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It was seen in that Noether’s law for a line integral action was shown
to essentially be an application of the chain rule, coupled with an application
of the Euler-Lagrange equations.

For a field Lagrangian a similar conservation statement can be made, where
it takes the form of a divergence relationship instead of derivative with respect
to the integration parameter associated with the line integral.

The following derivation follows [Doran and Lasenby(2003)], but is dumbed
down to the scalar field variable case, and additional details are added.

The Lagrangian to be considered is

L= L(p,0up),

and the single field case is sufficent to see how this works. Consider the
following transformation:
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Taking derivatives of the transformed Lagrangian with respect to the free
transformation variable «, we have
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The Euler-Lagrange field equations for the transformed Lagrangian are
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For some for background discussion, examples, and derivation of the field
form of Noether’s equation see [Joot(c)|l.
Now substitute back into[llfor

M

ac' oL |\ of dL 0(0uf)
da‘z@%@w)w+§M%naZ
of

Using the product rule we have
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Here the field doesn’t have to be a relativistic field which could be implied
by the use of the standard symbols for relativistic four vector basis {7} of
STA. This is really a statement that one can form a gradient in the field variable
configuration space using any appropriate reciprocal basis pair.

Noether’s law for a field Lagrangian is a statement that if the transformed
Lagrangian is unchanged (invariant) by some type of parameterized field vari-
able transformation, then with | = J"*y, one has




ac’

= V-]'=0 (3)
oL Ay
= 30,9 o @)

FIXME: GAFP evaluates things at « = 0 where that is the identity case.
I think this is what allows them to drop the primes later. Must think this
through.

2 Examples.

21 Schrodinger invariance under phase change.

The relativistic Schrodinger Lagrangian

L =", pd " + m*pyp*,

gives a simple example application of the field form of Noether’s equation,
for a transformation that involves a phase change

gy =y
¢7* N lP*/ — eiiel[«’*.
This transformation leaves the Lagrangian unchanged, so there is an asso-
ciated conserved quantity.
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Summing all the field partials, treating ¢, and " as separate field variables
the divergence conservation statement is
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Dropping primes and writing | = 7, J¥, this is

J=i(¥Vy" =9 Vy)
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Apparently with charge added this quantity actually represents electric cur-
rent density. It will be interesting to learn some quantum mechanics and see
how this works.

2.2 Lorentz boost and rotation invariance of Maxwell Lagrangian.
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The rotation and boost invariance of the Maxwell Lagragian was demon-
strated in [Joot(a)].
Following [Joot(d)] write the Lorentz boost or rotation in exponential form.

L(x) = exp(—ai/2)xexp(ai/2), A =exp(—ai/2)

where i is a unit spatial bivector for a rotation of —a radians, and a boost
with rapidity « when i is a spacetime unit bivector.
Introducing the transformation

A— A = AAAT

The change in A’ with respect to « is
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Next we want to compute
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Employing the vector field form of Noether’s equation as in (16| the con-
served current C components are

CH = 2(7, F') - (24 - i)
o (yF*) - (A-)
(7 F) - (A+i)

C=7u((v"-F)-(A-1)) (®)

Here C was used instead of | for the conserved current vector since | is
already taken for the current charge density itself.

2.3 Questions.

FIXME: What is this quantity? It has the look of angular momentum, or torque,
or an inertial tensor. Does it have a physical significance? Can the i be factored
out of the expression, leaving a conserved quantity that is some linear function
only of F, and A (this was possible in the Lorentz force Lagrangian for the same
invariance considerations).

2.4 Expansion for x-axis boost.

As an example to get a feel for[8} lets expand this for a specific spacetime boost
plane. Using the x-axis thatisi = ;1 A ¥



First expanding the potential projection one has
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Next the y component of the field is
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So the y component of the conserved vector is
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Therefore the conservation statement is

CH = FrA0 _ propl 9)
9,Ct =0 (10)

Let’s write out the components of 9] explicitly, to perhaps get a better feel
for them.

C=FMA = _E.p
Cl= —F0A' = —E A,

C?=F1A° - FPA' = B¢ — E A
CP=F1A"— YA = —B ¢ — E. A«

Well, that’s not particularily enlightening looking after all.

2.5 Expansion for rotation or boost.

Suppose that one takes i = y# A 7Y, so that we have a symmetry for a boost if
one of y or v is zero, and rotational symmetry otherwise.



This gives
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For a rotation in the a, b, plane with 4 = 4, and v = b (say), lets write out the
C* components explicitly in terms of E and B components, also writing 0 < d,
a#d #b. Thatis
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Only the first term of this reduces nicely. Suppose we additionally write
a =1, b = 2 to make things more concrete. Then we have
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The timelike component of whatever this vector is the z component of a
cross product (spatial component of the E x A product in the direction of the
normal to the rotational plane), but what’s the rest?

2.5.1 Conservation statement.

Returning to (L1} the conservation statement can be calculated as
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But the grade one terms of the Maxwell equation in tensor form is
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So we have
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This first part is some sort of current-potential torque like beastie. That
second part, the squared field term is what? I don’t see an obvious way to
reduce it to something more structured.

3 Appendix.

3.1 Multivariable derivation.

For completion sake, cut and pasted with with most discussion omitted, the
multiple field variable case follows in the same fashion as the single field vari-
able Lagrangian.

= LYo, 9u¢o),

The transformation is now:

Yo = fo(Po,a) = ¢
= L(fo, Oufo)-

Taking derivatives:
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Again, making the Euler-Lagrange substitution of [2| (with f — f) back
into[I2] gives
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A notational convienence for vector valued fields, in particular as we have
in the electrodynamic Lagrangian for the vector potential, the chain rule sum-
mation in13|above can be replaced with a dot product.
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Dropping primes for convience, and writing ¥ = 771, for the vector field
variable, the field form of Noether’s law takes the form
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That is, a current vector with respect to this configuration space divergence
is conserved when the Lagrangian field transformation is invariant.
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