Peeter Joot

March 16, 2008

1 Angle between geometric elements.

Have the calculation for the angle between bivectors done elsewhere

$$
\begin{equation*}
\cos \theta=-\frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{A}||\mathbf{B}|} \tag{1}
\end{equation*}
$$

For $\theta \in[0, \pi]$.
The vector/vector result is well known and also works fine in \mathbb{R}^{N}

$$
\begin{equation*}
\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|} \tag{2}
\end{equation*}
$$

2 Calculation for a line and a plane.

Given a line with unit direction vector \mathbf{u}, and plane with unit direction bivector \mathbf{A}, the component of that vector in the plane is:

$$
-\mathbf{u} \cdot \mathbf{A A} .
$$

So the direction cosine is available immediately

$$
\cos \theta=\mathbf{u} \cdot \frac{-\mathbf{u} \cdot \mathbf{A} \mathbf{A}}{|\mathbf{u} \cdot \mathbf{A} \mathbf{A}|}
$$

However, this can be reduced significantly. Start with the denominator

$$
\begin{aligned}
|\mathbf{u} \cdot \mathbf{A} \mathbf{A}|^{2} & =(\mathbf{u} \cdot \mathbf{A} \mathbf{A})(\mathbf{A} \mathbf{A} \cdot \mathbf{u}) \\
& =(\mathbf{u} \cdot \mathbf{A})^{2}
\end{aligned}
$$

And in the numerator we have:

$$
\begin{aligned}
\mathbf{u} \cdot(\mathbf{u} \cdot \mathbf{A} \mathbf{A}) & =\frac{1}{2}(\mathbf{u}(\mathbf{u} \cdot \mathbf{A} \mathbf{A})+(\mathbf{u} \cdot \mathbf{A} \mathbf{A}) \mathbf{u}) \\
& =\frac{1}{2}((\mathbf{u} \mathbf{u} \cdot \mathbf{A}) \mathbf{A}+(\mathbf{u} \cdot \mathbf{A}) \mathbf{A} \mathbf{u}) \\
& =\frac{1}{2}((\mathbf{A} \cdot \mathbf{u} \mathbf{u}) \mathbf{A}-(\mathbf{A} \cdot \mathbf{u}) \mathbf{A} \mathbf{u}) \\
& =(\mathbf{A} \cdot \mathbf{u}) \frac{1}{2}(\mathbf{u} \mathbf{A}-\mathbf{A} \mathbf{u}) \\
& =-(\mathbf{A} \cdot \mathbf{u})^{2}
\end{aligned}
$$

Putting things back together

$$
\cos \theta=\frac{(\mathbf{A} \cdot \mathbf{u})^{2}}{|\mathbf{u} \cdot \mathbf{A}|}=|\mathbf{u} \cdot \mathbf{A}|
$$

The strictly positive value here is consistent with the fact that theta as calculated is in the $[0, \pi / 2]$ range.

Restated for consistency with equations 2 and 1 in terms of not neccessarily unit vector and bivectors \mathbf{u} and \mathbf{A}, we have

$$
\begin{equation*}
\cos \theta=\frac{|\mathbf{u} \cdot \mathbf{A}|}{|\mathbf{u}||\mathbf{A}|} \tag{3}
\end{equation*}
$$

