ \lr{ \vcap \cdot \Bx } \cosh\phi – c t \sinh \phi } \\
&=
\Bx_\perp
+
\cosh\phi \lr{ c t – \lr{ \vcap \cdot \Bx} \tanh \phi }
+
\vcap \cosh\phi \lr{ \vcap \cdot \Bx – c t \tanh \phi }.
\end{aligned}

Employing the argument from [3],
we want $$\phi$$ defined so that this has structure of a Galilean transformation in the limit where $$\phi \rightarrow 0$$. This means we equate

\label{eqn:boostToParavector:400}
\tanh \phi = \frac{v}{c},

so that for small $$\phi$$

\label{eqn:boostToParavector:420}
\Bx’ = \Bx – \Bv t.

We can solving for $$\sinh^2 \phi$$ and $$\cosh^2 \phi$$ in terms of $$v/c$$ using

\label{eqn:boostToParavector:440}
\tanh^2 \phi
= \frac{v^2}{c^2}
=
\frac{ \sinh^2 \phi }{1 + \sinh^2 \phi}
=
\frac{ \cosh^2 \phi – 1 }{\cosh^2 \phi}.

which after picking the positive root required for Galilean equivalence gives
\label{eqn:boostToParavector:460}
\begin{aligned}
\cosh \phi &= \frac{1}{\sqrt{1 – (\Bv/c)^2}} \equiv \gamma \\
\sinh \phi &= \frac{v/c}{\sqrt{1 – (\Bv/c)^2}} = \gamma v/c.
\end{aligned}

The Lorentz boost, written out in full is

\label{eqn:boostToParavector:480}
ct’ + \Bx’
=
\Bx_\perp
+
\gamma \lr{ c t – \frac{\Bv}{c} \cdot \Bx }
+
\gamma \lr{ \vcap \lr{ \vcap \cdot \Bx } – \Bv t }
.

Authors like Chappelle, et al., that also use paravectors [4], specify the form of the Lorentz transformation for the electromagnetic field, but for that transformation reversion is used instead of involution.
I plan to explore that in a later post, starting from the STA formalism that I already understand, and see if I can make sense
of the underlying rationale.

# References

[1] William Baylis. Electrodynamics: a modern geometric approach, volume 17. Springer Science \& Business Media, 2004.

[2] C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University Press New York, Cambridge, UK, 1st edition, 2003.

[3] L. Landau and E. Lifshitz. The Classical theory of fields. Addison-Wesley, 1951.

[4] James M Chappell, Samuel P Drake, Cameron L Seidel, Lachlan J Gunn, and Derek Abbott. Geometric algebra for electrical and electronic engineers. Proceedings of the IEEE, 102 0(9), 2014.

## 2D SHO xy perturbation

### Q: [1] pr. 5.4

Given a 2D SHO with Hamiltonian

\label{eqn:2dHarmonicOscillatorXYPerturbation:20}
H_0 = \inv{2m} \lr{ p_x^2 + p_y^2 } + \frac{m \omega^2}{2} \lr{ x^2 + y^2 },

• (a)
What are the energies and degeneracies of the three lowest states?

• (b)
With perturbation

\label{eqn:2dHarmonicOscillatorXYPerturbation:40}
V = m \omega^2 x y,

calculate the first order energy perturbations and the zeroth order perturbed states.

• (c)
Solve the $$H_0 + \delta V$$ problem exactly, and compare.

### A: part (a)

Recall that we have

\label{eqn:2dHarmonicOscillatorXYPerturbation:60}
H \ket{n_1, n_2} =
\Hbar\omega
\lr{
n_1 + n_2 + 1
}
\ket{n_1, n_2},

So the three lowest energy states are $$\ket{0,0}, \ket{1,0}, \ket{0,1}$$ with energies $$\Hbar \omega, 2 \Hbar \omega, 2 \Hbar \omega$$ respectively (with a two fold degeneracy for the second two energy eigenkets).

