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1 Putting Maxwell’s equation in curl form.
These notes contain an application of the bivector Stokes equations detailed in [Joot(f)]
. Background of interest can also be found in [Denker(b)], which contained the core
statement of the multivector form of Stokes equation and Biot-Savart like application of
it. Also informative as background is the following excellent [Denker(a)]. introduction
to the STA form of Maxwell’s equation.

Stokes equation applied to a bivector takes the following form$
(∇∧ F) · d3x =

I
F · d2x, (1)

where we will write F as the electromagnetic field bivector, and apply it to Maxwell’s
equation

∇F = J/ε0c. (2)
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Taking vector and trivector parts we have two equations

∇ · F = J/ε0c, (3)

and
∇∧ F = 0. (4)

1.1 Trivector equation part.
The second of these, equation 4, we can apply Stokes to directly:$

(∇∧ F) · d3x =
I

F · d2x = 0. (5)

This area integral is a flux like quantity. Suppose we call this the field flux, then
this says says the flux of the combined electromagnetic field through any surface is
zero independent of the charge or current densities. Note that here d3x can be a regular
spatial volume trivector element, but one can also pick a spacetime (area times time)
“volume” to integrate over, in which case d2x are the oriented “surfaces” of such a
spacetime volume.

This doesn’t seem like a result that I’m familiar with based on the traditional vector
forms of Maxwells equation. Perhaps it is recognizable in terms of E and B explicitly:I

E · d2x = −c
I

B · (d2xI) (6)

On the surface this doesn’t look like a familiar identity. It is in fact Gauss’s law for
magnetostatics, which will be shown later.

Note also the subtle difference from traditional vector treatments where E and B
were spatial vectors. Here they are writen as spacetime bivectors, E = Eiσi = Eiγi ∧

γ0, B = Biσi = Biγi ∧ γ0.

1.2 Vector part.
Moving on to the charge and current dependent vector terms of Maxwells equation, we
want express equation 3 as a spacetime curl so that we can apply stokes to it.

We can do this by temporarily writing our field in terms of a potential as well its
dual bivector.

F = ∇∧ A = ID
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∇F = ∇(∇∧ A)
= ∇ · (∇∧ A) + ∇∧ (∇∧ A)
= ∇ · (ID)
= 〈∇ID〉1

= −
〈
I( ∇ · D︸︷︷︸

1−vector

+ ∇∧ D︸︷︷︸
3−vector

)
〉

1

= −I(∇∧ D)

or

I∇F = ∇∧ D.

Applying stokes we have∫
(∇∧ D) · d3x =

I
D · d2x∫

(I∇F) · d3x =
I

(−IF) · d2x

=
I 〈

−Fd2xI
〉

0

= −
I

F · (d2xI)

1
ε0c

∫
(IJ) · d3x =

1
ε0c

∫ 〈
IJd3x

〉
0

=

1
ε0c

∫ 〈
Jd3xI

〉
0

=

1
ε0c

∫
J · (d3xI) =

Or A
F · (d2xI) =

∫
J
ε0c
· (d3xI) (7)

This is the integral form of the vector part of Maxwell’s equation 2. This doesn’t
look terribly familiar, but we aren’t used to seeing Maxwell’s equations in a non-
disassembled form. Hiding in there should be a subset of the traditional eight Maxwell’s
equations in integral form. It will be possible to extract these by considering variations
of current and charge density and different volume and surface integration regions.
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2 Extracting the vector integral forms of Maxwell’s
equations.

One can extract the integral forms of Maxwell’s equations from 2, by first extracting
the differential vector equations, and then using the spatial divergence and stokes equa-
tions. However, having formulated Stokes equation in its bivector form we can go
directly to those equations by appropriate selection of spatial or spacetime volumes.
Of course we also now have new tools to work with the field in its entirety, but lets
use this as an exercise to verify that all the previous computation that led to Stokes
equation gives us the expected results. In particular this should be a good way to verify
that sign mistakes or other similar small errors (which would not be too hard) have not
been made.

