unimodular transformation

Third update of aggregate notes for phy1520, Graduate Quantum Mechanics.

November 9, 2015 phy1520 1 comment , , , , , , , , , , , , , , , ,

I’ve posted a third update of my aggregate notes for PHY1520H Graduate Quantum Mechanics, taught by Prof. Arun Paramekanti. In addition to what was noted previously, this contains lecture notes up to lecture 13, my solutions for the third problem set, and some additional worked practice problems.

Most of the content was posted individually in the following locations, but those original documents will not be maintained individually any further.

Unimodular transformation

October 31, 2015 phy1520 No comments ,

[Click here for a PDF of this post with nicer formatting]

Q: Show that

This is ([1] pr. 3.3)

Given the matrix

\begin{equation}\label{eqn:unimodularAndRotation:20}
U =
\frac
{a_0 + i \sigma \cdot \Ba}
{a_0 – i \sigma \cdot \Ba},
\end{equation}

where \( a_0, \Ba \) are real valued constant and vector respectively.

  • Show that this is a unimodular and unitary transformation.
  • A unitary transformation can represent an arbitary rotation. Determine the rotation angle and direction in terms of \( a_0, \Ba \).

A: unimodular

Let’s call these factors \( A_{\pm} \), which expand to

\begin{equation}\label{eqn:unimodularAndRotation:40}
\begin{aligned}
A_{\pm}
&=
a_0 \pm i \sigma \cdot \Ba \\
&=
\begin{bmatrix}
a_0 \pm i a_z & \pm \lr{ a_y + i a_x} \\
\mp (a_y – i a_x) & a_0 \mp i a_z \\
\end{bmatrix},
\end{aligned}
\end{equation}

or with \( z = a_0 + i a_z \), and \( w = a_y + i a_x \), these are

\begin{equation}\label{eqn:unimodularAndRotation:120}
A_{+}
=
\begin{bmatrix}
z & w \\
-w^\conj & z^\conj
\end{bmatrix}
\end{equation}
\begin{equation}\label{eqn:unimodularAndRotation:180}
A_{-}
=
\begin{bmatrix}
z^\conj & -w \\
w^\conj & z
\end{bmatrix}.
\end{equation}

These both have a determinant of
\begin{equation}\label{eqn:unimodularAndRotation:60}
\begin{aligned}
\Abs{z}^2 + \Abs{w}^2
&=
\Abs{a_0 + i a_z}^2 + \Abs{a_y + i a_x}^2 \\
&= a_0^2 + \Ba^2.
\end{aligned}
\end{equation}

The inverse of the latter is
\begin{equation}\label{eqn:unimodularAndRotation:200}
A_{-}^{-1}
=
\inv{ a_0^2 + \Ba^2 }
\begin{bmatrix}
z & w \\
-w^\conj & z^\conj
\end{bmatrix}
\end{equation}

Noting that the numerator and denominator commute the inverse can be applied in either order. Picking one, the transformation of interest, after writing \( A = a_0^2 + \Ba^2 \), is

\begin{equation}\label{eqn:unimodularAndRotation:100}
\begin{aligned}
U
&=
\inv{A}
\begin{bmatrix}
z & w \\
-w^\conj & z^\conj
\end{bmatrix}
\begin{bmatrix}
z & w \\
-w^\conj & z^\conj
\end{bmatrix} \\
&=
\inv{A}
\begin{bmatrix}
z^2 – \Abs{w}^2 & w( z + z^\conj) \\
-w^\conj (z^\conj + z ) & (z^\conj)^2 – \Abs{w}^2
\end{bmatrix}.
\end{aligned}
\end{equation}

Recall that a unimodular transformation is one that has the form

\begin{equation}\label{eqn:unimodularAndRotation:140}
\begin{bmatrix}
z & w \\
-w^\conj & z^\conj
\end{bmatrix},
\end{equation}

provided \( \Abs{z}^2 + \Abs{w}^2 = 1 \), so \ref{eqn:unimodularAndRotation:100} is unimodular if the following sum is unity, which is the case