### A: part (b)

Consider the action of $$x y$$ on the $$\beta = \setlr{ \ket{0,0}, \ket{1,0}, \ket{0,1} }$$ subspace. Those are

\label{eqn:2dHarmonicOscillatorXYPerturbation:200}
\begin{aligned}
x y \ket{0,0}
&=
\frac{x_0^2}{2} \lr{ a + a^\dagger } \lr{ b + b^\dagger } \ket{0,0} \\
&=
\frac{x_0^2}{2} \lr{ b + b^\dagger } \ket{1,0} \\
&=
\frac{x_0^2}{2} \ket{1,1}.
\end{aligned}

\label{eqn:2dHarmonicOscillatorXYPerturbation:220}
\begin{aligned}
x y \ket{1, 0}
&=
\frac{x_0^2}{2} \lr{ a + a^\dagger } \lr{ b + b^\dagger } \ket{1,0} \\
&=
\frac{x_0^2}{2} \lr{ a + a^\dagger } \ket{1,1} \\
&=
\frac{x_0^2}{2} \lr{ \ket{0,1} + \sqrt{2} \ket{2,1} } .
\end{aligned}

\label{eqn:2dHarmonicOscillatorXYPerturbation:240}
\begin{aligned}
x y \ket{0, 1}
&=
\frac{x_0^2}{2} \lr{ a + a^\dagger } \lr{ b + b^\dagger } \ket{0,1} \\
&=
\frac{x_0^2}{2} \lr{ b + b^\dagger } \ket{1,1} \\
&=
\frac{x_0^2}{2} \lr{ \ket{1,0} + \sqrt{2} \ket{1,2} }.
\end{aligned}

The matrix representation of $$m \omega^2 x y$$ with respect to the subspace spanned by basis $$\beta$$ above is

\label{eqn:2dHarmonicOscillatorXYPerturbation:260}
x y
\sim
\inv{2} \Hbar \omega
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
\end{bmatrix}.

This diagonalizes with

\label{eqn:2dHarmonicOscillatorXYPerturbation:300}
U
=
\begin{bmatrix}
1 & 0 \\
0 & \tilde{U}
\end{bmatrix}

\label{eqn:2dHarmonicOscillatorXYPerturbation:320}
\tilde{U}
=
\inv{\sqrt{2}}
\begin{bmatrix}
1 & 1 \\
1 & -1 \\
\end{bmatrix}

\label{eqn:2dHarmonicOscillatorXYPerturbation:340}
D =
\inv{2} \Hbar \omega
\begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1 \\
\end{bmatrix}

\label{eqn:2dHarmonicOscillatorXYPerturbation:360}
x y = U D U^\dagger = U D U.

The unperturbed Hamiltonian in the original basis is

\label{eqn:2dHarmonicOscillatorXYPerturbation:380}
H_0
=
\Hbar \omega
\begin{bmatrix}
1 & 0 \\
0 & 2 I
\end{bmatrix},

So the transformation to the diagonal $$x y$$ basis leaves the initial Hamiltonian unaltered

\label{eqn:2dHarmonicOscillatorXYPerturbation:400}
\begin{aligned}
H_0′
&= U^\dagger H_0 U \\
&=
\Hbar \omega
\begin{bmatrix}
1 & 0 \\
0 & \tilde{U} 2 I \tilde{U}
\end{bmatrix} \\
&=
\Hbar \omega
\begin{bmatrix}
1 & 0 \\
0 & 2 I
\end{bmatrix}.
\end{aligned}

Now we can compute the first order energy shifts almost by inspection. Writing the new basis as $$\beta’ = \setlr{ \ket{0}, \ket{1}, \ket{2} }$$ those energy shifts are just the diagonal elements from the $$x y$$ operators matrix representation

\label{eqn:2dHarmonicOscillatorXYPerturbation:420}
\begin{aligned}
E^{{(1)}}_0 &= \bra{0} V \ket{0} = 0 \\
E^{{(1)}}_1 &= \bra{1} V \ket{1} = \inv{2} \Hbar \omega \\
E^{{(1)}}_2 &= \bra{2} V \ket{2} = -\inv{2} \Hbar \omega.
\end{aligned}

The new energies are

\label{eqn:2dHarmonicOscillatorXYPerturbation:440}
\begin{aligned}
E_0 &\rightarrow \Hbar \omega \\
E_1 &\rightarrow \Hbar \omega \lr{ 2 + \delta/2 } \\
E_2 &\rightarrow \Hbar \omega \lr{ 2 – \delta/2 }.
\end{aligned}

### A: part (c)

For the exact solution, it’s possible to rotate the coordinate system in a way that kills the explicit $$x y$$ term of the perturbation. That we could do this for $$x, y$$ operators wasn’t obvious to me, but after doing so (and rotating the momentum operators the same way) the new operators still have the required commutators. Let

\label{eqn:2dHarmonicOscillatorXYPerturbation:80}
\begin{aligned}
\begin{bmatrix}
u \\
v
\end{bmatrix}
&=
\begin{bmatrix}
\cos\theta & \sin\theta \\
-\sin\theta & \cos\theta
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix} \\
&=
\begin{bmatrix}
x \cos\theta + y \sin\theta \\
-x \sin\theta + y \cos\theta
\end{bmatrix}.
\end{aligned}