2.1 Zero current density. Gauss’s law for Electrostatics.
With J = cργ0, the integral form of Maxwell’s equation becomes

A
F · (d2xI) =

∫
ρ

ε0

〈
γ0d3xI

〉
0

=
∫
ρ

ε0

〈
γ0123γ0d3x

〉
0

= −
1
ε0
γ0

2
∫
ρ

ε0

〈
γ123d3x

〉
0

From this we see that, in the absence of currents the LHS integral must be zero
unless the volume is purely spatial. Denoting the boundary of a spacetime volume as
∂Act, this is

A
∂Act

F · (d2xI) = 0.

For a purely spatial volume the dual surfaces d2xI always includes a spacetime
bivector, therefore the magnetic field contributes nothingA

∂V
IcB · (d2xI) = −c

A
∂V

B · d2x = 0

Although this looks similar to the integral equivalent of ∇ · B = 0, we should look
elsewhere for that since that is true for the non-zero current density case too.

That leaves

A
E · (d2xI) = −

1
ε0
γ0

2
∫

V
ρ
〈
γ123d3x

〉
0
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Letting d3x = dx1dx2dx3γ123. Within the charge integral becomes

−
1
ε0
γ0

2
∫

V
ρ
〈
γ123d3x

〉
0

=
1
ε0
γ0

2γ1
2︸ ︷︷ ︸

=−1

γ2
2γ3

2︸ ︷︷ ︸
=(±1)2

∫
V
ρdx1dx2dx3 = −

1
ε0

∫
V
ρdx1dx2dx3

To put this in correspondence with the forms we are used to consider the surfaces
separately. For the dual to the front surface (see: [Joot(f)]) we have

d2xI = dx1dx2γ12I

= dx1dx2γ120123

= dx1dx2γ112023

= −dx1dx2γ112203

= −(±1)2dx1dx2γ03

= dx1dx2σ3

For the left surface

d2xI = dx3dx2γ32I

= dx3dx2γ320123

= dx3dx2γ332012

= dx3dx2γ332201

= dx3dx2(±1)2γ01

= −dx3dx2σ1

and for the top

d2xI = dx1dx3γ13I

= dx1dx3γ130123

= dx1dx3γ113023

= dx1dx3γ113302

= −dx1dx3σ2
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Assembling results, writing (x1, x2, x3) = (x, y, z) we have

1
ε0

∫
V
ρdxdydz =

"
(Ex(x, y, z1) − Ex(x, y, z0))dxdy

+
"

(Ey(x1, y, z) − Ey(x0, y, z))dydz

+
"

(Ez(x, y1, z) − Ez(x, y0, z))dxdz

This is Gauss’s law for electrostatics in integral form"
E · n̂dA =

$
ρ

ε0
dV (8)

Although this extraction method is easy to understand, it is apparent that having
only a pictorial way of enumerating the oriented bivector area elements is not efficient
for high level computation. Revisiting the stokes derivation with a more algebraic
enumeration of the surfaces should be done!

2.2 Gauss’s law for magnetostatics
Return now to equation 6, which resulted from considering the trivector part of Maxwell’s
equation I

E · d2x = −c
I

B · (d2xI). (9)

To start some observations can be made.
Only the spacetime surfaces of the volume contribute to the LHS integral since

σi · (γ j ∧ γk) = 0.
For the RHS, only the purely spatial surfaces contribute to that B integral, since

the dual surface d2xI must have a spacetime component for that dot product to be non-
zero. We have also just enumerated these dual surface area elements d2xI for a purely
spatial surface, therefore with a E, B substutition we must have

0 =
"

(Bx(x, y, z1) − Bx(x, y, z0))dxdy

+
"

(By(x1, y, z) − By(x0, y, z))dydz

+
"

(Bz(x, y1, z) − Bz(x, y0, z))dxdz

or, more compactly "
B · n̂dA = 0 (10)

For any current or charge distribution. We have therefore obtained two of the eight
Maxwell’s equations.
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2.3 Zero charge. Current density in single direction.
Next to consider is J = jiγi. For simplicity, consider current in only one direction,
taking J = j1γ1. The exersize will be to compute the integrals of equation 7.

