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1 Working in multivector form.

1.1 Application of Lorentz boost to the field Lagrangian.

The multivector form of the field Lagrangian is

L = κ(∇∧ A)2 + A · J (1)

κ = − ε0c
2

(2)

Write the boosting transformation on a four vector in exponential form

L(X) = exp(αâ/2)X exp(−αâ/2) = ΛXΛ†

where â = aiγi ∧ γ0 is any unit spacetime bivector, and α represents the
rapidity angle.
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Consider first the transformation of the interaction term with A′ = L(A),
and J′ = L(J)

A′ · J′ = 〈L(A)L(J)〉

=
〈

ΛAΛ†ΛJΛ†
〉

=
〈

ΛAJΛ†
〉

=
〈

Λ†ΛAJ
〉

= 〈AJ〉
= A · J

Now consider the boost applied to the field bivector F = E + IcB = ∇∧ A,
by boosting both the gradient and the potential

∇′ ∧ A′ = L(∇) ∧ L(A)
= Λ∇) ∧ L(A)

= (Λ∇Λ†) ∧ (ΛAΛ†)

=
1
2

(
(Λ∇Λ†)(ΛAΛ†)− (ΛAΛ†)(Λ∇Λ†)

)
=

1
2

(
Λ∇AΛ† − ΛA∇Λ†

)
= Λ(∇∧ A)Λ†

The boosted squared field bivector in the Lagrangian is thus

(∇′ ∧ A′)2 = Λ(∇∧ A)2Λ†

= Λ(E + IcB)2Λ†

= Λ((E2 − c2B2) + 2IcE · B)Λ†

= ((E2 − c2B2)ΛΛ† + 2(ΛIΛ†)cE · B)

= ((E2 − c2B2) + 2IΛΛ†cE · B)

= ((E2 − c2B2) + 2IcE · B)

= (E + IcB)2

= (∇∧ A)2

The commutation of the pseudoscalar I with the boost exponential Λ =
exp(αâ/2) = cosh(α/2) + â sinh(α/2) is possible since I anticommutes with

2



all four vectors and thus commutes with bivectors, such as â. I also neccessar-
ily commutes with the scalar components of this exponential, and thus com-
mutes with any even grade multivector.

Putting all the pieces together this shows that the Lagrangian in its entirety
is a Lorentz invarient

L′ = κ(∇′ ∧ A′)2 + A′ · J′ = κ(∇∧ A)2 + A · J = L

FIXME: what is the conserved quantity associated with this? There should
be one according to Noether’s theorem? Is it the guage condition ∇ · A = 0?

1.1.1 Maxwell equation invariance.

Somewhat related, having calculated the Lorentz transform of F = ∇ ∧ A, is
an aside showing that the Maxwell equation is unsuprisingly also is a Lorentz
invariant.

∇′(∇′ ∧ A′) = J′

Λ∇Λ†Λ(∇∧ A)Λ† = ΛJΛ†

Λ∇(∇∧ A)Λ† = ΛJΛ†

Pre and post multiplying with Λ†, and Λ respectively returns the unboosted
equation

∇(∇∧ A) = J

1.2 Lorentz boost applied to the Lorentz force Lagrangian.

Next interesting case is the Lorentz force, which for a time positive metric sig-
nature is:

L = qA · v/c +
1
2

mv · v

The boost invariance of the A · J dot product demonstrated above demon-
strates the general invariance property for any four vector dot product, and
this Lagrangian has nothing but dot products in it. It thus follows directly that
the Lorentz force Lagrangian is also a Lorentz invariant.
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2 Repeat in tensor form.

Now, I can follow the above, but presented with the same sort of calculation
in tensor form I am hopeless to understand it. To attempt translating this into
tensor form, it appears the first step is putting the Lorentz transform itself into
tensor or matrix form.

2.1 Translating versors to matrix form.

To get the feeling for how this will work, assume â = σ1, so that the boost is
along the x-axis. In that case we have

L(X) = (cosh(α/2) + γ10 sinh(α/2))xµγµ(cosh(α/2) + γ01 sinh(α/2))

Writing C = cosh(α/2), and S = sinh(α/2), and observing that the expo-
nentials commute with the γ2, and γ3 directions so the exponential action on
those directions cancel.

L(X) = x2γ2 + x3γ3 + (C + γ10S)(x0γ0 + x1γ1)(C + γ01S)

Expanding just the non-perpendicular parts of the above

(C + γ10S)(x0γ0 + x1γ1)(C + γ01S)

= x0(C2γ0 + γ10001S2) + x0SC(γ001 + γ100) + x1(C2γ1 + γ10101S2) + x1SC(γ101 + γ101)

= x0(C2γ0 − γ01100S2) + 2x0SCγ001 + x1(C2γ1 − γ11001S2)− 2x1SCγ011

= (x0γ0 + x1γ1)(C2 + S2) + 2(γ0)2SC(x0γ1 + x1γ0)

= (x0γ0 + x1γ1) cosh(α) + (γ0)2 sinh(α)(x0γ1 + x1γ0)

= γ0(x0 cosh(α) + x1 sinh((γ0)2α)) + γ1(x1 cosh(α) + x0 sinh((γ0)2α))

In matrix form the complete transformation is thus


x0

x1

x2

x3


′

=


cosh(α(γ0)2) sinh(α(γ0)2) 0 0
sinh(α(γ0)2) cosh(α(γ0)2) 0 0

0 0 1 0
0 0 0 1




x0

x1

x2

x3



= cosh(α(γ0)2)


1 tanh(α(γ0)2) 0 0

tanh(α(γ0)2) 1 0 0
0 0 1 0
0 0 0 1




x0

x1

x2

x3
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This supplies the specific meaning for the α factor in the exponential form,
namely:

α = − tanh−1(β(γ0)2)

= − tanh−1(|v|/c(γ0)2)

Or

αâ = − tanh−1(â|v|/c(γ0)2)

= − tanh−1(v/c(γ0)2)

Putting this back into the original Lorentz boost equation to tidy it up, and
writing tanh(A) = v/c, the Lorentz boost is

L(X) =
{

exp(−A/2)X exp(A/2) for (γ0)2 = 1
exp(A/2)X exp(−A/2) for (γ0)2 = −1

Both of the metric signature options are indicated here for future reference
and comparision with results using the alternate signature.

