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1 Motivation.

We have observed that the wave equation is Lorentz invarient, and conversely
that invarience of the form of the wave equation under linear transformation
for light can be used to calculate the Lorentz transformation. Specifically, this
means that we require the equations of light (wave equation) retain its form
after a change of variables that includes a (possibly scaled) translation. The
wave equation should have no mixed partial terms, and retain the form:

(∇2 − ∂2
ct)F = (∇′2 − ∂2

ct′)F = 0

Having expressed the spacetime gradient with a (STA) Minkowski basis,
and knowing that the Maxwell equation written using the spacetime gradient
is Lorentz invarient:

∇F = J,

we therefore expect that the square root of the wave equation (Laplacian)
operator is also Lorentz invarient. Here this idea is explored, and we look at
how the spacetime gradient behaves under Lorentz transformation.

1.1 Lets do it.

Our spacetime gradient is

∇ = ∑ γµ ∂

∂xµ

Under Lorentz transformation we can transform the x1 = x, and x0 = ct
coordinates: [

x′

ct′

]
= γ

[
1 −β
−β 1

] [
x
ct

]
Set c = 1 for convience, and use this to transform the partials:
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∂

∂x
=

∂x′

∂x
∂

∂x′
+

∂t′

∂x
∂

∂t′

= γ

(
∂

∂x′
− β

∂

∂t′

)

∂

∂t
=

∂x′

∂t
∂

∂x′
+

∂t′

∂t
∂

∂t′

= γ

(
−β

∂

∂x′
+

∂

∂t′

)

Inserting this into our expression for the gradient we have

∇ = γ0 ∂

∂t
+ γ1 ∂

∂x
+ γ2 ∂

∂y
+ γ3 ∂

∂z

= γ0γ

(
−β

∂

∂x′
+

∂

∂t′

)
+ γ1γ

(
∂

∂x′
− β

∂

∂t′

)
+ γ2 ∂

∂y
+ γ3 ∂

∂z
.

Grouping by the primed partials this is:

∇ = γ
(

γ0 − βγ1
) ∂

∂t′
+ γ

(
γ1 − βγ0

) ∂

∂x′
+ γ2 ∂

∂y
+ γ3 ∂

∂z
.

Lo and behold, the basis vectors with respect to the new coordinates appear
to themselves transform as a Lorentz pair. Specifically:[

γ1′

γ0′

]
= γ

[
1 −β
−β 1

] [
γ1

γ0

]
Now this is a bit curious looking since these new basis vectors are a funny

mix of the original time and space basis vectors. Observe however that these
linear combinations of the basis vectors γ0′, and γ1′ do behave just as ade-
quately as timelike and spacelike basis vectors:

γ0′γ0′ = γ2(−βγ1 + γ0)(−βγ1 + γ0)

= γ2(−β2 + 1− βγ0γ1 − βγ1γ0)

= γ2(−β2 + 1 + βγ1γ0 − βγ1γ0︸ ︷︷ ︸
=0

)

= 1
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and for the transformed “spacelike” vector, it squares like a spacelike vec-
tor:

γ1′γ1′ = γ2(γ1 − βγ0)(γ1 − βγ0)

= γ2(−1 + β2 − βγ0γ1 − βγ1γ0)

= γ2(−1 + β2 + βγ1γ0 − βγ1γ0︸ ︷︷ ︸
=0

)

= −1

The conclusion is that like the wave equation, it’s square root, the timespace
gradient is also Lorentz invarient, and to achieve this invarience we transform
both the coordinates and the basis vectors (there was no need to transform the
basis vectors for the wave equation since it is a scalar equation).

In fact, this gives a very interesting way to view the Lorentz transform. It
is not just notational that we can think of the spacetime gradient as one of the
square roots of the wave equation. Like the vector square root of a scalar there
are infinitely many such roots, all differing by an angle or rotation in the vector
space:

(RnR†)2 = 1

Requiring the mixed signature (Minkowski) metric for the space requires
only that we need a slightly different meaning for any of the possible rotations
applied to the vector.

1.2 transform the spacetime bivector.

I’m not sure of the significance of the following yet, but it is interesting to note
that the spacetime bivector for the transformed coordinate pair is also invari-
ent:

γ1′γ0′ = γ2(γ1 − βγ0)(−βγ1 + γ0)

= γ2(β− β + β2γ0γ1 + γ1γ0)

= γ2(1− β2)γ1γ0

= γ1γ0

We can probably use this to figure out how to transform bivector quantities
like the electromagnetic field F.
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