I
F · (Id2x) =

∫
J
ε0c
· (Id3x)

=
∫

j1

ε0c
γ1 · (Id3x)

Unlike the calculations for the Gauss’s law equations above, this one will be done
using the area orientation methods from [Joot(g)] since algebraically enumerating the
surfaces should make life easier. The two Gauss’s law results above were done without
this, which wasn’t too bad for a purely spatial volume, but with spacetime volumes this
is probably confusing in addition to being harder.

Starting with the volume element, one can observe that the current density will
not contribute to the boundary integral unless d3x has no γ1 component, thus for a
rectanglar prism integration spacetime volume let d3x = γ023dx0dx2dx3

γ1 · (Id3x) = γ1 · γ0123023dx0dx2dx3

= γ1 · γ0012233dx0dx2dx3

= γ1 · γ111dx0dx2dx3

= −γ1 · γ
1dx0dx2dx3

= −dx0dx2dx3

Now for all the surfaces we want to calculate Id2x for each of the surfaces. For
each of µ ∈ {0, 2, 3}, calculation of I(d2x)µ is required where

(d2x)µ = d3x · rµ

r = xiγi

rµ =
∂r
∂xµ

= γµ
rµ = γµ
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Calculating the surfaces

I(d2x)µ
dxµ

dx0dx2dx3 =
〈
γ0123(γ023 · γ

µ)
〉

2

=
1
2
〈
γ0123(γ023γ

µ + γµγ023)
〉

2

=
1
2
〈
γ0123(γ023γ

µ + γ023γ
µ)

〉
2

=
〈
γ0012233γ

µ〉
2

= −
〈
γ133γ

µ〉
2

= −
〈
γ1γµ

〉
2

= γµ ∧ γ1

Putting things back together we have

−

∫
j1dx0dx2dx3 =

∫ ∑
µ=0,2,3

F ·
(
γµ ∧ γ1

)∣∣∣∣
∂xµ

dx0dx2dx3

dxµ

Now, for µ = 0 we pick up the electric field component of the field

F · γ01 =
(
Eiγi0 − εi jkcBkγi j

)
· γ01

= Ei,

and for µ = 2, 3 we pick up magnetic field components

F · γµ1 =
(
Eiγi0 − εi jkcBkγi j

)
· γµ1

= −ε1µkcBkγ1µ · γ
µ1.

For µ = 2 this is −cB3, and for µ = 3, −ε132cB2 = cB2, so we have

0 =
∫

j1

cε0
dx0dx2dx3 +

∫
E1dx2dx3

∣∣∣
∂x0 + c

∫
B2dx0dx2

∣∣∣
∂x3 − c

∫
B3dx0dx3

∣∣∣
∂x2

=
∫

j1

cε0
dx0dx2dx3 +

∫
∂E1

∂x0 dx0dx2dx3 + c
∫
∂B2

∂x3 dx3dx2dx0 − c
∫
∂B3

∂x2 dx2dx0dx3

=
∫

dx0
∫

dx2dx3
(

j1

cε0
+

1
c
∂E1

∂t
+ c
∂B2

∂x3 − c
∂B3

∂x2

)

If this is zero for all time intervals, then the inner integral is also zero. Utilizing
c2µ0ε0 = 1 this is
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0 =
∫

dx2dx3
(
µ0

(
j1 + ε0

∂E1

∂t

)
+

(
∂B2

∂x3 −
∂B3

∂x2

))
.

Writing dA = σ1dx2dx3, j = j1σ1, E = E1σ1, and B = Biσi we can pick off the
differential form of the Maxwell-Ampere equation

∇ ×B = µ0

(
j + ε0

∂E
∂t

)
, (11)

as well as the integral form∫
(∇ ×B) · dA = µ0

(∫
j · dA + ε0

∫
∂E
∂t
· dA

)
(12)

Both of these forms come straight from the application of the generalized Stokes
equation integrating an appropriate spacetime volume.

Now it is normal to have the spatial curl of B written as a closed loop integral.
Stokes can be employed again to get exactly that form. This really just undoes the
fact that the partials to used as a convenience enumerate exactly those loop boundaries
(although they were originally oriented area boundaries).

