surface integral

Magnetic moment for a localized magnetostatic current

October 13, 2016 math and physics play No comments , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

Motivation.

I was once again reading my Jackson [2]. This time I found that his presentation of magnetic moment didn’t really make sense to me. Here’s my own pass through it, filling in a number of details. As I did last time, I’ll also translate into SI units as I go.

Vector potential.

The Biot-Savart expression for the magnetic field can be factored into a curl expression using the usual tricks

\begin{equation}\label{eqn:magneticMomentJackson:20}
\begin{aligned}
\BB
&= \frac{\mu_0}{4\pi} \int \frac{\BJ(\Bx’) \cross (\Bx – \Bx’)}{\Abs{\Bx – \Bx’}^3} d^3 x’ \\
&= -\frac{\mu_0}{4\pi} \int \BJ(\Bx’) \cross \spacegrad \inv{\Abs{\Bx – \Bx’}} d^3 x’ \\
&= \frac{\mu_0}{4\pi} \spacegrad \cross \int \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’,
\end{aligned}
\end{equation}

so the vector potential, through its curl, defines the magnetic field \( \BB = \spacegrad \cross \BA \) is given by

\begin{equation}\label{eqn:magneticMomentJackson:40}
\BA(\Bx) = \frac{\mu_0}{4 \pi} \int \frac{J(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’.
\end{equation}

If the current source is localized (zero outside of some finite region), then there will always be a region for which \( \Abs{\Bx} \gg \Abs{\Bx’} \), so the denominator yields to Taylor expansion

\begin{equation}\label{eqn:magneticMomentJackson:60}
\begin{aligned}
\inv{\Abs{\Bx – \Bx’}}
&=
\inv{\Abs{\Bx}} \lr{1 + \frac{\Abs{\Bx’}^2}{\Abs{\Bx}^2} – 2 \frac{\Bx \cdot \Bx’}{\Abs{\Bx}^2} }^{-1/2} \\
&\approx
\inv{\Abs{\Bx}} \lr{ 1 + \frac{\Bx \cdot \Bx’}{\Abs{\Bx}^2} } \\
&=
\inv{\Abs{\Bx}} + \frac{\Bx \cdot \Bx’}{\Abs{\Bx}^3}.
\end{aligned}
\end{equation}

so the vector potential, far enough away from the current source is
\begin{equation}\label{eqn:magneticMomentJackson:80}
\BA(\Bx)
=
\frac{\mu_0}{4 \pi} \int \frac{J(\Bx’)}{\Abs{\Bx}} d^3 x’
+\frac{\mu_0}{4 \pi} \int \frac{(\Bx \cdot \Bx’)J(\Bx’)}{\Abs{\Bx}^3} d^3 x’.
\end{equation}

Jackson uses a sneaky trick to show that the first integral is killed for a localized source. That trick appears to be based on evaluating the following divergence

\begin{equation}\label{eqn:magneticMomentJackson:100}
\begin{aligned}
\spacegrad \cdot (\BJ(\Bx) x_i)
&=
(\spacegrad \cdot \BJ) x_i
+
(\spacegrad x_i) \cdot \BJ \\
&=
(\Be_k \partial_k x_i) \cdot\BJ \\
&=
\delta_{ki} J_k \\
&=
J_i.
\end{aligned}
\end{equation}

Note that this made use of the fact that \( \spacegrad \cdot \BJ = 0 \) for magnetostatics. This provides a way to rewrite the current density as a divergence

\begin{equation}\label{eqn:magneticMomentJackson:120}
\begin{aligned}
\int \frac{J(\Bx’)}{\Abs{\Bx}} d^3 x’
&=
\Be_i \int \frac{\spacegrad’ \cdot (x_i’ \BJ(\Bx’))}{\Abs{\Bx}} d^3 x’ \\
&=
\frac{\Be_i}{\Abs{\Bx}} \int \spacegrad’ \cdot (x_i’ \BJ(\Bx’)) d^3 x’ \\
&=
\frac{1}{\Abs{\Bx}} \oint \Bx’ (d\Ba \cdot \BJ(\Bx’)).
\end{aligned}
\end{equation}

When \( \BJ \) is localized, this is zero provided we pick the integration surface for the volume outside of that localization region.

It is now desired to rewrite \( \int \Bx \cdot \Bx’ \BJ \) as a triple cross product since the dot product of such a triple cross product has exactly this term in it

\begin{equation}\label{eqn:magneticMomentJackson:140}
\begin{aligned}
– \Bx \cross \int \Bx’ \cross \BJ
&=
\int (\Bx \cdot \Bx’) \BJ

\int (\Bx \cdot \BJ) \Bx’ \\
&=
\int (\Bx \cdot \Bx’) \BJ

\Be_k x_i \int J_i x_k’,
\end{aligned}
\end{equation}

so
\begin{equation}\label{eqn:magneticMomentJackson:160}
\int (\Bx \cdot \Bx’) \BJ
=
– \Bx \cross \int \Bx’ \cross \BJ
+
\Be_k x_i \int J_i x_k’.
\end{equation}

To get of this second term, the next sneaky trick is to consider the following divergence

\begin{equation}\label{eqn:magneticMomentJackson:180}
\begin{aligned}
\oint d\Ba’ \cdot (\BJ(\Bx’) x_i’ x_j’)
&=
\int dV’ \spacegrad’ \cdot (\BJ(\Bx’) x_i’ x_j’) \\
&=
\int dV’ (\spacegrad’ \cdot \BJ)
+
\int dV’ \BJ \cdot \spacegrad’ (x_i’ x_j’) \\
&=
\int dV’ J_k \cdot \lr{ x_i’ \partial_k x_j’ + x_j’ \partial_k x_i’ } \\
&=
\int dV’ \lr{J_k x_i’ \delta_{kj} + J_k x_j’ \delta_{ki}} \\
&=
\int dV’ \lr{J_j x_i’ + J_i x_j’}.
\end{aligned}
\end{equation}

The surface integral is once again zero, which means that we have an antisymmetric relationship in integrals of the form

\begin{equation}\label{eqn:magneticMomentJackson:200}
\int J_j x_i’ = -\int J_i x_j’.
\end{equation}

