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1 Expanding out the stress energy vector in tensor
form.

[Doran and Lasenby(2003)] defines (with ε0 ommitted), the energy momentum
stress tensor as a vector to vector mapping of the following form:

T(a) =
ε0

2
FaF̃ = − ε0

2
FaF (1)

This quantity can only have vector, trivector, and five vector grades. The
grade five term must be zero

〈T(a)〉5 =
ε0

2
F ∧ a ∧ F̃

=
ε0

2
a ∧ (F ∧ F̃)

= 0

Since (T(a))̃ = T(a), the grade three term is also zero (trivectors invert on
reversion), so this must therefore be a vector.

As a vector this can be expanded in coordinates
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T(a) = (T(a) · γν) γν

=
(
T(aµγµ) · γν

)
γν

= aµγν

(
T(γµ) · γν

)
It’s this last bit that has the form of a traditional tensor, so we can write

T(a) = aµγνTµ
ν (2)

Tµ
ν = T(γµ) · γν (3)

Let’s expand this tensor Tµ
ν explicitly to verify its form.

We want to expand, and dot with γν, the following

−2
1
ε0

(
T(γµ) · γν

)
γν =

〈
(∇∧ A)γµ(∇∧ A)

〉
1

=
〈
(∇∧ A) · γµ(∇∧ A) + (∇∧ A) ∧ γµ(∇∧ A)

〉
1

= ((∇∧ A) · γµ) · (∇∧ A) + ((∇∧ A) ∧ γµ) · (∇∧ A)

Both of these will get temporarily messy, so let’s do them in parts. Starting
with

(∇∧ A) · γµ = (γα ∧ γβ) · γµ∂α Aβ

= (γαδβ
µ − γβδα

µ)∂α Aβ

= γα∂α Aµ − γβ∂µ Aβ

= γα(∂α Aµ − ∂µ Aα)

= γαFαµ

((∇∧ A) · γµ) · (∇∧ A) = (γαFαµ) · (γβ ∧ γλ)∂β Aλ

= ∂β AλFαµ(δα
βγλ − δα

λγβ)

= (∂α AβFαµ − ∂β AαFαµ)γβ

= FαβFαµγβ
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So, by dotting with γν we have

((∇∧ A) · γµ) · (∇∧ A) · γν = FανFαµ (4)

Moving on to the next bit, (((∇∧ A)∧ γµ) · (∇∧ A)) · γν. By inspection the
first part of this is

(∇∧ A) ∧ γµ = (γµ)2(γα ∧ γβ) ∧ γµ∂α Aβ

so dotting with ∇∧ A, we have

((∇∧ A) ∧ γµ) · (∇∧ A) = (γµ)2∂α Aβ∂λ Aδ(γα ∧ γβ ∧ γµ) · (γλ ∧ γδ)

= (γµ)2∂α Aβ∂λ Aδ((γα ∧ γβ ∧ γµ) · γλ) · γδ

Expanding just the dot product parts of this we have

(((γα ∧ γβ) ∧ γµ) · γλ) · γδ

= (γα ∧ γβ)δµ
λ − (γα ∧ γµ)δβ

λ + (γβ ∧ γµ)δα
λ) · γδ

= γα(δβ
δδµ

λ − δµ
δδβ

λ) + γβ(δµ
δδα

λ − δα
δδµ

λ) + γµ(δα
δδβ

λ − δβ
δδα

λ)

This can now be applied to ∂λ Aδ

∂λ Aδ(((γα ∧ γβ) ∧ γµ) · γλ) · γδ

= ∂µ Aβγα − ∂β Aµγα + ∂α Aµγβ − ∂µ Aαγβ + ∂β Aαγµ − ∂α Aβγµ

= (∂µ Aβ − ∂β Aµ)γα + (∂α Aµ − ∂µ Aα)γβ + (∂β Aα − ∂α Aβ)γµ

= Fµβγα + Fαµγβ + Fβαγµ

This is getting closer, and we can now write

((∇∧ A) ∧ γµ) · (∇∧ A) = (γµ)2∂α Aβ(Fµβγα + Fαµγβ + Fβαγµ)

= (γµ)2∂β AαFµαγβ + (γµ)2∂α AβFαµγβ + (γµ)2∂α AβFβαγµ

= FβαFµαγβ + ∂α AβFβαγµ

This can now be dotted with γν,
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((∇∧ A) ∧ γµ) · (∇∧ A) · γν = FβαFµαδβ
ν + ∂α AβFβαδµ

ν

which is

((∇∧ A) ∧ γµ) · (∇∧ A) · γν = FναFµα +
1
2

FαβFβαδµ
ν (5)

The final combination of results 4, and 5 gives

(FγµF) · γν = 2FανFαµ +
1
2

FαβFβαδµ
ν

Yielding the tensor

Tµ
ν = ε0

(
1
4

FαβFαβδµ
ν − FαµFαν

)
(6)

2 Validate against previously calculated Poynting
result.

In [Joot()], the electrodynamic energy density U and momentum flux density
vectors were related as follows

U =
ε0

2

(
E2 + c2B2

)
(7)

P = ε0c2E × B = ε0c(icB) · E (8)

0 =
∂

∂t
ε0

2

(
E2 + c2B2

)
+ c2ε0∇ · (E × B) + E · j (9)

Additionally the energy and momentum flux densities are components of
this stress tensor four vector

T(γ0) = Uγ0 +
1
c

Pγ0

From this we can read the first row of the tensor elements

T0
0 = U =

ε0

2

(
E2 + c2B2

)
T0

k =
1
c
(Pγ0) · γk = ε0cEaBbεkab
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Let’s compare these to 6, which gives