∫
∂B2

∂x3 dx3 = B2(t, x, y, z1) − B2(t, x, y, z0)∫
∂B3

∂x2 dx2 = B3(t, x, y1, z) − B3(t, x, y0, z)

Also observe that this whole treatment was done with J = j1γ1 only. It is not
hard to see that doing the same with ji and summing over σi will produce the same
result. Of course more care is required to handle the more abstract symbolic indexes
since a nice hardcoded number is easier. On the other hand the usual dodge, employing
freedom to orient the coordinate system along the γ1 direction makes the more general
algebraic approach a less interesting exercise.

2.4 Faraday’s law.
We have five of the eight Maxwell’s equations. Gauss’s law for electrostatics from the
vector part of equation 3, integrating over a spatial volume, and the Maxwell-Ampere
equation from the same, integrating over a spacetime volume. Gauss’s law for magne-
tostatics from the trivector part of 3, integrating over a spatial volume. This suggests
that our remaining three (one three-vector) equation will come from integrating the
trivector parts over a spacetime volume.

Stokes’ gives us ∫
V
(∇∧ F) · d3x =

∫
∂V

F · (d2x)
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Picking a spacetime volume element, and corresponding area elements

d3x = γ0i jdx0dxidx j

(d2x)µ = (γ0i j · γ
µ)

dx0dxidx j

dxµ

Our area integral (expanding boundaries as one more integral of partials) is∫ ∑
µ=0,i, j

dx0dxidx j
(
∂F
∂xµ
· (γ0i j · γ

µ)
)

.

For the dot products of the area elements we have
γi j if µ = 0
γ0i = −σi if µ = j
−γ0 j = σ j if µ = i

Our field derivatives in coordinates are

∂F
∂xµ

=
∂Em

∂xµ
σm − εklmc

∂Bm

∂xµ
γkl

Observe that µ , 0 selects only the electric field components, and µ = 0 only the
magnetic field components are selected. Specifically

∂F
∂xµ

=


−ε jimc ∂B

m

∂x0 (γi)2(γ j)2 = εi jk
∂Bk

∂t if µ = 0
∂Em

∂x j σm · (−σi) = − ∂E
i

∂x j if µ = j
∂Em

∂xi σm · (σ j) = ∂E j

∂xi if µ = i

Reassembling the integral we have

0 =
∫

dx0dxidx j
(
∂E j

∂xi −
∂Ei

∂x j + εi jk
∂Bk

∂t

)
=

∫
dx0εi jk

∫
dxidx jσk

(
σkεi jk

(
∂E j

∂xi −
∂Ei

∂x j

)
+ σk

∂Bk

∂t

)
Summing over k, we can pick out the differential form of Faraday’s law

0 =
∂B
∂t

+∇ ×E (13)

as well as the integral form

0 =
∑

k

∫
dxidx jσk

(
σkεi jk

(
∂E j

∂xi −
∂Ei

∂x j

)
+ σk

∂Bk

∂t

)
=

∑
k

εi jk

∫
dx j E j

∣∣∣
∂xi −

∑
k

εi jk

∫
dxi Ei

∣∣∣
∂x j +

∫
∂B
∂t
· n̂dA
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which is
0 =

�
E · dr +

∫
∂B
∂t
· dA. (14)

3 Conclusion.
In the treatment of these notes, the traditional integral form of maxwells equations are
obtained directly from the STA maxwells equation using the bivector Stokes equation,
and various spacetime integration volumes.

3.1 Summary of results.
We started with the bivector form of Stokes law$

(∇∧ F) · d3x =
I

F · d2x, (15)

and the multivector Maxwell equation

∇F = J/ε0c. (16)

The trivector parts of this can be integrated directly. This integral is always zero for
all spacetime or spatial surfaces

∫
(∇∧ F) · d3x = 0 (17)

Duality relations were used to put the vector parts of equation 16 into a form that
Stokes can be applied to. This gives us

A
F · (d2xI) =

∫
J
ε0c
· (d3xI). (18)

Integration of the trivector parts$
(∇∧ F) · d3x =

I
F · d2x = 0, (19)

produces a combined electric and magnetic field form of a Faraday’s law and
Gauss’ magnetostatics law that doesn’t look terribly familiarI

