Virial Theorem

Second update of aggregate notes for phy1520, Graduate Quantum Mechanics

October 20, 2015 phy1520 No comments , , , , , , , , , , , ,

I’ve posted a second update of my aggregate notes for PHY1520H Graduate Quantum Mechanics, taught by Prof. Arun Paramekanti. In addition to what was noted previously, this contains lecture notes up to lecture 9, my ungraded solutions for the second problem set, and some additional worked practise problems.

Most of the content was posted individually in the following locations, but those original documents will not be maintained individually any further.

Expectations for SHO Hamiltonian, and virial theorem.

October 15, 2015 phy1520 No comments , , , , ,

[Click here for a PDF of this post with nicer formatting]

Question: Expectations for SHO Hamiltonian, and virial theorem. ([1] pr. 2.3)

(a)

For a 1D SHO, compute \(
\bra{m} x \ket{n},
\bra{m} x^2 \ket{n},
\bra{m} p \ket{n},
\bra{m} p^2 \ket{n} \) and \( \bra{m} \symmetric{x}{p} \ket{n} \).

(b)

Verify the virial theorem is satisfied for energy eigenstates.

Answer

(a)

Using

\begin{equation}\label{eqn:shoExpectations:20}
\begin{aligned}
x &= \frac{x_0}{\sqrt{2}} \lr{ a + a^\dagger } \\
p &= \frac{i\Hbar}{x_0 \sqrt{2}} \lr{ a^\dagger – a} \\
a(t) &= a(0) e^{-i \omega t} \\
a(0) \ket{n} &= \sqrt{n} \ket{n-1} \\
a^\dagger(0) \ket{n} &= \sqrt{n+1} \ket{n+1} \\
x_0^2 &= \frac{\Hbar}{\omega m},
\end{aligned}
\end{equation}

we have

\begin{equation}\label{eqn:shoExpectations:40}
\begin{aligned}
\bra{m} x \ket{n}
&=
\frac{x_0}{\sqrt{2}} \bra{m} \lr{ a + a^\dagger } \ket{n} \\
&=
\frac{x_0}{\sqrt{2}} \bra{m}
\lr{
e^{-i \omega t} \sqrt{n} \ket{n-1}
+
e^{i \omega t} \sqrt{n+1} \ket{n+1}
} \\
&=
\frac{x_0}{\sqrt{2}} \lr{
\delta_{m, n-1} e^{-i \omega t} \sqrt{n}
+
\delta_{m, n+1} e^{i \omega t} \sqrt{n+1}
},
\end{aligned}
\end{equation}

\begin{equation}\label{eqn:shoExpectations:60}
\begin{aligned}
\bra{m} x^2 \ket{n}
&=
\frac{x_0^2}{2} \bra{m} \lr{ a + a^\dagger }^2 \ket{n} \\
&=
\frac{x_0^2}{2}
\lr{
e^{i \omega t} \sqrt{m} \bra{m-1}
+
e^{-i \omega t} \sqrt{m+1} \bra{m+1}
}
\lr{
e^{-i \omega t} \sqrt{n} \ket{n-1}
+
e^{i \omega t} \sqrt{n+1} \ket{n+1}
} \\
&=
\frac{x_0^2}{2}
\lr{
\delta_{m+1,n+1} \sqrt{(m+1)(n+1)}
+\delta_{m+1,n-1} \sqrt{(m+1)n} e^{-2 i \omega t}
+\delta_{m-1,n+1} \sqrt{m(n+1)} e^{2 i \omega t}
+\delta_{m-1,n-1} \sqrt{m n}
},
\end{aligned}
\end{equation}

\begin{equation}\label{eqn:shoExpectations:80}
\begin{aligned}
\bra{m} p \ket{n}
&=
\frac{i\Hbar}{\sqrt{2} x_0} \bra{m} \lr{ a^\dagger – a} \ket{n} \\
&=
\frac{i\Hbar}{\sqrt{2} x_0} \bra{m} \lr{
e^{i \omega t} \sqrt{n+1} \ket{n+1}

e^{-i \omega t} \sqrt{n} \ket{n-1}
} \\
&=
\frac{i\Hbar}{\sqrt{2} x_0} \lr{
\delta_{m,n+1} e^{i \omega t} \sqrt{n+1}

