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1 Motivation.

The concept of energy in the electric and magnetic fields I am getting closer to
understanding, but theres a few ways that I would like to approach it.

I’ve now explored the Poynting vector energy conservation relationships
in [Joot(c)], and [Joot(b)] , but hadn’t understood fully where the energy ex-
pressions in the electro and magneto statics cases came from separately. I also
don’t yet know where the FγkF terms of the stress tensor fit in the big picture?
I suspect that they can be obtained by Lorentz transforming the rest frame ex-
pression Fγ0F (the energy density, Poynting momentum density four vector).

It also ought to be possible to relate the field energies to a Lagrangian and
Hamiltonian, but I haven’t had success doing so.

The last thing that I’d like to understand is how the energy and momen-
tum of a wave can be expressed, both in terms of the abstract conguate field
momentum concept and with a concrete example such as the one dimensional
oscillating rod that can be treated in a limiting coupled oscillator approach as
in [Goldstein(1951)].

Once I’ve got all these down I think I’ll be ready to revisit Bohm’s Rayleigh-
Jeans law treatment in [Bohm(1989)]. Unfortunately, each time I try persuing
some interesting aspect of QM I find that I end up back studying electrodynam-
ics, and suspect that needs to be my focus for the forseeable future (perhaps
working throughly through Feynman’s volume II).

2 Electrostatic energy in a field.

Feynmans treatment in [Feynman et al.(1963)Feynman, Leighton, and Sands]
of the energy ε0

2 E2 associated with the electrostatic E field is very easy to un-
derstand. Here is a write up of this myself without looking at the book to see
if I really understood the ideas.

The first step is consideration of the force times distance for two charges
gives you the energy required (or gained) by moving one of those charges from
infinity to some given separation
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W =
1

4πε0

∫ r

∞

q1q2

x2 e1 · (−e1dx)

=
q1q2

4πε0r

This provides a quantization for an energy in a field concept. A distribution
of charge requires energy to assemble and it is possible to enumerate that en-
ergy separately by considering all the charges, or alternatively, by not looking
at the final charge distribution, but only considering the net field associated
with this charge distribution. This is a pretty powerful, but somewhat abstract
seeming idea.

The generalization to continuous charge distribution from there was pretty
straightforward, requiring a double integration over all space

W =
1
2

∫ 1
4πε0

ρ1dV1ρ2dV2

r12

=
1
2

∫
ρ1φ2dV1

The 1/2 factor was due to double counting all ”pairs” of charge elements.
The next step was to rewrite the charge density by using Maxwell’s equations.
In terms of the four vector potential Maxwell’s equation (with the ∇ · A = 0
gauge) is

∇2 A =
1

ε0c
(cργ0 + Jkγk)

So, to write ρ in terms of potential A0 = φ, we have

(
1
c2

∂2

(∂t)2 −∇2
)

φ =
1
ε0

ρ

In the statics case, where ∂φ
∂t = 0, we can thus write the charge density in

terms of the potential

ρ = −ε0∇2φ

and substitute back into the energy summation

W =
1
2

∫
ρφdV

=
−ε0

2

∫
φ∇2φdV
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Now, Feynman’s last step was a bit sneaky, which was to convert the φ∇2φ
term into a divergence integral. Working backwards to derive the identity that
he used

∇ · (φ∇φ) = 〈∇(φ∇φ)〉
= 〈(∇φ)∇φ + φ∇(∇φ)〉
= (∇φ)2 + φ∇2φ

This can then be used with Stokes theorem in its dual form to convert our
φ∇2φ the into plain volume and surface integral

W =
ε0

2

∫ (
(∇φ)2 −∇ · (φ∇φ)

)
dV

=
ε0

2

∫
(∇φ)2dV − ε0

2

∫
∂V

(φ∇φ) · n̂dA

Letting the surface go to infinity and employing a limiting argument on the
magnitudes of the φ and ∇φ terms was enough to produce the final electro-
statics energy result

W =
ε0

2

∫
(∇φ)2dV

=
ε0

2

∫
E2dV

3 Magnetostatic field energy.

Feynman’s energy discussion of the magnetic field for a constant current loop
(magnetostatics), is not so easy to follow. He considers the dipole moment of
a small loop, obtained by comparision to previous electrostatic results (that I’d
have to go back and read or re-derive) and some subtle seeming arguments
about the mechanical vs. total energy of the system.

3.1 Biot Savart.

As an attempt to understand all this, let’s break it up into pieces. First, is cal-
culation of the field for a current loop. Let’s also use this as an opportunity to
see how one would work directly and express the Biot-Savart law in the STA
formulation.