Now we can use the tensor algebra trick of writing \( y = (y + y)/2 \),

\begin{equation}\label{eqn:magneticMomentJackson:220}
\begin{aligned}
\int (\Bx \cdot \Bx’) \BJ
&=
– \Bx \cross \int \Bx’ \cross \BJ
+
\Be_k x_i \int J_i x_k’ \\
&=
– \Bx \cross \int \Bx’ \cross \BJ
+
\inv{2} \Be_k x_i \int \lr{ J_i x_k’ + J_i x_k’ } \\
&=
– \Bx \cross \int \Bx’ \cross \BJ
+
\inv{2} \Be_k x_i \int \lr{ J_i x_k’ – J_k x_i’ } \\
&=
– \Bx \cross \int \Bx’ \cross \BJ
+
\inv{2} \Be_k x_i \int (\BJ \cross \Bx’)_j \epsilon_{ikj} \\
&=
– \Bx \cross \int \Bx’ \cross \BJ

\inv{2} \epsilon_{kij} \Be_k x_i \int (\BJ \cross \Bx’)_j \\
&=
– \Bx \cross \int \Bx’ \cross \BJ

\inv{2} \Bx \cross \int \BJ \cross \Bx’ \\
&=
– \Bx \cross \int \Bx’ \cross \BJ
+
\inv{2} \Bx \cross \int \Bx’ \cross \BJ \\
&=
-\inv{2} \Bx \cross \int \Bx’ \cross \BJ,
\end{aligned}
\end{equation}

so

\begin{equation}\label{eqn:magneticMomentJackson:240}
\BA(\Bx) \approx \frac{\mu_0}{4 \pi \Abs{\Bx}^3} \lr{ -\frac{\Bx}{2} } \int \Bx’ \cross \BJ(\Bx’) d^3 x’.
\end{equation}

Letting

\begin{equation}\label{eqn:magneticMomentJackson:260}
\boxed{
\Bm = \inv{2} \int \Bx’ \cross \BJ(\Bx’) d^3 x’,
}
\end{equation}

the far field approximation of the vector potential is
\begin{equation}\label{eqn:magneticMomentJackson:280}
\boxed{
\BA(\Bx) = \frac{\mu_0}{4 \pi} \frac{\Bm \cross \Bx}{\Abs{\Bx}^3}.
}
\end{equation}

Note that when the current is restricted to an infintisimally thin loop, the magnetic moment reduces to

\begin{equation}\label{eqn:magneticMomentJackson:300}
\Bm(\Bx) = \frac{I}{2} \int \Bx \cross d\Bl’.
\end{equation}

Refering to [1] (pr. 1.60), this can be seen to be \( I \) times the “vector-area” integral.

References

[1] David Jeffrey Griffiths and Reed College. Introduction to electrodynamics. Prentice hall Upper Saddle River, NJ, 3rd edition, 1999.

[2] JD Jackson. Classical Electrodynamics. John Wiley and Sons, 2nd edition, 1975.

Jackson’s electrostatic self energy analysis

October 10, 2016 math and physics play No comments , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

Motivation

I was reading my Jackson [1], which characteristically had the statement “the […] integral can easily be shown to have the value \( 4 \pi \)”, in a discussion of electrostatic energy and self energy. After a few attempts and a couple of pages of calculations, I figured out how this can be easily shown.

Context

Let me walk through the context that leads to the “easy” integral, and then the evaluation of that integral. Unlike my older copy of Jackson, I’ll do this in SI units.

The starting point is a statement that the work done (potential energy) of one charge \( q_i \) in a set of \( n \) charges, where that charge is brought to its position \( \Bx_i \) from infinity, is

\begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:20}
W_i = q_i \Phi(\Bx_i),
\end{equation}

where the potential energy due to the rest of the charge configuration is

\begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:40}
\Phi(\Bx_i) = \inv{4 \pi \epsilon} \sum_{i \ne j} \frac{q_j}{\Abs{\Bx_i – \Bx_j}}.
\end{equation}

This means that the total potential energy, making sure not to double count, to move all the charges in from infinity is

\begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:60}
W = \inv{4 \pi \epsilon} \sum_{1 \le i < j \le n} \frac{q_i q_j}{\Abs{\Bx_i - \Bx_j}}. \end{equation} This sum over all unique pairs is somewhat unwieldy, so it can be adjusted by explicitly double counting with a corresponding divide by two \begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:80} W = \inv{2} \inv{4 \pi \epsilon} \sum_{1 \le i \ne j \le n} \frac{q_i q_j}{\Abs{\Bx_i - \Bx_j}}. \end{equation} The point that causes the trouble later is the continuum equivalent to this relationship, which is \begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:100} W = \inv{8 \pi \epsilon} \int \frac{\rho(\Bx) \rho(\Bx')}{\Abs{\Bx - \Bx'}} d^3 \Bx d^3 \Bx', \end{equation} or \begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:120} W = \inv{2} \int \rho(\Bx) \Phi(\Bx) d^3 \Bx. \end{equation} There's a subtlety here that is often passed over. When the charge densities represent point charges \( \rho(\Bx) = q \delta^3(\Bx - \Bx') \) are located at, notice that this integral equivalent is evaluated over all space, including the spaces that the charges that the charges are located at. Ignoring that subtlety, this potential energy can be expressed in terms of the electric field, and then integrated by parts \begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:140} \begin{aligned} W &= \inv{2 } \int (\spacegrad \cdot (\epsilon \BE)) \Phi(\Bx) d^3 \Bx \\ &= \frac{\epsilon}{2 } \int \lr{ \spacegrad \cdot (\BE \Phi) - (\spacegrad \Phi) \cdot \BE } d^3 \Bx \\ &= \frac{\epsilon}{2 } \oint dA \ncap \cdot (\BE \Phi) + \frac{\epsilon}{2 } \int \BE \cdot \BE d^3 \Bx. \end{aligned} \end{equation} The presumption is that \( \BE \Phi \) falls off as the bounds of the integration volume tends to infinity. That leaves us with an energy density proportional to the square of the field \begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:160} w = \frac{\epsilon}{2 } \BE^2. \end{equation}

Inconsistency

It’s here that Jackson points out the inconsistency between \ref{eqn:electrostaticJacksonSelfEnergy:160} and the original
discrete analogue \ref{eqn:electrostaticJacksonSelfEnergy:80} that this was based on. The energy density is positive definite, whereas the discrete potential energy can be negative if there is a difference in the sign of the charges.

