
Projection with generalized dot product.

Peeter Joot

May 16, 2008

Figure 1: Visualizing projection onto a subspace.

We can geometrically visualize the projection problem as in figure 1. Here
the subspace can be pictured as a plane containing a set of mutually perpen-
dicular basis vectors, as if one has visually projected all the higher dimensional
vectors onto a plane.

For a vector x that contains some part not in the space we want to find
the component in the space p, or characterize the projection operation that
produces this vector, and also find the space of vectors that lie perpendicular
to the space.

Expressed in terms of the Euclianian dot product this perpendicularity can
be expressed explicitly as UTn = 0. This is why we say that n is in the null
space of UT, N(UT) not the null space of U itself (N(U)). One perhaps could

1



say this is in the null or perpendicular space of the set {ui}, but the typical
preference to use columns as vectors makes this not entirely unnatural.

In a complex vector space with u · v = u∗v transposition no longer ex-
presses this null space concept, so the null space is the set of n, such that
U∗n = 0, so one would say n ∈ N(U∗).

One can generalize this projection and nullity to more general dot products.
Let’s examine the projection matrix calculation with respect to a more arbitrary
inner product. For an inner product that is congugate linear in the first variable,
and linear in second variable we can write:

〈u, v〉 = u∗Av

This is the most general complex bilinear form, and can thus represent any
complex dot product.

The problem is the same as above. We want to repeat the projection deriva-
tion done with the Euclidian dot product, but be more careful with ordering of
terms since we now using a non-commutative dot (inner) product.

We are looking for vectors p = ∑ aiui, and e such that

x = p + e

If the inner product defines the projection operation we have for any ui

0 = 〈ui, e〉
= 〈ui, x − p〉

=⇒
〈ui, x〉 = 〈ui, p〉

= 〈ui, ∑
j

ajuj〉

= ∑
j

aj〈ui, uj〉

In matrix form, this is [
〈ui, x〉

]
i =

[
〈ui, uj〉

]
ij[ai]i

Or
A = [ai]i =

1[
〈ui, uj〉

]
ij

[
〈ui, x〉

]
i

We can also write our projection in terms of A:

p =
[
u1 u2 · · · uk

]
A = UA

Thus the projection vector can be written:

2



p = U
1[

〈ui, uj〉
]

ij

[
〈ui, x〉

]
i

In matrix form this is:

ProjU(x) =
(

U
1

U∗AU
U∗A

)
x (1)

Writing W∗ = U∗A, this is

ProjU(x) =
(

U
1

W∗U
W∗A

)
x

which is what the wikipedia article on projection calls an oblique projection.
Q: Can any oblique projection be expressed using just an alternate dot product?

3


