Tensor Derivation of Covariant Lorentz Force from Lagrangian

Peeter Joot peeter.joot@gmail.com

October 12, 2008. Last Revision: Date : 2009/04/2102 : $44: 49$

Contents

1 Motivation. 1
2 Calculation. 1
3 Compare for reference to GA form. 2

1 Motivation.

In [Joot(b)], and before that in [Joot(a)] Clifford algebra derivations of the STA form of the covariant Lorentz force equation were derived. As an exercise in tensor manipulation try the equivalent calculation using only tensor manipulation.

2 Calculation.

The starting point will be an assumed Lagrangian of the following form

$$
\begin{align*}
\mathcal{L} & =\frac{1}{2} v^{2}+(q / m) A \cdot v / c \tag{1}\\
& =\frac{1}{2} \dot{x}_{\alpha} \dot{x}^{\alpha}+(q / m c) A_{\beta} \dot{x}^{\beta} \tag{2}
\end{align*}
$$

Here v is the proper (four)velocity, and A is the four potential. And following [Doran and Lasenby(2003)], we use a positive time signature for the metric tensor (+ - -).

$$
\frac{\partial \mathcal{L}}{\partial x^{\mu}}=(q / m c) \frac{\partial A_{\beta}}{\partial x^{\mu}} \dot{x}^{\beta}
$$

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial \dot{x}^{\mu}} & =\frac{\partial}{\partial \dot{x}^{\mu}}\left(\frac{1}{2} g_{\alpha \beta} \dot{x}^{\beta} \dot{x}^{\alpha}\right)+(q / m c) \frac{\partial\left(A_{\alpha} \dot{x}^{\alpha}\right)}{\partial \dot{x}^{\mu}} \\
& =\frac{1}{2}\left(g_{\alpha \mu} \dot{x}^{\alpha}+g_{\mu \beta} \dot{x}^{\beta}\right)+(q / m c) A_{\mu} \\
& =\dot{x}_{\mu}+(q / m c) A_{\mu}
\end{aligned} \quad \begin{aligned}
& \frac{\partial \mathcal{L}}{\partial x^{\mu}}=\frac{d}{d \tau} \frac{\partial \mathcal{L}}{\partial \dot{x}^{\mu}} \\
&(q / m c) \frac{\partial A_{\beta}}{\partial x^{\mu}} \dot{x}^{\beta}=\ddot{x}_{\mu}+(q / m c) \dot{x}^{\beta} \frac{\partial A_{\mu}}{\partial x^{\beta}} \\
& \Longrightarrow
\end{aligned}
$$

This is

$$
\begin{equation*}
m \ddot{x}_{\mu}=(q / c) F_{\mu \beta} \dot{x}^{\beta} \tag{3}
\end{equation*}
$$

The wikipedia article wikipedia() writes this in the equivalent indexes toggled form

$$
m \ddot{x}^{\mu}=(q / c) \dot{x}_{\beta} F^{\mu \beta}
$$

[Schiller()] (22nd edition, equation 467) writes this with the Maxwell tensor in mixed form

$$
b^{u}=\frac{q}{m} F_{v}{ }^{\mu} u^{v}
$$

where b^{μ} is a proper acceleration. If one has to put the Lorentz equation it in tensor form, using a mixed index tensor seems like the nicest way since all vector quantities then have consistently placed indexes. Observe that he has used units with $c=1$, and by comparison must also be using a time negative metric tensor.

3 Compare for reference to GA form.

To verify that this form is identical to familiar STA Lorentz Force equation,

$$
\begin{equation*}
\dot{p}=q(F \cdot v / c) \tag{4}
\end{equation*}
$$

reduce this equation to coordinates. Starting with the RHS (leaving out the q / c)

$$
\begin{aligned}
(F \cdot v) \cdot \gamma_{\mu} & =\frac{1}{2} F_{\alpha \beta} \dot{x}^{\nu}\left(\left(\gamma^{\alpha} \wedge \gamma^{\beta}\right) \cdot \gamma_{\nu}\right) \cdot \gamma_{\mu} \\
& =\frac{1}{2} F_{\alpha \beta} \dot{x}^{\nu}\left(\gamma^{\alpha}\left(\gamma^{\beta} \cdot \gamma_{\nu}\right)-\gamma^{\beta}\left(\gamma^{\alpha} \cdot \gamma_{\nu}\right)\right) \cdot \gamma_{\mu} \\
& =\frac{1}{2}\left(F_{\alpha \nu} \dot{x}^{v} \gamma^{\alpha}-F_{\nu \beta} \dot{x}^{\nu} \gamma^{\beta}\right) \cdot \gamma_{\mu} \\
& =\frac{1}{2}\left(F_{\mu \nu} \dot{x}^{v}-F_{\nu \mu} \dot{x}^{v}\right) \\
& =F_{\mu \nu} \dot{x}^{\nu}
\end{aligned}
$$

And for the LHS

$$
\begin{aligned}
\dot{p} \cdot \gamma_{\mu} & =m \ddot{x}_{\alpha} \gamma^{\alpha} \cdot \gamma_{\mu} \\
& =m \ddot{x}_{\mu}
\end{aligned}
$$

Which gives us

$$
\begin{equation*}
m \ddot{x}_{\mu}=(q / c) F_{\mu v} \dot{x}^{v} \tag{5}
\end{equation*}
$$

in agreement with 3

References

[Doran and Lasenby(2003)] C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University Press New York, 2003.
[Joot(a)] Peeter Joot. Lagrangian derivation of lorentz force law in sta form. "http://sites.google.com/site/peeterjoot/geometric-algebra/ sr_lagrangian.pdf", a.
[Joot(b)] Peeter Joot. Revisit covariant lagrangian treatment of lorentz force law. 'http://sites.google.com/site/peeterjoot/ geometric-algebra/lorentz_force.pdf|', b.
[Schiller()] C. Schiller. Motion Mountain.
[wikipedia()] wikipedia. Lorentz force. "http://en.wikipedia.org/wiki/ Lorentz_Force".