Here Jackson uses a two particle charge distribution to help resolve this conundrum. For a superposition \( \BE = \BE_1 + \BE_2 \), we have

\begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:180}
\BE
=
\inv{4 \pi \epsilon} \frac{q_1 (\Bx – \Bx_1)}{\Abs{\Bx – \Bx_1}^3}
+ \inv{4 \pi \epsilon} \frac{q_2 (\Bx – \Bx_2)}{\Abs{\Bx – \Bx_2}^3},
\end{equation}

so the energy density is
\begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:200}
w =
\frac{1}{32 \pi^2 \epsilon} \frac{q_1^2}{\Abs{\Bx – \Bx_1}^4 }
+
\frac{1}{32 \pi^2 \epsilon} \frac{q_2^2}{\Abs{\Bx – \Bx_2}^4 }
+
2 \frac{q_1 q_2}{32 \pi^2 \epsilon}
\frac{(\Bx – \Bx_1)}{\Abs{\Bx – \Bx_1}^3} \cdot
\frac{(\Bx – \Bx_2)}{\Abs{\Bx – \Bx_2}^3}.
\end{equation}

The discrete potential had only an interaction energy, whereas the potential from this squared field has an interaction energy plus two self energy terms. Those two strictly positive self energy terms are what forces this field energy positive, independent of the sign of the interaction energy density. Jackson makes a change of variables of the form

\begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:220}
\begin{aligned}
\Brho &= (\Bx – \Bx_1)/R \\
R &= \Abs{\Bx_1 – \Bx_2} \\
\ncap &= (\Bx_1 – \Bx_2)/R,
\end{aligned}
\end{equation}

for which we find

\begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:240}
\Bx = \Bx_1 + R \Brho,
\end{equation}

so
\begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:260}
\Bx – \Bx_2 =
\Bx_1 – \Bx_2 + R \Brho
R (\ncap + \Brho),
\end{equation}

and
\begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:280}
d^3 \Bx = R^3 d^3 \Brho,
\end{equation}

so the total interaction energy is
\begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:300}
\begin{aligned}
W_{\textrm{int}}
&=
\frac{q_1 q_2}{16 \pi^2 \epsilon}
\int d^3 \Bx
\frac{(\Bx – \Bx_1)}{\Abs{\Bx – \Bx_1}^3} \cdot
\frac{(\Bx – \Bx_2)}{\Abs{\Bx – \Bx_2}^3} \\
&=
\frac{q_1 q_2}{16 \pi^2 \epsilon}
\int R^3 d^3 \Brho
\frac{ R \Brho }{ R^3 \Abs{\Brho}^3 } \cdot
\frac{R (\ncap + \Brho)}{R^3 \Abs{\ncap + \Brho}^3} \\
&=
\frac{q_1 q_2}{16 \pi^2 \epsilon R}
\int d^3 \Brho
\frac{ \Brho }{ \Abs{\Brho}^3 } \cdot
\frac{(\ncap + \Brho)}{ \Abs{\ncap + \Brho}^3}.
\end{aligned}
\end{equation}

Evaluating this integral is what Jackson calls easy. The technique required is to express the integrand in terms of gradients in the \( \Brho \) coordinate system

\begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:320}
\begin{aligned}
\int d^3 \Brho
\frac{ \Brho }{ \Abs{\Brho}^3 } \cdot
\frac{(\ncap + \Brho)}{ \Abs{\ncap + \Brho}^3}
&=
\int d^3 \Brho
\lr{ – \spacegrad_\Brho \inv{\Abs{\Brho}} }
\cdot
\lr{ – \spacegrad_\Brho \inv{\Abs{\ncap + \Brho}} } \\
&=
\int d^3 \Brho
\lr{ \spacegrad_\Brho \inv{\Abs{\Brho}} }
\cdot
\lr{ \spacegrad_\Brho \inv{\Abs{\ncap + \Brho}} }.
\end{aligned}
\end{equation}

I found it somewhat non-trivial to find the exact form of the chain rule that is required to simplify this integral, but after some trial and error, figured it out by working backwards from
\begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:340}
\spacegrad_\Brho^2 \inv{ \Abs{\Brho} \Abs{\ncap + \Brho}}
=
\spacegrad_\Brho \cdot \lr{ \inv{\Abs{\Brho}} \spacegrad_\Brho \inv{ \Abs{\ncap + \Brho} } }
+
\spacegrad_\Brho \cdot \lr{ \inv{\Abs{\ncap + \Brho}} \spacegrad_\Brho \inv{ \Abs{\Brho} } }.
\end{equation}

In integral form this is
\begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:360}
\begin{aligned}
\oint dA’ \ncap’ \cdot \spacegrad_\Brho \inv{ \Abs{\Brho} \Abs{\ncap + \Brho}}
&=
\int d^3 \Brho’
\spacegrad_{\Brho’} \cdot \lr{ \inv{\Abs{\Brho’ – \ncap}} \spacegrad_{\Brho’} \inv{ \Abs{\Brho’} } }
+
\int d^3 \Brho
\spacegrad_\Brho \cdot \lr{ \inv{\Abs{\ncap + \Brho}} \spacegrad_\Brho \inv{ \Abs{\Brho} } } \\
&=
\int d^3 \Brho’
\lr{ \spacegrad_{\Brho’} \inv{\Abs{\Brho’ – \ncap} } \cdot \spacegrad_{\Brho’} \inv{ \Abs{\Brho’} } }
+
\int d^3 \Brho’
\inv{\Abs{\Brho’ – \ncap}} \spacegrad_{\Brho’}^2 \inv{ \Abs{\Brho’} } \\
&+
\int d^3 \Brho
\lr{ \spacegrad_\Brho \inv{\Abs{\ncap + \Brho}}} \cdot \spacegrad_\Brho \inv{ \Abs{\Brho} }
+
\int d^3 \Brho
\inv{\Abs{\ncap + \Brho}} \spacegrad_\Brho^2 \inv{ \Abs{\Brho} } \\
&=
2 \int d^3 \Brho
\lr{ \spacegrad_\Brho \inv{\Abs{\ncap + \Brho}}} \cdot \spacegrad_\Brho \inv{ \Abs{\Brho} } \\
&- 4 \pi
\int d^3 \Brho’
\inv{\Abs{\Brho’ – \ncap}} \delta^3(\Brho’)
– 4 \pi
\int d^3 \Brho
\inv{\Abs{\Brho + \ncap}} \delta^3(\Brho) \\
&=
2 \int d^3 \Brho
\lr{ \spacegrad_\Brho \inv{\Abs{\ncap + \Brho}}} \cdot \spacegrad_\Brho \inv{ \Abs{\Brho} }
– 8 \pi.
\end{aligned}
\end{equation}