E · d2x = −c
I

B · (d2xI), (20)

but integration of this using a spatial volume produces the familiar Gauss’s magne-
tostatic law
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"
B · dA = 0 (21)

∇ ·B = 0. (22)

Integration and summation of the same trivector parts in 20 over each of the possi-
ble three spacetime volumes gives us Faraday’s law in its familiar forms

∂B
∂t

+∇ ×E = 0 (23)�
E · dr +

∫
∂B
∂t
· dA = 0. (24)

Now, the vector parts of Maxwell’s multivector equation integrated over a spatial
volume produces Gauss’s law for electrostatics

"
E · dA =

∫
ρ

ε0
dV (25)

∇ ·E =
ρ

ε0
. (26)

Finally, integration of the same with summation over all spacetime volumes gives
us the famous Maxwell-Ampere equation

∇ ×B = µ0

(
j + ε0

∂E
∂t

)
(27)�

B · dr = µ0

(∫
j · dA + ε0

∫
∂E
∂t
· dA

)
. (28)

In the process of arriving at these results it appears that some of the use of Stokes
equation was actually superfluous. One of the first things that was done once the area
elements were established was to undo the boundary integral writing things once more
in terms of the partials over those boundaries. Doing all this with just the volume
integrals would possibly have been simpler. That said, as an exercise to validate the
generalized Stokes equation formulation it worked well!

Conceptually the idea that integration of Maxwell’s equation over various volumes
produces all the traditional vector differential and integral forms that we are used to
is quite nice. It seems less arbitrary than trying to figure out the exactly what specific
projection like operations, as done in [Joot(c)], will produce the various traditional
vector differential equations. Of course those can be used once found to develop the
integral relations, but here we get them all in one shot.

3.2 Getting a glimpse of how the pieces fit together?
I think I am starting to see a bit of the big picture for electrodynamics. In [Joot(a)], an
earlier treatment of Maxwell’s equations in a GA context, I used dimensional analysis
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to group electric and magnetic fields in a logical way, and employs the spatial pseu-
doscalar to combine divergence and curl terms. This I thought was a good motivation
for the STA form of the equation, using ideas familiar from school. Similar treatments
can be found elsewhere such as in [Doran and Lasenby(2003)] but understanding that
takes a lot more work.

Once the STA form is taken as more fundamental, one can take that and show the
types of spacetime projection operations, as in [Joot(c)], and produce the various tradi-
tional vector differential forms of Maxwell’s equations. Alternatively, as in [Joot(d)],
we can extract the traditional tensor form of the equations.

From an even higher level point of view we can relate the STA Maxwell’s equations
to the least action principles, as done in [Joot(e)], to find the Lorentz force law in STA
form using the Euler-Lagrange equations, and finally in [Joot(b)] where the STA form
of Maxwell’s equation is obtained directly from a complex valued field Lagrangian.

Goldstein [Goldstein(1951)] has an interesting treatment of a combined Lagrangian
for both the Lorentz force law and the field equations (using spatial delta functions).
Minimization of the action for that Lagrangian with respect to the potential produces
the field equations, and with respect to coordinates produces the Lorentz force law.
Have to work through that in a covariant form to see how this relates to my previous
treatments.

3.3 Followup.
It would be interesting to see if any of the problems in a Maxwell’s equation text like
[Fleisch(2007)] would be any easier with a combined field as is possible in the STA
formulation (ie: the ones based on just current or charge distributions).

There is also some interesting looking treatments of complex number residue like
integrals for the field equation in references such as [Hestenes(1993)]. I re-encountered
that paper after writing up these notes. I’d seen it before but those parts that cover
(tersely) the same material as above didn’t make much sense until I had independently
worked it all out in detail myself. Perhaps I’m dense, but I find that many academic
papers are ironically not very good at all for learning from!

I believe these residue/green’s function ideas both relate to the Biot-Savart law, as
mentioned in [Hestenes(1993)], [Doran and Lasenby(2003)], and [Denker(b)]. All of
those are either too terse or have details missing that indicate I need to study the ideas
in more depth to understand.
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