2.1.1 Revisit the expansion to matrix form above.

Looking back, multiplying out all the half angle terms as done above is this is
the long dumb hard way to do it. A more sensible way would be to note that
exp(αâ/2) anticommutes with both γ0 and γ1 thus

exp(αâ/2)(x0γ0 + x1γ1) exp(−αâ/2) = exp(αâ)(x0γ0 + x1γ1)

= (cosh(α) + â sinh(α))(x0γ0 + x1γ1)

The matrix form thus follows directly.

3 Translating versors tensor form.

After this temporary digression back to the multivector form of the Lorentz
transformation lets dispose of the specifics of the boost direction and magni-
tude, and also the metric signature. Instead encode all of these in a single
versor variable Λ, again writing

L(X) = ΛXΛ† (3)
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3.1 Expressing vector Lorentz transform in tensor form.

What is the general way to encode this linear transformation in tensor/matrix
form? The transformed vector is just that a vector, and thus can be written in
terms of coordinates for some basis

L(X) = (L(X) · eµ)eµ

= ((Λ(xνγν)Λ†) · eµ)eµ

= xν((ΛγνΛ†) · eµ)eµ

The inner term is just the tensor that we want. Write

Λν
µ = (ΛγνΛ†) · eµ

Λν
µ = (ΛγνΛ†) · eµ

for

L(X) = xνΛν
µeµ

= xνΛν
µeµ

Completely eliminating the basis, working in just the coordinates X =
x′µeµ = x′µeµ this is

x′µ = xνΛν
µ (4)

x′µ = xνΛν
µ (5)

Now, in particular, having observed that the dot product is a Lorentz in-
variant this should supply the index manipulation rule for operating with the
Lorentz boost tensor in a dot product context.

Write

L(X) · L(Y) = (xνΛν
µeµ) · (yαΛα

βeβ)

= xνyαΛν
µΛα

βeµ · eβ

= xνyαΛν
µΛα

µ

Since this equals xνyν, the tensor rule must therefore be

Λµ
σΛν

σ = δµ
ν (6)

After a somewhat long path, the core idea behind the Lorentz boost tensor
is that it is the “matrix” of a linear transformation that leaves the four vector
dot product unchanged. There is no need to consider any clifford algebra for-
mulations to express just that idea.
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3.2 Misc notes.

FIXME: To complete the expression of this in tensor form enumerating exactly
how to express the dot product in tensor form would also be reasonable. ie:
how to compute the reciprocal coordinates without describing the basis. Doing
this will introduce the metric tensor into the mix.

Looks like the result 6 is consistent with [Minahan()] and that doc starts
making a bit more sense now. I do see that he uses primes to distinguish the
boost tensor from its inverse (using the inverse tensor (primed index down) to
transform the covariant (down) coordinates). Is there a convention for keeping
free vs. varied indexes close to the body of the operator? For the boost tensor
he puts the free index closer to Λ, but for the inverse tensor for a covariant
coordinate transformation puts the free index further out?

This also appears to be notational consistent with [Spence()].

3.3 Expressing bivector Lorentz transform in tensor form.

Having translated a vector Lorentz transform into tensor form, the next step is
to do the same for a bivector. In particular for the field bivector F = ∇∧ A.

Write

∇′ = Λγµ∂µΛ†

A′ = ΛAνγνΛ†

∇′ · eβ = (ΛγµΛ†) · eβ∂µ = Λµ
β∂µ

A′ · eβ = (ΛγνΛ†) · eβ Aν = Λν
β Aν

Then the transformed bivector is

F′ = ∇′ ∧ A′ = ((∇′ · eα)eα) ∧ ((A′ · eβ)eβ)

= (eα ∧ eβ)Λµ
αΛν

β∂µ Aν

and finally the transformed tensor is thus
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Fab ′ = F′ · (eb ∧ ea)

= (eα ∧ eβ) · (eb ∧ ea)Λµ
αΛν

β∂µ Aν

= (δα
aδβ

b − δβ
aδα

b)Λµ
αΛν

β∂µ Aν

= Λµ
aΛν

b∂µ Aν − Λµ
bΛν

a∂µ Aν

= Λµ
aΛν

b(∂µ Aν − ∂ν Aµ)

Which gives the final transformation rule for the field bivector in tensor
form

Fab ′ = Λµ
aΛν

bFµν (7)

Returning to the original problem of field Lagrangian invariance, we want
to examine how Fab ′Fab

′ transforms. That is

Fab ′Fab
′ = Λµ

aΛν
bFµνΛα

aΛβ
bFαβ (8)

= (Λµ
aΛα

a)(Λν
bΛβ

b)FµνFαβ (9)

= δµ
αδν

βFµνFαβ (10)

= FµνFµν (11)

which is the desired result. Since the dot product remainder of the La-
grangian 1 has already been shown to be Lorentz invariant this is sufficient to
prove the Lagragian boost or rotational invariance using tensor algebra.

Working this way is fairly compact and efficient, and required a few less
steps than the multivector equivalent. To compare apples to applies, for the
algebraic tools, it should be noted that if only the scalar part of (∇∧ A)2 was
considered as implicitly done in the tensor argument above, the multivector
approach would likely have been as compact as well.
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