This used the Laplacian representation of the delta function \( \delta^3(\Bx) = -(1/4\pi) \spacegrad^2 (1/\Abs{\Bx}) \). Back-substitution gives

\begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:380}
\int d^3 \Brho
\frac{ \Brho }{ \Abs{\Brho}^3 } \cdot
\frac{(\ncap + \Brho)}{ \Abs{\ncap + \Brho}^3}
=
4 \pi
+
\oint dA’ \ncap’ \cdot \spacegrad_\Brho \inv{ \Abs{\Brho} \Abs{\ncap + \Brho}}.
\end{equation}

We can argue that this last integral tends to zero, since

\begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:400}
\begin{aligned}
\oint dA’ \ncap’ \cdot \spacegrad_\Brho \inv{ \Abs{\Brho} \Abs{\ncap + \Brho}}
&=
\oint dA’ \ncap’ \cdot \lr{
\lr{ \spacegrad_\Brho \inv{ \Abs{\Brho}} } \inv{\Abs{\ncap + \Brho}}
+
\inv{ \Abs{\Brho}} \lr{ \spacegrad_\Brho \inv{\Abs{\ncap + \Brho}} }
} \\
&=
-\oint dA’ \ncap’ \cdot \lr{
\frac{ \Brho } {\inv{ \Abs{\Brho}}^3 } \inv{\Abs{\ncap + \Brho}}
+
\inv{ \Abs{\Brho}} \frac{ (\Brho + \ncap) }{ \Abs{\ncap + \Brho}^3 }
} \\
&=
-\oint dA’ \inv{\Abs{\Brho} \Abs{\Brho + \ncap}}
\lr{
\frac{ \ncap’ \cdot \Brho }{
{\Abs{\Brho}}^2 }
+\frac{ \ncap’ \cdot (\Brho + \ncap) }{
{\Abs{\Brho + \ncap}}^2 }
}.
\end{aligned}
\end{equation}

The integrand in this surface integral is of \( O(1/\rho^3) \) so tends to zero on an infinite surface in the \( \Brho \) coordinate system. This completes the “easy” integral, leaving

\begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:420}
\int d^3 \Brho
\frac{ \Brho }{ \Abs{\Brho}^3 } \cdot
\frac{(\ncap + \Brho)}{ \Abs{\ncap + \Brho}^3}
=
4 \pi.
\end{equation}

The total field energy can now be expressed as a sum of the self energies and the interaction energy
\begin{equation}\label{eqn:electrostaticJacksonSelfEnergy:440}
W =
\frac{1}{32 \pi^2 \epsilon} \int d^3 \Bx \frac{q_1^2}{\Abs{\Bx – \Bx_1}^4 }
+
\frac{1}{32 \pi^2 \epsilon} \int d^3 \Bx \frac{q_2^2}{\Abs{\Bx – \Bx_2}^4 }
+ \inv{ 4 \pi \epsilon}
\frac{q_1 q_2}{\Abs{\Bx_1 – \Bx_2} }.
\end{equation}

The interaction energy is exactly the potential energies for the two particles, the this total energy in the field is biased in the positive direction by the pair of self energies. It is interesting that the energy obtained from integrating the field energy density contains such self energy terms, but I don’t know exactly what to make of them at this point in time.

References

[1] JD Jackson. Classical Electrodynamics. John Wiley and Sons, 2nd edition, 1975.

Helmholtz theorem

October 1, 2016 math and physics play No comments , , , , , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

This is a problem from ece1228. I attempted solutions in a number of ways. One using Geometric Algebra, one devoid of that algebra, and then this method, which combined aspects of both. Of the three methods I tried to obtain this result, this is the most compact and elegant. It does however, require a fair bit of Geometric Algebra knowledge, including the Fundamental Theorem of Geometric Calculus, as detailed in [1], [3] and [2].

Question: Helmholtz theorem

Prove the first Helmholtz’s theorem, i.e. if vector \(\BM\) is defined by its divergence

\begin{equation}\label{eqn:helmholtzDerviationMultivector:20}
\spacegrad \cdot \BM = s
\end{equation}

and its curl
\begin{equation}\label{eqn:helmholtzDerviationMultivector:40}
\spacegrad \cross \BM = \BC
\end{equation}

within a region and its normal component \( \BM_{\textrm{n}} \) over the boundary, then \( \BM \) is
uniquely specified.

Answer

The gradient of the vector \( \BM \) can be written as a single even grade multivector

\begin{equation}\label{eqn:helmholtzDerviationMultivector:60}
\spacegrad \BM
= \spacegrad \cdot \BM + I \spacegrad \cross \BM
= s + I \BC.
\end{equation}

We will use this to attempt to discover the relation between the vector \( \BM \) and its divergence and curl. We can express \( \BM \) at the point of interest as a convolution with the delta function at all other points in space

\begin{equation}\label{eqn:helmholtzDerviationMultivector:80}
\BM(\Bx) = \int_V dV’ \delta(\Bx – \Bx’) \BM(\Bx’).
\end{equation}

The Laplacian representation of the delta function in \R{3} is

\begin{equation}\label{eqn:helmholtzDerviationMultivector:100}
\delta(\Bx – \Bx’) = -\inv{4\pi} \spacegrad^2 \inv{\Abs{\Bx – \Bx’}},
\end{equation}

so \( \BM \) can be represented as the following convolution

\begin{equation}\label{eqn:helmholtzDerviationMultivector:120}
\BM(\Bx) = -\inv{4\pi} \int_V dV’ \spacegrad^2 \inv{\Abs{\Bx – \Bx’}} \BM(\Bx’).
\end{equation}