\delta_{m,n-1} e^{-i \omega t} \sqrt{n}
},
\end{aligned}
\end{equation}

\begin{equation}\label{eqn:shoExpectations:100}
\begin{aligned}
\bra{m} p^2 \ket{n}
&=
\frac{\Hbar^2}{2 x_0^2} \ket{m} \lr{ a – a^\dagger } \lr{ a^\dagger – a}
\ket{n} \\
&=
\frac{\Hbar^2}{2 x_0^2}
\lr{
-e^{-i \omega t} \sqrt{m+1} \bra{m+1}
+
e^{i \omega t} \sqrt{m} \bra{m-1}
}
\lr{
e^{i \omega t} \sqrt{n+1} \ket{n+1}

e^{-i \omega t} \sqrt{n} \ket{n-1}
} \\
&=
\frac{\Hbar^2}{2 x_0^2}
\lr{
\delta_{m+1,n+1} \sqrt{(m+1)(n+1)}
+\delta_{m+1,n-1} \sqrt{(m+1)n} e^{-2 i \omega t}
+\delta_{m-1,n+1} \sqrt{m(n+1)} e^{2 i \omega t}
+\delta_{m-1,n-1} \sqrt{m n}
}.
\end{aligned}
\end{equation}

For the anticommutator \( \symmetric{x}{p} \), we have

\begin{equation}\label{eqn:shoExpectations:120}
\begin{aligned}
\symmetric{x}{p}
&=
\frac{i\Hbar}{2}
\lr{
\lr{ a e^{-i \omega t} + a^\dagger e^{i \omega t} } \lr{ a^\dagger e^{i \omega t} – a e^{-i \omega t} }

\lr{ a^\dagger e^{i \omega t} – a e^{-i \omega t} }
\lr{ a e^{-i \omega t} + a^\dagger e^{i \omega t} }
} \\
&=
\frac{i\Hbar}{2}
\lr{
– a^2 e^{- 2 i \omega t}
+ (a^\dagger)^2 e^{ 2 i \omega t}
+ a a^\dagger
– a^\dagger a
+ a^2 e^{- 2 i \omega t}
– (a^\dagger)^2 e^{ 2 i \omega t}
– a^\dagger a
+ a a^\dagger
} \\
&=
i\Hbar
\lr{
a a^\dagger – a^\dagger a
},
\end{aligned}
\end{equation}

so

\begin{equation}\label{eqn:shoExpectations:140}
\begin{aligned}
\bra{m} \symmetric{x}{p} \ket{n}
&=
i\Hbar
\bra{m}
\lr{
a a^\dagger – a^\dagger a
}
\ket{n} \\
&=
i\Hbar
\bra{m}
\lr{
\sqrt{(n+1)^2}\ket{n}
-\sqrt{n^2}\ket{n}
} \\
&=
i\Hbar
\bra{m}
\lr{
2 n + 1
}
\ket{n}.
\end{aligned}
\end{equation}

(b)

For the SHO, the virial theorem requires \( \expectation{p^2/m} = \expectation{m \omega x^2} \). That momentum expectation with respect to the eigenstate \( \ket{n} \) is

\begin{equation}\label{eqn:shoExpectations:160}
\begin{aligned}
\expectation{p^2/m}
&=
\frac{\Hbar^2}{2 x_0^2 m}
\lr{
\sqrt{(n+1)(n+1)}
+
\sqrt{n n}
} \\
&=
\frac{\Hbar^2 m \omega}{2 \Hbar m} \lr{ 2 n + 1 } \\
&=
\Hbar \omega \lr{ n + \inv{2} }.
\end{aligned}
\end{equation}

For the position expectation we’ve got

\begin{equation}\label{eqn:shoExpectations:180}
\begin{aligned}
\expectation{m \omega x^2}
&=
\frac{m \omega^2 x_0^2}{2}
\lr{
\sqrt{(n+1)(n+1)}
+ \sqrt{n n}
} \\
&=
\frac{m \omega^2 \Hbar}{2 m \omega}
\lr{
\sqrt{(n+1)(n+1)}
+ \sqrt{n n}
} \\
&=
\frac{\omega \Hbar}{2 }
\lr{ 2 n + 1 } \\
&=
\omega \Hbar
\lr{ n + \inv{2} }.
\end{aligned}
\end{equation}

This shows that the virial theorem holds for the SHO Hamiltonian for eigenstates.