Going back to Maxwell’s equation (with the ∇ · A gauge again), we have
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∇F = ∇(∇∧ A)

= ∇2 Aµ

= Jµ/ε0c

For a static current configuration with J0 = cρ = 0, we have ∂Aµ/∂t = 0,
and our vector potential equations are

∇2 Ak = −Jk/ε0c

Recall that the solution of Ak can be expressed as the impulse response of a
function of the following form

Ak = C
1
r

and that ∇ · (∇(1/r)) is zero for all r 6= 0. Performing a volume integral of
the expected Laplacian we can integrate over an infinitesimal spherical volume
of radius R

∫
∇2 AkdV = C

∫
∇ ·∇1

r
dV

= C
∫

∇ ·
(
−r̂

1
r2

)
dV

= −C
∫

∂V

r̂
1
r2 · r̂dA

= −C
1

R2 4πR2

= −4πC

Equating we can solve for C

−4πC = −Jk/ε0c

C =
1

4πε0c
Jk

Note that this is cheating slightly since C was kind of treated as a constant,
whereas this equality makes it a function. It works because the infinitesimal
volume can be made small enough that Jk can be treated as a constant. This
therefore provides our potential function in terms of this impulse response
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Ak =
1

4πε0c

∫ Jk

r
dV

Now, this could have all been done with a comparison to the electrostatic
result. Regardless, it now leaves us in the position to calcuate the field bivector

F = ∇∧ A

= (γµ ∧ γk)∂µ Ak

= −(γm ∧ γk)∂m Ak

So our field in terms of components is

F = (σm ∧ σk)∂m Ak (1)

Which in terms of spatial vector potential A = Akσk is also

F = ∇ ∧ A (2)

From 1 we can calculate the field in terms of our potential directly

∂m Ak =
1

4πε0c

∫
dV∂m

Jk

r

=
1

4πε0c

∫
dV
(

Jk∂m
1
r

+
1
r

∂m Jk
)

=
1

4πε0c

∫
dV

(
Jk∂m

(
∑

j
((xj)2)−1/2

)
+

1
r

∂m Jk

)

=
1

4πε0c

∫
dV
(

Jk
(
−1

2

)
2xm 1

r3 +
1
r

∂m Jk
)

=
1

4πε0c

∫ 1
r3 dV

(
−xm Jk + r2∂m Jk

)

So with j = Jkσk we have

F =
1

4πε0c

∫ 1
r3 dV

(
−r ∧ j + r2(∇ ∧ j)

)
=

1
4πε0c

∫
dV
(

j ∧ r̂
r2 +

1
r
(∇ ∧ j)

)
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The first term here is essentially the Biot Savart law once the current density
is converted to current

∫
jdV = I

∫
ĵdl, so we expect the second term to be zero.

To calculate the current density divergence we first need the current density
in vector form

j = −ε0c∇2A
= −ε0c〈∇(∇A)〉1

= −ε0c∇(∇ · A) + ∇ · (∇ ∧ A)

Now, recall the gauge choice was

0 = ∇ · A

= ∂0 A0 + ∂k Ak

=
1
c

∂A0

∂t
+ ∇ · A

So, provided we also have ∂A0/∂t = 0, we also have ∇ · A = 0, which is
true due to the assumed static conditions, we are left with

j = −ε0c∇ · (∇ ∧ A)

Now we can take the curl of j, also writing this magnetic field F in it’s dual
form F = icB, we see that the curl of our static current density vector is zero:

∇ ∧ j = ∇ ∧ (∇ · F)
= c∇ ∧ (∇ · (iB))

=
c
2
∇ ∧ (∇(iB)− iḂ∇̇)

= c∇ ∧ (i∇ ∧ B)

= c∇ ∧ (i2∇× B)
= −ci∇× (∇× B)
= 0

This leaves us with

F =
1

4πε0c

∫ j ∧ r̂
r2 dV
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Which with the current density expressed in terms of current is the desired
Biot-Savart law

F =
1

4πε0c

∫ Ids ∧ r̂
r2 (3)

Much shorter derivations are possible than this one which was essentially
done from first principles. The one in [Doran and Lasenby(2003)], which also
uses the STA formulation, is the shortest I’ve ever seen, utilizing a vector Green’s
function for the Laplacian. However, that requires understanding the geomet-
ric calculus chapter of that book, which is a battle for a different day.

3.2 Magnetic field torque and energy.

TODO: work out on paper and write up.
I created a PF thread, electric and magnetic field energy , to followup on

these ideas, and now have an idea how to procede.

4 Complete field energy.

Can a integral of the Lorentz force coupled with Maxwell’s equations in their
entirety produce the energy expression ε0

2
(
E2 + c2B2)? It seems like cheat-

ing to add these arbitrarily and then follow the Poynting derivation by taking
derivatives. That shows this quantity is a conserved quantity, but does it really
show that it is the energy? One could imagine that there could be other terms
in a total energy expression such as E · B.

Looking in more detail at the right hand side of the energy/Poynting rela-
tionship is the key. That is

∂

∂t
ε0

2

(
E2 + c2B2

)
+ c2ε0∇ · (E × B) = −E · j (4)

Two questions to ask. The first is that if the left hand side is to be a con-
served quantity then we need the right hand side to be one too? Is that really
the case? Second, how can this be related to work done (a line integral of the
Lorentz force).

The second question is easiest, and the result actually follows directly.
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Work done moving a charge against the Lorentz force =
∫

F · (−dx)

=
∫

q(E + v × B) · (−dx)

= −
∫

q(E + v × B) · vdt

= −
∫

qE · vdt

= −
∫

E · jdtdV

From this we see that −E · j is the rate of change of power density in an
infinitesimal volume!