Similarly, for the momentum operators, let
\label{eqn:2dHarmonicOscillatorXYPerturbation:100}
\begin{aligned}
\begin{bmatrix}
p_u \\
p_v
\end{bmatrix}
&=
\begin{bmatrix}
\cos\theta & \sin\theta \\
-\sin\theta & \cos\theta
\end{bmatrix}
\begin{bmatrix}
p_x \\
p_y
\end{bmatrix} \\
&=
\begin{bmatrix}
p_x \cos\theta + p_y \sin\theta \\
-p_x \sin\theta + p_y \cos\theta
\end{bmatrix}.
\end{aligned}

For the commutators of the new operators we have

\label{eqn:2dHarmonicOscillatorXYPerturbation:120}
\begin{aligned}
\antisymmetric{u}{p_u}
&=
\antisymmetric{x \cos\theta + y \sin\theta}{p_x \cos\theta + p_y \sin\theta} \\
&=
\antisymmetric{x}{p_x} \cos^2\theta + \antisymmetric{y}{p_y} \sin^2\theta \\
&=
i \Hbar \lr{ \cos^2\theta + \sin^2\theta } \\
&=
i\Hbar.
\end{aligned}

\label{eqn:2dHarmonicOscillatorXYPerturbation:140}
\begin{aligned}
\antisymmetric{v}{p_v}
&=
\antisymmetric{-x \sin\theta + y \cos\theta}{-p_x \sin\theta + p_y \cos\theta} \\
&=
\antisymmetric{x}{p_x} \sin^2\theta + \antisymmetric{y}{p_y} \cos^2\theta \\
&=
i \Hbar.
\end{aligned}

\label{eqn:2dHarmonicOscillatorXYPerturbation:160}
\begin{aligned}
\antisymmetric{u}{p_v}
&=
\antisymmetric{x \cos\theta + y \sin\theta}{-p_x \sin\theta + p_y \cos\theta} \\
&= \cos\theta \sin\theta \lr{ -\antisymmetric{x}{p_x} + \antisymmetric{y}{p_p} } \\
&=
0.
\end{aligned}

\label{eqn:2dHarmonicOscillatorXYPerturbation:180}
\begin{aligned}
\antisymmetric{v}{p_u}
&=
\antisymmetric{-x \sin\theta + y \cos\theta}{p_x \cos\theta + p_y \sin\theta} \\
&= \cos\theta \sin\theta \lr{ -\antisymmetric{x}{p_x} + \antisymmetric{y}{p_p} } \\
&=
0.
\end{aligned}

We see that the new operators are canonical conjugate as required. For this problem, we just want a 45 degree rotation, with

\label{eqn:2dHarmonicOscillatorXYPerturbation:460}
\begin{aligned}
x &= \inv{\sqrt{2}} \lr{ u + v } \\
y &= \inv{\sqrt{2}} \lr{ u – v }.
\end{aligned}

We have
\label{eqn:2dHarmonicOscillatorXYPerturbation:480}
\begin{aligned}
x^2 + y^2
&=
\inv{2} \lr{ (u+v)^2 + (u-v)^2 } \\
&=
\inv{2} \lr{ 2 u^2 + 2 v^2 + 2 u v – 2 u v } \\
&=
u^2 + v^2,
\end{aligned}

\label{eqn:2dHarmonicOscillatorXYPerturbation:500}
\begin{aligned}
p_x^2 + p_y^2
&=
\inv{2} \lr{ (p_u+p_v)^2 + (p_u-p_v)^2 } \\
&=
\inv{2} \lr{ 2 p_u^2 + 2 p_v^2 + 2 p_u p_v – 2 p_u p_v } \\
&=
p_u^2 + p_v^2,
\end{aligned}

and
\label{eqn:2dHarmonicOscillatorXYPerturbation:520}
\begin{aligned}
x y
&=
\inv{2} \lr{ (u+v)(u-v) } \\
&=
\inv{2} \lr{ u^2 – v^2 }.
\end{aligned}

The perturbed Hamiltonian is

\label{eqn:2dHarmonicOscillatorXYPerturbation:540}
\begin{aligned}
H_0 + \delta V
&=
\inv{2m} \lr{ p_u^2 + p_v^2 }
+ \inv{2} m \omega^2 \lr{ u^2 + v^2 + \delta u^2 – \delta v^2 } \\
&=
\inv{2m} \lr{ p_u^2 + p_v^2 }
+ \inv{2} m \omega^2 \lr{ u^2(1 + \delta) + v^2 (1 – \delta) }.
\end{aligned}

In this coordinate system, the corresponding eigensystem is

\label{eqn:2dHarmonicOscillatorXYPerturbation:560}
H \ket{n_1, n_2}
= \Hbar \omega \lr{ 1 + n_1 \sqrt{1 + \delta} + n_2 \sqrt{ 1 – \delta } } \ket{n_1, n_2}.