References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

Quantum Virial Theorem

August 31, 2015 phy1520 No comments , , , , ,

[Click here for a PDF of this post with nicer formatting]

Question: Quantum Virial Theorem ([1] pr. 2.7)

Consider a particle with Hamiltonian

\begin{equation}\label{eqn:qmVirialTheorem:20}
H = \frac{\Bp^2}{2 m} + V(\Bx),
\end{equation}

By calculating the time evolution of \( \antisymmetric{\Bx \cdot \Bp}{H} \), identify the quantum virial theorem and show the conditions where it is satisfied.

Answer

\begin{equation}\label{eqn:qmVirialTheorem:40}
\begin{aligned}
\antisymmetric{\Bx \cdot \Bp}{H}
&=
\inv{2 m} \antisymmetric{\Bx \cdot \Bp}{\Bp^2} + \antisymmetric{\Bx \cdot \Bp}{V(\Bx)} \\
&=
\inv{2 m} \lr{ x_r p_r \Bp^2 – \Bp^2 x_r p_r}
+
\lr{ x_r p_r V(\Bx) – V(\Bx) x_r p_r } \\
&=
\inv{2 m} \antisymmetric{ x_r }{\Bp^2} p_r
+
x_r \antisymmetric{ p_r}{ V(\Bx)},
\end{aligned}
\end{equation}

Evaluating those commutators separately, gives

\begin{equation}\label{eqn:qmVirialTheorem:60}
\begin{aligned}
\antisymmetric{ x_r }{\Bp^2}
&=
\antisymmetric{ x_r }{p_r^2}\qquad \text{no sum} \\
&=
2 i \Hbar p_r,
\end{aligned}
\end{equation}

and

\begin{equation}\label{eqn:qmVirialTheorem:80}
\antisymmetric{ p_r}{ V(\Bx)}
= -i \Hbar \PD{x_r}{V(\Bx)},
\end{equation}

so
\begin{equation}\label{eqn:qmVirialTheorem:100}
\begin{aligned}
\ddt{}\lr{\Bx \cdot \Bp}
&=
\inv{i \Hbar}
\antisymmetric{\Bx \cdot \Bp}{H} \\
&=
\inv{2 m} 2 p_r p_r – x_r \PD{x_r}{V(\Bx)} \\
&=
\frac{\Bp^2}{m} – \Bx \cdot \spacegrad V(\Bx).
\end{aligned}
\end{equation}

Taking expectation values, assuming that the states are independent of time, we have

\begin{equation}\label{eqn:qmVirialTheorem:120}
\begin{aligned}
0
&= \ddt{} \expectation{ \Bx \cdot \Bp } \\
&= \expectation{\frac{\Bp^2}{m}} – \expectation{\Bx \cdot \spacegrad V(\Bx)}.
\end{aligned}
\end{equation}

Note that taking the expectation with respect to stationary states was required to reverse the order of the time derivative with the expectation operation.

The right hand side is the quantum equivalent of the virial theorem, relating the average kinetic energy to the potential

\begin{equation}\label{eqn:qmVirialTheorem:140}
2 \expectation{T} = \expectation{\Bx \cdot \spacegrad V(\Bx)}
\end{equation}

References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

Update to old phy356 (Quantum Mechanics I) notes.

February 12, 2015 math and physics play No comments , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

It’s been a long time since I took QM I. My notes from that class were pretty rough, but I’ve cleaned them up a bit.

The main value to these notes is that I worked a number of introductory Quantum Mechanics problems.

These were my personal lecture notes for the Fall 2010, University of Toronto Quantum mechanics I course (PHY356H1F), taught by Prof. Vatche Deyirmenjian.

The official description of this course was:

The general structure of wave mechanics; eigenfunctions and eigenvalues; operators; orbital angular momentum; spherical harmonics; central potential; separation of variables, hydrogen atom; Dirac notation; operator methods; harmonic oscillator and spin.

This document contains a few things

• My lecture notes.
Typos, if any, are probably mine(Peeter), and no claim nor attempt of spelling or grammar correctness will be made. The first four lectures had chosen not to take notes for since they followed the text very closely.
• Notes from reading of the text. This includes observations, notes on what seem like errors, and some solved problems. None of these problems have been graded. Note that my informal errata sheet for the text has been separated out from this document.
• Some assigned problems. I have corrected some the errors after receiving grading feedback, and where I have not done so I at least recorded some of the grading comments as a reference.
• Some worked problems associated with exam preparation.