Using this relation and proceeding with a few applications of the chain rule, plus the fact that \( \spacegrad 1/\Abs{\Bx – \Bx’} = -\spacegrad’ 1/\Abs{\Bx – \Bx’} \), we find

\begin{equation}\label{eqn:helmholtzDerviationMultivector:720}
\begin{aligned}
-4 \pi \BM(\Bx)
&= \int_V dV’ \spacegrad^2 \inv{\Abs{\Bx – \Bx’}} \BM(\Bx’) \\
&= \gpgradeone{\int_V dV’ \spacegrad^2 \inv{\Abs{\Bx – \Bx’}} \BM(\Bx’)} \\
&= -\gpgradeone{\int_V dV’ \spacegrad \lr{ \spacegrad’ \inv{\Abs{\Bx – \Bx’}}} \BM(\Bx’)} \\
&= -\gpgradeone{\spacegrad \int_V dV’ \lr{
\spacegrad’ \frac{\BM(\Bx’)}{\Abs{\Bx – \Bx’}}
-\frac{\spacegrad’ \BM(\Bx’)}{\Abs{\Bx – \Bx’}}
} } \\
&=
-\gpgradeone{\spacegrad \int_{\partial V} dA’
\ncap \frac{\BM(\Bx’)}{\Abs{\Bx – \Bx’}}
}
+\gpgradeone{\spacegrad \int_V dV’
\frac{s(\Bx’) + I\BC(\Bx’)}{\Abs{\Bx – \Bx’}}
} \\
&=
-\gpgradeone{\spacegrad \int_{\partial V} dA’
\ncap \frac{\BM(\Bx’)}{\Abs{\Bx – \Bx’}}
}
+\spacegrad \int_V dV’
\frac{s(\Bx’)}{\Abs{\Bx – \Bx’}}
+\spacegrad \cdot \int_V dV’
\frac{I\BC(\Bx’)}{\Abs{\Bx – \Bx’}}.
\end{aligned}
\end{equation}

By inserting a no-op grade selection operation in the second step, the trivector terms that would show up in subsequent steps are automatically filtered out. This leaves us with a boundary term dependent on the surface and the normal and tangential components of \( \BM \). Added to that is a pair of volume integrals that provide the unique dependence of \( \BM \) on its divergence and curl. When the surface is taken to infinity, which requires \( \Abs{\BM}/\Abs{\Bx – \Bx’} \rightarrow 0 \), then the dependence of \( \BM \) on its divergence and curl is unique.

In order to express final result in traditional vector algebra form, a couple transformations are required. The first is that

\begin{equation}\label{eqn:helmholtzDerviationMultivector:800}
\gpgradeone{ \Ba I \Bb } = I^2 \Ba \cross \Bb = -\Ba \cross \Bb.
\end{equation}

For the grade selection in the boundary integral, note that

\begin{equation}\label{eqn:helmholtzDerviationMultivector:740}
\begin{aligned}
\gpgradeone{ \spacegrad \ncap \BX }
&=
\gpgradeone{ \spacegrad (\ncap \cdot \BX) }
+
\gpgradeone{ \spacegrad (\ncap \wedge \BX) } \\
&=
\spacegrad (\ncap \cdot \BX)
+
\gpgradeone{ \spacegrad I (\ncap \cross \BX) } \\
&=
\spacegrad (\ncap \cdot \BX)

\spacegrad \cross (\ncap \cross \BX).
\end{aligned}
\end{equation}

These give

\begin{equation}\label{eqn:helmholtzDerviationMultivector:721}
\boxed{
\begin{aligned}
\BM(\Bx)
&=
\spacegrad \inv{4\pi} \int_{\partial V} dA’ \ncap \cdot \frac{\BM(\Bx’)}{\Abs{\Bx – \Bx’}}

\spacegrad \cross \inv{4\pi} \int_{\partial V} dA’ \ncap \cross \frac{\BM(\Bx’)}{\Abs{\Bx – \Bx’}} \\
&-\spacegrad \inv{4\pi} \int_V dV’
\frac{s(\Bx’)}{\Abs{\Bx – \Bx’}}
+\spacegrad \cross \inv{4\pi} \int_V dV’
\frac{\BC(\Bx’)}{\Abs{\Bx – \Bx’}}.
\end{aligned}
}
\end{equation}

References

[1] C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University Press New York, Cambridge, UK, 1st edition, 2003.

[2] A. Macdonald. Vector and Geometric Calculus. CreateSpace Independent Publishing Platform, 2012.

[3] Garret Sobczyk and Omar Le’on S’anchez. Fundamental theorem of calculus. Advances in Applied Clifford Algebras, 21:221–231, 2011. URL http://arxiv.org/abs/0809.4526.

Does the divergence and curl uniquely determine the vector?

September 30, 2016 math and physics play No comments , , , , , , , , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

A problem posed in the ece1228 problem set was the following

Helmholtz theorem.

Prove the first Helmholtz’s theorem, i.e. if vector \(\BM\) is defined by its divergence

\begin{equation}\label{eqn:emtProblemSet1Problem5:20}
\spacegrad \cdot \BM = s
\end{equation}

and its curl
\begin{equation}\label{eqn:emtProblemSet1Problem5:40}
\spacegrad \cross \BM = \BC
\end{equation}

within a region and its normal component \( \BM_{\textrm{n}} \) over the boundary, then \( \BM \) is uniquely specified.

Solution.

This problem screams for an attempt using Geometric Algebra techniques, since
the gradient of this vector can be written as a single even grade multivector

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:60}
\begin{aligned}
\spacegrad \BM
&= \spacegrad \cdot \BM + I \spacegrad \cross \BM \\
&= s + I \BC.
\end{aligned}
\end{equation}

Observe that the Laplacian of \( \BM \) is vector valued

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:400}
\spacegrad^2 \BM
= \spacegrad s + I \spacegrad \BC.
\end{equation}

This means that \( \spacegrad \BC \) must be a bivector \( \spacegrad \BC = \spacegrad \wedge \BC \), or that \( \BC \) has zero divergence

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:420}
\spacegrad \cdot \BC = 0.
\end{equation}

This required constraint on \( \BC \) will show up in subsequent analysis. An equivalent problem to the one posed
is to show that the even grade multivector equation \( \spacegrad \BM = s + I \BC \) has an inverse given the constraint
specified by \ref{eqn:emtProblemSet1Problem5AppendixGA:420}.

Inverting the gradient equation.

The Green’s function for the gradient can be found in [1], where it is used to generalize the Cauchy integral equations to higher dimensions.