For small $$\delta$$

\label{eqn:2dHarmonicOscillatorXYPerturbation:580}
n_1 \sqrt{1 + \delta} + n_2 \sqrt{ 1 – \delta }
\approx
n_1 + n_2
+ \inv{2} n_1 \delta
– \inv{2} n_2 \delta,

so
\label{eqn:2dHarmonicOscillatorXYPerturbation:600}
H \ket{n_1, n_2}
\approx \Hbar \omega \lr{ 1 + n_1 + n_2 + \inv{2} n_1 \delta – \inv{2} n_2 \delta
} \ket{n_1, n_2}.

The lowest order perturbed energy levels are

\label{eqn:2dHarmonicOscillatorXYPerturbation:620}
\ket{0,0} \rightarrow \Hbar \omega

\label{eqn:2dHarmonicOscillatorXYPerturbation:640}
\ket{1,0} \rightarrow \Hbar \omega \lr{ 2 + \inv{2} \delta }

\label{eqn:2dHarmonicOscillatorXYPerturbation:660}
\ket{0,1} \rightarrow \Hbar \omega \lr{ 2 – \inv{2} \delta }

The degeneracy of the $$\ket{0,1}, \ket{1,0}$$ states has been split, and to first order match the zeroth order perturbation result.

# References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

## Third update of aggregate notes for phy1520, Graduate Quantum Mechanics.

I’ve posted a third update of my aggregate notes for PHY1520H Graduate Quantum Mechanics, taught by Prof. Arun Paramekanti. In addition to what was noted previously, this contains lecture notes up to lecture 13, my solutions for the third problem set, and some additional worked practice problems.

Most of the content was posted individually in the following locations, but those original documents will not be maintained individually any further.

## PHY1520H Graduate Quantum Mechanics. Lecture 12: Symmetry (cont.). Taught by Prof. Arun Paramekanti

### Disclaimer

Peeter’s lecture notes from class. These may be incoherent and rough.

These are notes for the UofT course PHY1520, Graduate Quantum Mechanics, taught by Prof. Paramekanti, covering chap. 4 content from [1].

### Parity (review)

\label{eqn:qmLecture12:20}
\hat{\Pi} \hat{x} \hat{\Pi} = – \hat{x}

\label{eqn:qmLecture12:40}
\hat{\Pi} \hat{p} \hat{\Pi} = – \hat{p}

These are polar vectors, in contrast to an axial vector such as $$\BL = \Br \cross \Bp$$.

\label{eqn:qmLecture12:60}
\hat{\Pi}^2 = 1

\label{eqn:qmLecture12:80}
\Psi(x) \rightarrow \Psi(-x)

If $$\antisymmetric{\hat{\Pi}}{\hat{H}} = 0$$ then all the eigenstates are either

• even: $$\hat{\Pi}$$ eigenvalue is $$+ 1$$.
• odd: $$\hat{\Pi}$$ eigenvalue is $$– 1$$.

We are done with discrete symmetry operators for now.

### Translations

Define a (continuous) translation operator

\label{eqn:qmLecture12:100}
\hat{T}_\epsilon \ket{x} = \ket{x + \epsilon}

The action of this operator is sketched in fig. 1.

fig. 1. Translation operation.

This is a unitary operator

\label{eqn:qmLecture12:120}
\hat{T}_{-\epsilon} = \hat{T}_{\epsilon}^\dagger = \hat{T}_{\epsilon}^{-1}

In a position basis, the action of this operator is

\label{eqn:qmLecture12:140}
\bra{x} \hat{T}_{\epsilon} \ket{\psi} = \braket{x-\epsilon}{\psi} = \psi(x – \epsilon)

\label{eqn:qmLecture12:160}
\Psi(x – \epsilon) \approx \Psi(x) – \epsilon \PD{x}{\Psi}

\label{eqn:qmLecture12:180}
\bra{x} \hat{T}_{\epsilon} \ket{\Psi}
= \braket{x}{\Psi} – \frac{\epsilon}{\Hbar} \bra{ x} i \hat{p} \ket{\Psi}