Let’s write

U =
ε0

2

(
E2 + c2B2

)
P =

1
µ0

(E × B)

and now take 4 and integrate over a (small) volume

∫
V

∂U
∂t

dV +
∫

∂V
P · n̂dA = −

∫
V
(E · j)dV

So, for a small time increment ∆t = t1 − t0, corresponding to the start and
end times of the particle at the boundaries of the work line integral, we have

Work done on particle against field =
∫ t1

t0

∫
V

∂U
∂t

dVdt +
∫ t1

t0

∫
∂V

P · n̂dAdt

=
∫

V
(U(t1)−U(t0))dV +

∫ t1

t0

∫
∂V

P · n̂dAdt

=
∫

V
∆UdV +

∫ t1

t0

∫
∂V

P · n̂dAdt

Roughly speaking, it appears that the energy provided to move a charge
against the field is absorbed into the field in one of two parts, one of which is
what gets identified as the energy of the field

∫
UdV. The other part is the time

integral of the flux through the surface of the volume of this Poynting vector P.

4.1 Dimensional analysis

That’s a funny looking term though? Where would we see momentum inte-
grated over time in classical mechanics?
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∫
mvdt = mx

Let’s look at the dimensions of all the terms in the conservation equation.
We’ve identified the j · E term with energy density, and should see this

[jE] = [(qv/x3)(F/q)]

= [(x/(x3t))(mx/t2)]

= [m(x2/t2)/(x3t)]

=
Energy

Volume× Time

Good. That’s what should have been the case.
Now, for the U term we must then have

[U] =
Energy
Volume

Okay, that’s good too, since we were calling U energy density. Now for the
Poynting term we have

[∇ · P] = [1/x][P]

So we have

[P] = [1/x][P]

=
Energy× velocity

Volume
For uniform dimensions of all the terms this suggests that it is perhaps more

natural to work with velocity scaled quantity, with

[P]
Velocity

=
Energy
Volume

Rewriting the conservation equation scaling by a velocity, for which the
obvious generic velocity choice is naturally c, we have

1
c

∂

∂t
U + ∇ · P

c
= − j

c
· E

Written this way we have 1/ct with dimensions of inverse distance match-
ing the divergence, and the dimensions of U, and P/c are both energy density.
Now it makes a bit more sense to say that the work done moving the charge
against the field supplies energy to the field in some fashion between these two
terms.
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4.2 A note on the scalar part of the covariant Lorentz force

The covariant formulation of the Lorentz force equation, when wedged with γ0
has been seen to recover the traditional Lorentz force equation (with a required
modification to use relativistic momentum), but there was a scalar term that
was unaccounted for.

Recall that the covariant Lorentz force, with derivatives all in terms of proper
time, was

mṗ = qF · (v/c)

=
q
2c

(Fv − vF)

=
q
2c

((E + icB)γ0(ẋ0 − ẋkσk)− γ0(ẋ0 − ẋkσk)(E + icB))

Which is

m
dp
dt

=
q
2

γ0((−E + icB)(1− v/c)− (1− v/c)(E + icB))

Which after some reduction is

m
dp
dt

= q(−E · v/c + (E + v × B))γ0 (5)

Or, with an explicit spacetime split for all components

mc
dγ

dt
= −qE · v/c (6)

m
dγv
dt

= q(E + v × B)) (7)

We’ve got the spatial vector Lorentz force in the second term, and now have
an idea what this −j · E term is in the energy momentum vector. It isn’t a ran-
dom thing, but an intrinsic part (previously ignored) of the covariant Lorentz
force.

Now recall that when the time variation of the Poynting was studied in
[Joot(d)] we had what looked like the Lorentz force components in all the right
hand side terms. Let’s reiterate that here, putting all the bits together

1
c

∂

∂t
U + ∇ · P

c
= − j

c
· E

1
c2

∂P
∂t

+ ∑
k

σk∇ · Tk = −(j × B + ρE)
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We have four scalar equations, where each one contains exactly one of the
four vector components of the Lorentz force. This makes the stress energy
tensor seem a lot less random. Now the interesting thing about this is that
each of these equations required nothing more than a bunch of algebra applied
to the Maxwell equation. Doing so required no use of the Lorentz force, but
it shows up magically as an intrinsic quantity associated with the Maxwell
equation. We’ve also seen in various exersizes that the Lorentz force could be
obtained from the action

S =
∫ (1

2
m(

dx
dτ

)2 + qA · dx
cdτ

)
dτ

and it appeared that this plus the Maxwell action

S =
∫ (

− cε0

2
(∇∧ A)2 + J · A

)
d4x (8)

as covered in [Joot(a)] was required. One action for the field equation and
one for the interaction equation. Seeing the Lorentz force show up like this out
of nowhere with only manipulation of the Maxwell equation suggests that the
Lorentz force or its associated Lagrangian is not actually that fundamental. We
have one equation at the root of both (and that equation is probaby quite close
to the Maxwell field Lagrangian), probably with the proper velocity mv2/2
term added in somehow.
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