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:80}
\begin{aligned}
G(\Bx ; \Bx’) &= \inv{4 \pi} \frac{ \Bx – \Bx’ }{\Abs{\Bx – \Bx’}^3} \\
\spacegrad \BG(\Bx, \Bx’) &= \spacegrad \cdot \BG(\Bx, \Bx’) = \delta(\Bx – \Bx’) = -\spacegrad’ \BG(\Bx, \Bx’).
\end{aligned}
\end{equation}

The inversion equation is an application of the Fundamental Theorem of (Geometric) Calculus, with the gradient operating bidirectionally on the Green’s function and the vector function

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:100}
\begin{aligned}
\oint_{\partial V} G(\Bx, \Bx’) d^2 \Bx’ \BM(\Bx’)
&=
\int_V G(\Bx, \Bx’) d^3 \Bx \lrspacegrad’ \BM(\Bx’) \\
&=
\int_V d^3 \Bx (G(\Bx, \Bx’) \lspacegrad’) \BM(\Bx’)
+
\int_V d^3 \Bx G(\Bx, \Bx’) (\spacegrad’ \BM(\Bx’)) \\
&=
-\int_V d^3 \Bx \delta(\Bx – \By) \BM(\Bx’)
+
\int_V d^3 \Bx G(\Bx, \Bx’) \lr{ s(\Bx’) + I \BC(\Bx’) } \\
&=
-I \BM(\Bx)
+
\inv{4 \pi} \int_V d^3 \Bx \frac{ \Bx – \Bx’}{ \Abs{\Bx – \Bx’}^3 } \lr{ s(\Bx’) + I \BC(\Bx’) }.
\end{aligned}
\end{equation}

The integrals are in terms of the primed coordinates so that the end result is a function of \( \Bx \). To rearrange for \( \BM \), let \( d^3 \Bx’ = I dV’ \), and \( d^2 \Bx’ \ncap(\Bx’) = I dA’ \), then right multiply with the pseudoscalar \( I \), noting that in \R{3} the pseudoscalar commutes with any grades

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:440}
\begin{aligned}
\BM(\Bx)
&=
I \oint_{\partial V} G(\Bx, \Bx’) I dA’ \ncap \BM(\Bx’)

I \inv{4 \pi} \int_V I dV’ \frac{ \Bx – \Bx’}{ \Abs{\Bx – \Bx’}^3 } \lr{ s(\Bx’) + I \BC(\Bx’) } \\
&=
-\oint_{\partial V} dA’ G(\Bx, \Bx’) \ncap \BM(\Bx’)
+
\inv{4 \pi} \int_V dV’ \frac{ \Bx – \Bx’}{ \Abs{\Bx – \Bx’}^3 } \lr{ s(\Bx’) + I \BC(\Bx’) }.
\end{aligned}
\end{equation}

This can be decomposed into a vector and a trivector equation. Let \( \Br = \Bx – \Bx’ = r \rcap \), and note that

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:500}
\begin{aligned}
\gpgradeone{ \rcap I \BC }
&=
\gpgradeone{ I \rcap \BC } \\
&=
I \rcap \wedge \BC \\
&=
-\rcap \cross \BC,
\end{aligned}
\end{equation}

so this pair of equations can be written as

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:520}
\begin{aligned}
\BM(\Bx)
&=
-\inv{4 \pi} \oint_{\partial V} dA’ \frac{\gpgradeone{ \rcap \ncap \BM(\Bx’) }}{r^2}
+
\inv{4 \pi} \int_V dV’ \lr{
\frac{\rcap}{r^2} s(\Bx’) –
\frac{\rcap}{r^2} \cross \BC(\Bx’) } \\
0
&=
-\inv{4 \pi} \oint_{\partial V} dA’ \frac{\rcap}{r^2} \wedge \ncap \wedge \BM(\Bx’)
+
\frac{I}{4 \pi} \int_V dV’ \frac{ \rcap \cdot \BC(\Bx’) }{r^2}.
\end{aligned}
\end{equation}

Trivector grades.

Consider the last integral in the pseudoscalar equation above. Since we expect no pseudoscalar components, this must be zero, or cancel perfectly. It’s not obvious that this is the case, but a transformation to a surface integral shows the constraints required for that to be the case. To do so note

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:540}
\begin{aligned}
\spacegrad \inv{\Bx – \Bx’}
&= -\spacegrad’ \inv{\Bx – \Bx’} \\
&=
-\frac{\Bx – \Bx’}{\Abs{\Bx – \Bx’}^3} \\
&= -\frac{\rcap}{r^2}.
\end{aligned}
\end{equation}

Using this and the chain rule we have

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:560}
\begin{aligned}
\frac{I}{4 \pi} \int_V dV’ \frac{ \rcap \cdot \BC(\Bx’) }{r^2}
&=
\frac{I}{4 \pi} \int_V dV’ \lr{ \spacegrad’ \inv{ r } } \cdot \BC(\Bx’) \\
&=
\frac{I}{4 \pi} \int_V dV’ \spacegrad’ \cdot \frac{\BC(\Bx’)}{r}

\frac{I}{4 \pi} \int_V dV’ \frac{ \spacegrad’ \cdot \BC(\Bx’) }{r} \\
&=
\frac{I}{4 \pi} \int_V dV’ \spacegrad’ \cdot \frac{\BC(\Bx’)}{r} \\
&=
\frac{I}{4 \pi} \int_{\partial V} dA’ \ncap(\Bx’) \cdot \frac{\BC(\Bx’)}{r}.
\end{aligned}
\end{equation}

The divergence of \( \BC \) above was killed by recalling the constraint \ref{eqn:emtProblemSet1Problem5AppendixGA:420}. This means that we can rewrite entirely as surface integral and eventually reduced to a single triple product

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:580}
\begin{aligned}
0
&=
-\frac{I}{4 \pi} \oint_{\partial V} dA’ \lr{
\frac{\rcap}{r^2} \cdot (\ncap \cross \BM(\Bx’))
-\ncap \cdot \frac{\BC(\Bx’)}{r}
} \\
&=
\frac{I}{4 \pi} \oint_{\partial V} dA’ \ncap \cdot \lr{
\frac{\rcap}{r^2} \cross \BM(\Bx’)
+ \frac{\BC(\Bx’)}{r}
} \\
&=
\frac{I}{4 \pi} \oint_{\partial V} dA’ \ncap \cdot \lr{
\lr{ \spacegrad’ \inv{r}} \cross \BM(\Bx’)
+ \frac{\BC(\Bx’)}{r}
} \\
&=
\frac{I}{4 \pi} \oint_{\partial V} dA’ \ncap \cdot \lr{
\spacegrad’ \cross \frac{\BM(\Bx’)}{r}
} \\
&=
\frac{I}{4 \pi} \oint_{\partial V} dA’
\spacegrad’ \cdot
\frac{\BM(\Bx’) \cross \ncap}{r}
&=
\frac{I}{4 \pi} \oint_{\partial V} dA’
\spacegrad’ \cdot
\frac{\BM(\Bx’) \cross \ncap}{r}.
\end{aligned}
\end{equation}

Final results.