\begin{equation}\label{eqn:unimodularAndRotation:160}
\begin{aligned}
\frac{\Abs{z^2 – \Abs{w}^2}^2}{\lr{ \Abs{z}^2 + \Abs{w}^2}^2 } + \Abs{w}^2 \frac{\Abs{z + z^\conj}^2 }{\lr{ \Abs{z}^2 + \Abs{w}^2}^2 }
&=
\frac{
\lr{ z^2 – \Abs{w}^2 } \lr{ (z^\conj)^2 – \Abs{w}^2 }
+ \Abs{w}^2 \lr{ z + z^\conj }^2
}{
\lr{ \Abs{z}^2 + \Abs{w}^2}^2
} \\
&=
\frac{
\Abs{z}^4 + \Abs{w}^4 – \Abs{w}^2 \lr{ {z^2 + (z^\conj)^2} }
+ \Abs{w}^2 \lr{ {z^2 + (z^\conj)^2} + 2 \Abs{z}^2 }
}{
\lr{ \Abs{z}^2 + \Abs{w}^2}^2
} \\
&= 1.
\end{aligned}
\end{equation}

A: rotation

The most general rotation of a vector \( \Ba \), described by Pauli matrices is

\begin{equation}\label{eqn:unimodularAndRotation:220}
e^{i \Bsigma \cdot \ncap \theta/2}
\Bsigma \cdot \Ba
e^{-i \Bsigma \cdot \ncap \theta/2}
=
\Bsigma \cdot \ncap + \lr{ \Bsigma \cdot \Ba – (\Ba \cdot \ncap) \Bsigma \cdot \ncap } \cos \theta + \Bsigma \cdot (\Ba \cross \ncap) \sin\theta.
\end{equation}

If the unimodular matrix above, applied as \( \Bsigma \cdot \Ba’ = U^\dagger \Bsigma \cdot \Ba U \) is to also describe this rotation, we want the equivalence

\begin{equation}\label{eqn:unimodularAndRotation:240}
U = e^{-i \Bsigma \cdot \ncap \theta/2},
\end{equation}

or

\begin{equation}\label{eqn:unimodularAndRotation:260}
\inv{a_0^2 + \Ba^2}
\begin{bmatrix}
a_0^2 – \Ba^2 + 2 i a_0 a_z & 2 a_0 ( a_y + i a_x ) \\
-2 a_0( a_y – i a_x ) & a_0^2 – \Ba^2 – 2 i a_0 a_z
\end{bmatrix}
=
\begin{bmatrix}
\cos(\theta/2) – i n_z \sin(\theta/2) & (-n_y -i n_x) \sin(\theta/2) \\
-( – n_y + i n_x ) \sin(\theta/2) & \cos(\theta/2) + i n_z \sin(\theta/2)
\end{bmatrix}.
\end{equation}

Equating components, that is
\begin{equation}\label{eqn:unimodularAndRotation:280}
\begin{aligned}
\cos(\theta/2) &= \frac{a_0^2 – \Ba^2}{a_0^2 + \Ba^2} \\
-n_x \sin(\theta/2) &= \frac{2 a_0 a_x}{a_0^2 + \Ba^2} \\
-n_y \sin(\theta/2) &= \frac{2 a_0 a_y}{a_0^2 + \Ba^2} \\
-n_z \sin(\theta/2) &= \frac{2 a_0 a_y}{a_0^2 + \Ba^2} \\
\end{aligned}
\end{equation}

Noting that

\begin{equation}\label{eqn:unimodularAndRotation:300}
\begin{aligned}
\sin(\theta/2)
&=
\sqrt{
1 – \frac{(a_0^2 – \Ba^2)^2}{(a_0^2 + \Ba^2)^2}
} \\
&=
\frac{
\sqrt{ (a_0^2 + \Ba^2)^2 – (a_0^2 – \Ba^2)^2 }
}
{
a_0^2 + \Ba^2
} \\
&=
\frac{\sqrt{ 4 a_0^2 \Ba^2 }}{a_0^2 + \Ba^2} \\
&=
\frac{2 a_0 \Abs{\Ba} }{a_0^2 + \Ba^2}
\end{aligned}
\end{equation}

The vector normal direction can be written

\begin{equation}\label{eqn:unimodularAndRotation:320}
\Bn
= – \frac{2 a_0}{(a_0^2 + \Ba^2) \sin(\theta/2)} \Ba,
\end{equation}

or

\begin{equation}\label{eqn:unimodularAndRotation:340}
\boxed{
\Bn = – \frac{\Ba}{\Abs{\Ba}}.
}
\end{equation}

The angle of rotation is

\begin{equation}\label{eqn:unimodularAndRotation:380}
\boxed{
\theta = 2 \tan^{-1} \frac{2 a_0 \Abs{\Ba}}{ a_0^2 – \Ba^2}.
}
\end{equation}

References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.