\label{eqn:qmLecture12:200}
\hat{T}_{\epsilon} \approx \lr{ 1 – i \frac{\epsilon}{\Hbar} \hat{p} }

A non-infinitesimal translation can be composed of many small translations, as sketched in fig. 2.

fig. 2. Composition of small translations

For $$\epsilon \rightarrow 0, N \rightarrow \infty, N \epsilon = a$$, the total translation operator is

\label{eqn:qmLecture12:220}
\begin{aligned}
\hat{T}_{a}
&= \hat{T}_{\epsilon}^N \\
&= \lim_{\epsilon \rightarrow 0, N \rightarrow \infty, N \epsilon = a }
\lr{ 1 – \frac{\epsilon}{\Hbar} \hat{p} }^N \\
&= e^{-i a \hat{p}/\Hbar}
\end{aligned}

The momentum $$\hat{p}$$ is called a “Generator” generator of translations. If a Hamiltonian $$H$$ is translationally invariant, then

\label{eqn:qmLecture12:240}
\antisymmetric{\hat{T}_{a}}{H} = 0, \qquad \forall a.

This means that momentum will be a good quantum number

\label{eqn:qmLecture12:260}
\antisymmetric{\hat{p}}{H} = 0.

### Rotations

Rotations form a non-Abelian group, since the order of rotations $$\hatR_1 \hatR_2 \ne \hatR_2 \hatR_1$$.

Given a rotation acting on a ket

\label{eqn:qmLecture12:280}
\hatR \ket{\Br} = \ket{R \Br},

observe that the action of the rotation operator on a wave function is inverted

\label{eqn:qmLecture12:300}
\bra{\Br} \hatR \ket{\Psi}
=
\bra{R^{-1} \Br} \ket{\Psi}
= \Psi(R^{-1} \Br).

## Example: Z axis normal rotation

Consider an infinitesimal rotation about the z-axis as sketched in fig. 3(a),(b)

\label{eqn:qmLecture12:320}
\begin{aligned}
x’ &= x – \epsilon y \\
y’ &= y + \epsilon y \\
z’ &= z
\end{aligned}

The rotated wave function is

\label{eqn:qmLecture12:340}
\tilde{\Psi}(x,y,z)
= \Psi( x + \epsilon y, y – \epsilon x, z )
=
\Psi( x, y, z )
+
\epsilon y \underbrace{\PD{x}{\Psi}}_{i \hat{p}_x/\Hbar}

\epsilon x \underbrace{\PD{y}{\Psi}}_{i \hat{p}_y/\Hbar}.

The state must then transform as

\label{eqn:qmLecture12:360}
\ket{\tilde{\Psi}}
=
\lr{
1
+ i \frac{\epsilon}{\Hbar} \hat{y} \hat{p}_x
– i \frac{\epsilon}{\Hbar} \hat{x} \hat{p}_y
}
\ket{\Psi}.

Observe that the combination $$\hat{x} \hat{p}_y – \hat{y} \hat{p}_x$$ is the $$\hat{L}_z$$ component of angular momentum $$\hat{\BL} = \hat{\Br} \cross \hat{\Bp}$$, so the infinitesimal rotation can be written

\label{eqn:qmLecture12:380}
\boxed{
\hatR_z(\epsilon) \ket{\Psi}
=
\lr{ 1 – i \frac{\epsilon}{\Hbar} \hat{L}_z } \ket{\Psi}.
}

For a finite rotation $$\epsilon \rightarrow 0, N \rightarrow \infty, \phi = \epsilon N$$, the total rotation is

\label{eqn:qmLecture12:420}
\hatR_z(\phi)
=
\lr{ 1 – \frac{i \epsilon}{\Hbar} \hat{L}_z }^N,

or
\label{eqn:qmLecture12:440}
\boxed{
\hatR_z(\phi)
=
e^{-i \frac{\phi}{\Hbar} \hat{L}_z}.
}

Note that $$\antisymmetric{\hat{L}_x}{\hat{L}_y} \ne 0$$.