Assembling things back into a single multivector equation, the complete inversion integral for \( \BM \) is

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:600}
\BM(\Bx)
=
\inv{4 \pi} \oint_{\partial V} dA’
\lr{
\spacegrad’ \wedge
\frac{\BM(\Bx’) \wedge \ncap}{r}
-\frac{\gpgradeone{ \rcap \ncap \BM(\Bx’) }}{r^2}
}
+
\inv{4 \pi} \int_V dV’ \lr{
\frac{\rcap}{r^2} s(\Bx’) –
\frac{\rcap}{r^2} \cross \BC(\Bx’) }.
\end{equation}

This shows that vector \( \BM \) can be recovered uniquely from \( s, \BC \) when \( \Abs{\BM}/r^2 \) vanishes on an infinite surface. If we restrict attention to a finite surface, we have to add to the fixed solution a specific solution that depends on the value of \( \BM \) on that surface. The vector portion of that surface integrand contains

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:640}
\begin{aligned}
\gpgradeone{ \rcap \ncap \BM }
&=
\rcap (\ncap \cdot \BM )
+
\rcap \cdot (\ncap \wedge \BM ) \\
&=
\rcap (\ncap \cdot \BM )
+
(\rcap \cdot \ncap) \BM

(\rcap \cdot \BM ) \ncap.
\end{aligned}
\end{equation}

The constraints required by a zero triple product \( \spacegrad’ \cdot (\BM(\Bx’) \cross \ncap(\Bx’)) \) are complicated on a such a general finite surface. Consider instead, for simplicity, the case of a spherical surface, which can be analyzed more easily. In that case the outward normal of the surface centred on the test charge point \( \Bx \) is \( \ncap = -\rcap \). The pseudoscalar integrand is not generally killed unless the divergence of its tangential component on this surface is zero. One way that this can occur is for \( \BM \cross \ncap = 0 \), so that \( -\gpgradeone{ \rcap \ncap \BM } = \BM = (\BM \cdot \ncap) \ncap = \BM_{\textrm{n}} \).

This gives

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:620}
\BM(\Bx)
=
\inv{4 \pi} \oint_{\Abs{\Bx – \Bx’} = r} dA’ \frac{\BM_{\textrm{n}}(\Bx’)}{r^2}
+
\inv{4 \pi} \int_V dV’ \lr{
\frac{\rcap}{r^2} s(\Bx’) +
\BC(\Bx’) \cross \frac{\rcap}{r^2} },
\end{equation}

or, in terms of potential functions, which is arguably tidier

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:300}
\boxed{
\BM(\Bx)
=
\inv{4 \pi} \oint_{\Abs{\Bx – \Bx’} = r} dA’ \frac{\BM_{\textrm{n}}(\Bx’)}{r^2}
-\spacegrad \int_V dV’ \frac{ s(\Bx’)}{ 4 \pi r }
+\spacegrad \cross \int_V dV’ \frac{ \BC(\Bx’) }{ 4 \pi r }.
}
\end{equation}

Commentary

I attempted this problem in three different ways. My first approach (above) assembled the divergence and curl relations above into a single (Geometric Algebra) multivector gradient equation and applied the vector valued Green’s function for the gradient to invert that equation. That approach logically led from the differential equation for \( \BM \) to the solution for \( \BM \) in terms of \( s \) and \( \BC \). However, this strategy introduced some complexities that make me doubt the correctness of the associated boundary analysis.

Even if the details of the boundary handling in my multivector approach is not correct, I thought that approach was interesting enough to share.

References

[1] C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University Press New York, Cambridge, UK, 1st edition, 2003.

Maxwell equation boundary conditions

September 6, 2016 math and physics play No comments , , , , , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

Motivation

boundaryConditionsTwoSurfacesFig1

fig 1. Two surfaces normal to the interface.

Most electrodynamics textbooks either start with or contain a treatment of boundary value conditions. These typically involve evaluating Maxwell’s equations over areas or volumes of decreasing height, such as those illustrated in fig. 1, and fig. 2. These represent surfaces and volumes where the height is allowed to decrease to infinitesimal levels, and are traditionally used to find the boundary value constraints of the normal and tangential components of the electric and magnetic fields.

boundaryConditionsPillBoxFig2

fig 2. A pillbox volume encompassing the interface.

More advanced topics, such as evaluation of the Fresnel reflection and transmission equations, also rely on similar consideration of boundary value constraints. I’ve wondered for a long time how the Fresnel equations could be attacked by looking at the boundary conditions for the combined field \( F = \BE + I c \BB \), instead of the considering them separately.

A unified approach.

The Geometric Algebra (and relativistic tensor) formulations of Maxwell’s equations put the electric and magnetic fields on equal footings. It is in fact possible to specify the boundary value constraints on the fields without first separating Maxwell’s equations into their traditional forms. The starting point in Geometric Algebra is Maxwell’s equation, premultiplied by a stationary observer’s timelike basis vector

\begin{equation}\label{eqn:maxwellBoundaryConditions:20}
\gamma_0 \grad F = \inv{\epsilon_0 c} \gamma_0 J,
\end{equation}

or

\begin{equation}\label{eqn:maxwellBoundaryConditions:40}
\lr{ \partial_0 + \spacegrad} F = \frac{\rho}{\epsilon_0} – \frac{\BJ}{\epsilon_0}.
\end{equation}

The electrodynamic field \(F = \BE + I c \BB\) is a multivector in this spatial domain (whereas it is a bivector in the spacetime algebra domain), and has vector and bivector components. The product of the spatial gradient and the field can still be split into dot and curl components \(\spacegrad M = \spacegrad \cdot M + \spacegrad \wedge M \). If \(M = \sum M_i \), where \(M_i\) is an grade \(i\) blade, then we give this the Hestenes’ [1] definitions

\begin{equation}\label{eqn:maxwellBoundaryConditions:60}
\begin{aligned}
\spacegrad \cdot M &= \sum_i \gpgrade{\spacegrad M_i}{i-1} \\
\spacegrad \wedge M &= \sum_i \gpgrade{\spacegrad M_i}{i+1}.
\end{aligned}
\end{equation}