By construction using Euler angles or any other method, a general rotation will include contributions from components of all the angular momentum operator, and will have the structure

\label{eqn:qmLecture12:480}
\boxed{
\hatR_\ncap(\phi)
=
e^{-i \frac{\phi}{\Hbar} \lr{ \hat{\BL} \cdot \ncap }}.
}

### Rotationally invariant $$\hat{H}$$.

Given a rotationally invariant Hamiltonian

\label{eqn:qmLecture12:520}
\antisymmetric{\hat{R}_\ncap(\phi)}{\hat{H}} = 0 \qquad \forall \ncap, \phi,

then every

\label{eqn:qmLecture12:540}
\antisymmetric{\BL \cdot \ncap}{\hat{H}} = 0,

or
\label{eqn:qmLecture12:560}
\antisymmetric{L_i}{\hat{H}} = 0,

Non-Abelian implies degeneracies in the spectrum.

### Time-reversal

Imagine that we have something moving along a curve at time $$t = 0$$, and ending up at the final position at time $$t = t_f$$.

fig. 4. Time reversal trajectory.

Imagine that we flip the direction of motion (i.e. flipping the velocity) and run time backwards so the final-time state becomes the initial state.

If the time reversal operator is designated $$\hat{\Theta}$$, with operation

\label{eqn:qmLecture12:580}
\hat{\Theta} \ket{\Psi} = \ket{\tilde{\Psi}},

so that

\label{eqn:qmLecture12:600}
\hat{\Theta}^{-1} e^{-i \hat{H} t/\Hbar} \hat{\Theta} \ket{\Psi(t)} = \ket{\Psi(0)},

or

\label{eqn:qmLecture12:620}
\hat{\Theta}^{-1} e^{-i \hat{H} t/\Hbar} \hat{\Theta} \ket{\Psi(0)} = \ket{\Psi(-t)}.

# References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

## PHY1520H Graduate Quantum Mechanics. Lecture 9: Dirac equation (cont.). Taught by Prof. Arun Paramekanti

### Disclaimer

Peeter’s lecture notes from class. These may be incoherent and rough.

These are notes for the UofT course PHY1520, Graduate Quantum Mechanics, taught by Prof. Paramekanti.

### Where we left off

\label{eqn:qmLecture9:20}
-i \Hbar \PD{t}{}
\begin{bmatrix}
\psi_1 \\
\psi_2
\end{bmatrix}
=
\begin{bmatrix}
-i \Hbar c \PD{x}{} & m c^2 \\
m c^2 & i \Hbar c \PD{x}{} \\
\end{bmatrix}.

With a potential this would be

\label{eqn:qmLecture9:40}
-i \Hbar \PD{t}{}
\begin{bmatrix}
\psi_1 \\
\psi_2
\end{bmatrix}
=
\begin{bmatrix}
-i \Hbar c \PD{x}{} + V(x) & m c^2 \\
m c^2 & i \Hbar c \PD{x}{} + V(x) \\
\end{bmatrix}.

This means that the potential is raising the energy eigenvalue of the system.

### Free Particle

Assuming a form

\label{eqn:qmLecture9:60}
\begin{bmatrix}
\psi_1(x,t) \\
\psi_2(x,t)
\end{bmatrix}
=
e^{i k x}
\begin{bmatrix}
f_1(t) \\
f_2(t) \\
\end{bmatrix},

and plugging back into the Dirac equation we have

\label{eqn:qmLecture9:80}
-i \Hbar \PD{t}{}
\begin{bmatrix}
f_1 \\
f_2
\end{bmatrix}
=
\begin{bmatrix}
k \Hbar c & m c^2 \\
m c^2 & – \Hbar k c \\
\end{bmatrix}
\begin{bmatrix}
f_1 \\
f_2
\end{bmatrix}.

We can use a diagonalizing rotation

\label{eqn:qmLecture9:100}
\begin{bmatrix}
f_1 \\
f_2
\end{bmatrix}
=
\begin{bmatrix}
\cos\theta_k & -\sin\theta_k \\
\sin\theta_k & \cos\theta_k \\
\end{bmatrix}
\begin{bmatrix}
f_{+} \\
f_{-} \\
\end{bmatrix}.

Plugging this in reduces the system to the form

\label{eqn:qmLecture9:140}
-i \Hbar \PD{t}{}
\begin{bmatrix}
f_{+} \\
f_{-} \\
\end{bmatrix}
=
\begin{bmatrix}
E_k & 0 \\
0 & -E_k
\end{bmatrix}
\begin{bmatrix}
f_{+} \\
f_{-} \\
\end{bmatrix}.