With that said, Maxwell’s equation can be rearranged into a pair of multivector equations

\begin{equation}\label{eqn:maxwellBoundaryConditions:80}
\begin{aligned}
\spacegrad \cdot F &= \gpgrade{-\partial_0 F + \frac{\rho}{\epsilon_0} – \frac{\BJ}{\epsilon_0 c}}{0,1} \\
\spacegrad \wedge F &= \gpgrade{-\partial_0 F + \frac{\rho}{\epsilon_0} – \frac{\BJ}{\epsilon_0 c}}{2,3},
\end{aligned}
\end{equation}

The latter equation can be integrated with Stokes theorem, but we need to apply a duality transformation to the latter in order to apply Stokes to it

\begin{equation}\label{eqn:maxwellBoundaryConditions:120}
\begin{aligned}
\spacegrad \cdot F
&=
-I^2 \spacegrad \cdot F \\
&=
-I^2 \gpgrade{\spacegrad F}{0,1} \\
&=
-I \gpgrade{I \spacegrad F}{2,3} \\
&=
-I \spacegrad \wedge (IF),
\end{aligned}
\end{equation}

so

\begin{equation}\label{eqn:maxwellBoundaryConditions:100}
\begin{aligned}
\spacegrad \wedge (I F) &= I \lr{ -\inv{c} \partial_t \BE + \frac{\rho}{\epsilon_0} – \frac{\BJ}{\epsilon_0 c} } \\
\spacegrad \wedge F &= -I \partial_t \BB.
\end{aligned}
\end{equation}

Integrating each of these over the pillbox volume gives

\begin{equation}\label{eqn:maxwellBoundaryConditions:140}
\begin{aligned}
\oint_{\partial V} d^2 \Bx \cdot (I F)
&=
\int_{V} d^3 \Bx \cdot \lr{ I \lr{ -\inv{c} \partial_t \BE + \frac{\rho}{\epsilon_0} – \frac{\BJ}{\epsilon_0 c} } } \\
\oint_{\partial V} d^2 \Bx \cdot F
&=
– \partial_t \int_{V} d^3 \Bx \cdot \lr{ I \BB }.
\end{aligned}
\end{equation}

In the absence of charges and currents on the surface, and if the height of the volume is reduced to zero, the volume integrals vanish, and only the upper surfaces of the pillbox contribute to the surface integrals.

\begin{equation}\label{eqn:maxwellBoundaryConditions:200}
\begin{aligned}
\oint_{\partial V} d^2 \Bx \cdot (I F) &= 0 \\
\oint_{\partial V} d^2 \Bx \cdot F &= 0.
\end{aligned}
\end{equation}

With a multivector \(F\) in the mix, the geometric meaning of these integrals is not terribly clear. They do describe the boundary conditions, but to see exactly what those are, we can now resort to the split of \(F\) into its electric and magnetic fields. Let’s look at the non-dual integral to start with

\begin{equation}\label{eqn:maxwellBoundaryConditions:160}
\begin{aligned}
\oint_{\partial V} d^2 \Bx \cdot F
&=
\oint_{\partial V} d^2 \Bx \cdot \lr{ \BE + I c \BB } \\
&=
\oint_{\partial V} d^2 \Bx \cdot \BE + I c d^2 \Bx \wedge \BB \\
&=
0.
\end{aligned}
\end{equation}

No component of \(\BE\) that is normal to the surface contributes to \(d^2 \Bx \cdot \BE \), whereas only components of \(\BB\) that are normal contribute to \(d^2 \Bx \wedge \BB \). That means that we must have tangential components of \(\BE\) and the normal components of \(\BB\) matching on the surfaces

\begin{equation}\label{eqn:maxwellBoundaryConditions:180}
\begin{aligned}
\lr{\BE_2 \wedge \ncap} \ncap – \lr{\BE_1 \wedge (-\ncap)} (-\ncap) &= 0 \\
\lr{\BB_2 \cdot \ncap} \ncap – \lr{\BB_1 \cdot (-\ncap)} (-\ncap) &= 0 .
\end{aligned}
\end{equation}

Similarly, for the dot product of the dual field, this is

\begin{equation}\label{eqn:maxwellBoundaryConditions:220}
\begin{aligned}
\oint_{\partial V} d^2 \Bx \cdot (I F)
&=
\oint_{\partial V} d^2 \Bx \cdot (I \BE – c \BB) \\
&=
\oint_{\partial V} I d^2 \Bx \wedge \BE – c d^2 \Bx \cdot \BB.
\end{aligned}
\end{equation}

For this integral, only the normal components of \(\BE\) contribute, and only the tangential components of \(\BB\) contribute. This means that

\begin{equation}\label{eqn:maxwellBoundaryConditions:240}
\begin{aligned}
\lr{\BE_2 \cdot \ncap} \ncap – \lr{\BE_1 \cdot (-\ncap)} (-\ncap) &= 0 \\
\lr{\BB_2 \wedge \ncap} \ncap – \lr{\BB_1 \wedge (-\ncap)} (-\ncap) &= 0.
\end{aligned}
\end{equation}

This is why we end up with a seemingly strange mix of tangential and normal components of the electric and magnetic fields. These constraints can be summarized as

\begin{equation}\label{eqn:maxwellBoundaryConditions:260}
\begin{aligned}
( \BE_2 – \BE_1 ) \cdot \ncap &= 0 \\
( \BE_2 – \BE_1 ) \wedge \ncap &= 0 \\
( \BB_2 – \BB_1 ) \cdot \ncap &= 0 \\
( \BB_2 – \BB_1 ) \wedge \ncap &= 0
\end{aligned}
\end{equation}

These relationships are usually expressed in terms of all of \(\BE, \BD, \BB\) and \(\BH \). Because I’d started with Maxwell’s equations for free space, I don’t have the \( \epsilon \) and \( \mu \) factors that produce those more general relationships. Those more general boundary value relationships are usually the starting point for the Fresnel interface analysis. It is also possible to further generalize these relationships to include charges and currents on the surface.

References

[1] D. Hestenes. New Foundations for Classical Mechanics. Kluwer Academic Publishers, 1999.