Where the rotation angle is found to be given by

\label{eqn:qmLecture9:160}
\begin{aligned}
\sin(2 \theta_k) &= \frac{m c^2}{\sqrt{(\Hbar k c)^2 + m^2 c^4}} \\
\cos(2 \theta_k) &= \frac{\Hbar k c}{\sqrt{(\Hbar k c)^2 + m^2 c^4}} \\
E_k &= \sqrt{(\Hbar k c)^2 + m^2 c^4}
\end{aligned}

See fig. 1 for a sketch of energy vs momentum. The asymptotes are the limiting cases when $$m c^2 \rightarrow 0$$. The $$+$$ branch is what we usually associate with particles. What about the other energy states. For Fermions Dirac argued that the lower energy states could be thought of as “filled up”, using the Pauli principle to leave only the positive energy states available. This was called the “Dirac Sea”. This isn’t a good solution, and won’t work for example for Bosons.

fig. 1. Dirac equation solution space

Another way to rationalize this is to employ ideas from solid state theory. For example consider a semiconductor with a valence and conduction band as sketched in fig. 2.

fig. 2. Solid state valence and conduction band transition

A photon can excite an electron from the valence band to the conduction band, leaving all the valence band states filled except for one (a hole). For an electron we can use almost the same picture, as sketched in fig. 3.

fig. 3. Pair creation

A photon with energy $$E_k – (-E_k)$$ can create a positron-electron pair from the vacuum, where the energy of the electron and positron pair is $$E_k$$.

At high enough energies, we can see this pair creation occur.

### Zitterbewegung

If a particle is created at a non-eigenstate such as one on the asymptotes, then oscillations between the positive and negative branches are possible as sketched in fig. 4.

fig. 4. Zitterbewegung oscillation

Only “vertical” oscillations between the positive and negative locations on these branches is possible since those are the points that match the particle momentum. Examining this will be the aim of one of the problem set problems.

### Probability and current density

If we define a probability density

\label{eqn:qmLecture9:180}
\rho(x, t) = \Abs{\psi_1}^2 + \Abs{\psi_2}^2,

does this satisfy a probability conservation relation

\label{eqn:qmLecture9:200}
\PD{t}{\rho} + \PD{x}{j} = 0,

where $$j$$ is the probability current. Plugging in the density, we have

\label{eqn:qmLecture9:220}
\PD{t}{\rho}
=
\PD{t}{\psi_1^\conj} \psi_1
+
\psi_1^\conj \PD{t}{\psi_1}
+
\PD{t}{\psi_2^\conj} \psi_2
+
\psi_2^\conj \PD{t}{\psi_2}.

It turns out that the probability current has the form

\label{eqn:qmLecture9:240}
j(x,t) = c \lr{ \psi_1^\conj \psi_1 + \psi_2^\conj \psi_2 }.

Here the speed of light $$c$$ is the slope of the line in the plots above. We can think of this current density as right movers minus the left movers. Any state that is given can be thought of as a combination of right moving and left moving states, neither of which are eigenstates of the free particle Hamiltonian.

### Potential step

The next logical thing to think about, as in non-relativistic quantum mechanics, is to think about what occurs when the particle hits a potential step, as in fig. 5.

fig. 5. Reflection off a potential barrier

The approach is the same. We write down the wave functions for the $$V = 0$$ region (I), and the higher potential region (II).

The eigenstates are found on the solid lines above the asymptotes on the right hand movers side as sketched in fig. 6. The right and left moving designations are based on the phase velocity $$\PDi{k}{E}$$ (approaching $$\pm c$$ on the top-right and top-left quadrants respectively).

fig. 6. Right movers and left movers

For $$k > 0$$, an eigenstate for the incident wave is

\label{eqn:qmLecture9:261}
\Bpsi_{\textrm{inc}}(x) =
\begin{bmatrix}
\cos\theta_k \\
\sin\theta_k
\end{bmatrix}
e^{i k x},

For the reflected wave function, we pick a function on the left moving side of the positive energy branch.

\label{eqn:qmLecture9:260}
\Bpsi_{\textrm{ref}}(x) =
\begin{bmatrix}
? \\
?
\end{bmatrix}
e^{-i k x},

We’ll go through this in more detail next time.

## Question: Calculate the right going diagonalization

Prove (7).

To determine the relations for $$\theta_k$$ we have to solve

\label{eqn:qmLecture9:280}
\begin{bmatrix}
E_k & 0 \\
0 & -E_k
\end{bmatrix}
= R^{-1} H R.

Working with $$\Hbar = c = 1$$ temporarily, and $$C = \cos\theta_k, S = \sin\theta_k$$, that is

\label{eqn:qmLecture9:300}
\begin{aligned}
\begin{bmatrix}
E_k & 0 \\
0 & -E_k
\end{bmatrix}
&=
\begin{bmatrix}
C & S \\
-S & C
\end{bmatrix}
\begin{bmatrix}
k & m \\
m & -k
\end{bmatrix}
\begin{bmatrix}
C & -S \\
S & C
\end{bmatrix} \\
&=
\begin{bmatrix}
C & S \\
-S & C
\end{bmatrix}
\begin{bmatrix}
k C + m S & -k S + m C \\
m C – k S & -m S – k C
\end{bmatrix} \\
&=
\begin{bmatrix}
k C^2 + m S C + m C S – k S^2 & -k S C + m C^2 -m S^2 – k C S \\
-k C S – m S^2 + m C^2 – k S C & k S^2 – m C S -m S C – k C^2
\end{bmatrix} \\
&=
\begin{bmatrix}
k \cos(2 \theta_k) + m \sin(2 \theta_k) & m \cos(2 \theta_k) – k \sin(2 \theta_k) \\
m \cos(2 \theta_k) – k \sin(2 \theta_k) & -k \cos(2 \theta_k) – m \sin(2 \theta_k) \\
\end{bmatrix}.
\end{aligned}

This gives

\label{eqn:qmLecture9:320}
\begin{aligned}
E_k
\begin{bmatrix}
1 \\
0
\end{bmatrix}
&=
\begin{bmatrix}
k \cos(2 \theta_k) + m \sin(2 \theta_k) \\
m \cos(2 \theta_k) – k \sin(2 \theta_k) \\
\end{bmatrix} \\
&=
\begin{bmatrix}
k & m \\
m & -k
\end{bmatrix}
\begin{bmatrix}
\cos(2 \theta_k) \\
\sin(2 \theta_k) \\
\end{bmatrix}.
\end{aligned}

Adding back in the $$\Hbar$$’s and $$c$$’s this is

\label{eqn:qmLecture9:340}
\begin{aligned}
\begin{bmatrix}
\cos(2 \theta_k) \\
\sin(2 \theta_k) \\
\end{bmatrix}
&=
\frac{E_k}{-(\Hbar k c)^2 -(m c^2)^2}
\begin{bmatrix}
– \Hbar k c & – m c^2 \\
– m c^2 & \Hbar k c
\end{bmatrix}
\begin{bmatrix}
1 \\
0
\end{bmatrix} \\
&=
\inv{E_k}
\begin{bmatrix}
\Hbar k c \\
m c^2
\end{bmatrix}.
\end{aligned}

## Question: Verify the Dirac current relationship.

Prove \ref{eqn:qmLecture9:240}.

The components of the Schrodinger equation are

\label{eqn:qmLecture9:360}
\begin{aligned}
-i \Hbar \PD{t}{\psi_1} &= -i \Hbar c \PD{x}{\psi_1} + m c^2 \psi_2 \\
-i \Hbar \PD{t}{\psi_2} &= m c^2 \psi_1 + i \Hbar c \PD{x}{\psi_2},
\end{aligned}

The conjugates of these are
\label{eqn:qmLecture9:380}
\begin{aligned}
i \Hbar \PD{t}{\psi_1^\conj} &= i \Hbar c \PD{x}{\psi_1^\conj} + m c^2 \psi_2^\conj \\
i \Hbar \PD{t}{\psi_2^\conj} &= m c^2 \psi_1^\conj – i \Hbar c \PD{x}{\psi_2^\conj}.
\end{aligned}

This gives
\label{eqn:qmLecture9:400}
\begin{aligned}
i \Hbar \PD{t}{\rho}
&=
\lr{ i \Hbar c \PD{x}{\psi_1^\conj} + m c^2 \psi_2^\conj } \psi_1 \\
&+ \psi_1^\conj \lr{ i \Hbar c \PD{x}{\psi_1} – m c^2 \psi_2 } \\
&+ \lr{ m c^2 \psi_1^\conj – i \Hbar c \PD{x}{\psi_2^\conj} } \psi_2 \\
&+ \psi_2^\conj \lr{ -m c^2 \psi_1 – i \Hbar c \PD{x}{\psi_2} }.
\end{aligned}

All the non-derivative terms cancel leaving

\label{eqn:qmLecture9:420}
\inv{c} \PD{t}{\rho}
=
\PD{x}{\psi_1^\conj} \psi_1
+ \psi_1^\conj \PD{x}{\psi_1}
– \PD{x}{\psi_2^\conj} \psi_2
– \psi_2^\conj \PD{x}{\psi_2}
=
\PD{x}{}
\lr{
\psi_1^\conj \psi_1 –
\psi_2^\conj \psi_2
}.