T0
0 = ε0

(
1
4

FαβFαβ − Fα0Fα0
)

=
ε0

4

(
FαjFαj − 3Fj0Fj0

)
=

ε0

4

(
FmjFmj + F0jF0j − 3Fj0Fj0

)
=

ε0

4

(
FmjFmj − 2Fj0Fj0

)
T0

k = −ε0Fα0Fαk

= −ε0Fj0Fjk

Now, our field in terms of electric and magnetic coordinates is

F = E + icB

= Ekγkγ0 + icBkγkγ0

= Ekγkγ0 − cεabkBkγaγb

so the electric field tensor components are

Fj0 = (F · γ0) · γj

= Ekδk
j

= Ej

and

Fj0 = (γj)2(γ0)2Fj0

= −Ej

and the magnetic tensor components are

Fmj = Fmj

= −cεabkBk((γaγb) · γj) · γm

= −cεmjkBk
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This gives

T0
0 =

ε0

4

(
2c2BkBk + 2EjEj

)
=

ε0

2

(
c2B2 + E2

)
T0

k = ε0EjFjk

= ε0cεke f EeB f

= ε0(cE × B)k

=
1
c
(P · σk)

Okay, good. This checks 4 of the elements of 6 against the explicit E and
B based representation of T(γ0) in 7, leaving only 6 unique elements in the
remaining parts of the (symmetric) tensor to verify.

3 Four vector form of energy momentum conserva-
tion relationship.

One can observe that there is a spacetime divergence hiding there directly in
the energy conservation equation of 7. In particular, writing the last of those as

0 = ∂0
ε0

2

(
E2 + c2B2

)
+ ∇ · P/c + E · j/c

We can then write the energy-momentum parts as a four vector divergence

∇ ·
(

ε0γ0

2

(
E2 + c2B2

)
+

1
c

Pkγk

)
= −E · j/c

Since we have a divergence relationship, it should also be possible to con-
vert a spacetime hypervolume integration of this quantity into a time-surface
integral or a pure volume integral. Pursing this will probably clarify how the
tensor is related to the hypersurface flux as mentioned in the text here, but
making this concrete will take a bit more thought.

Having seen that we have a divergence relationship for the energy momen-
tum tensor in the rest frame, it is clear that the Poynting energy momentum
flux relationship should follow much more directly if we play it backwards in
a relativistic setting.

This is a very sneaky way to do it since we have to have seen the answer to
get there, but it should avoid the complexity of trying to factor out the spacial
gradients and recover the divergence relationship that provides the Poynting
vector. Our sneaky starting point is to compute
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∇ · (Fγ0 F̃) =
〈
∇(Fγ0 F̃)

〉
=

〈
(∇F)γ0 F̃ + ∇̇Fγ0

˙̃F
〉

=
〈
(∇F)γ0 F̃ + ˙̃F∇̇Fγ0

〉

Since this is a scalar quantity, it is equal to its own reverse and we can
reverse all factors in this second term to convert the left acting gradient to a
more regular right acting form. This is

∇ · (Fγ0 F̃) =
〈
(∇F)γ0 F̃ + γ0 F̃(∇F)

〉
Now using Maxwell’s equation ∇F = J/ε0c, we have

∇ · (Fγ0 F̃) =
1

ε0c
〈

Jγ0 F̃ + γ0 F̃ J
〉

=
2

ε0c
〈

Jγ0 F̃
〉

=
2

ε0c
(J ∧ γ0) · F̃

Now, J = γ0cρ + γk Jk, so J ∧ γ0 = Jkγkγ0 = Jkσk = j, and dotting this with
F̃ = −E − icB will pick up only the (negated) electric field components, so we
have

(J ∧ γ0) · F̃ = j · (−E)

Although done in [Joot()], for completeness let’s re-expand Fγ0 F̃ in terms
of the electric and magnetic field vectors.

Fγ0 F̃ = −(E + icB)γ0(E + icB)
= γ0(E − icB)(E + icB)

= γ0(E2 + c2B2 + ic(EB − BE))

= γ0(E2 + c2B2 + 2ic(E ∧ B))

= γ0(E2 + c2B2 − 2c(E × B))
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Next, we want an explicit spacetime split of the gradient

∇γ0 = (γ0∂0 + γk∂k)γ0

= ∂0 − γkγ0∂k

= ∂0 − σk∂k

= ∂0 −∇

We are now in shape to assemble all the intermediate results for the left
hand side

∇ · (Fγ0 F̃) =
〈
∇(Fγ0 F̃)

〉
=

〈
(∂0 −∇)(E2 + c2B2 − 2c(E × B))

〉
= ∂0(E2 + c2B2) + 2c∇ · (E × B)

With a final reassembly of the left and right hand sides of ∇ · T(γ0), the
spacetime divergence of the rest frame stress vector we have

1
c

∂t(E2 + c2B2) + 2c∇ · (E × B) = − 2
cε0

j · E

Multipling through by ε0c/2 we have the classical Poynting vector energy
conservation relationship.

∂

∂t
ε0

2
(E2 + c2B2) + ∇ · 1

µ0
(E × B) = −j · E (10)

Observe that the momentum flux density, the Poynting vector P = (E ×
B)/µ0, is zero in the rest frame, which makes sense since there is no magnetic
field for a static charge distribution. So with no currents and therefore no mag-
netic fields the field energy is a constant.

3.1 Transformation properties.

Equation 10 is the explicit spacetime expansion of the equivalent relativisitic
equation

∇ · (cT(γ0)) = ∇ ·
( cε0

2
Fγ0 F̃

)
=

〈
Jγ0 F̃

〉
This has all the same content, but in relativistic form seems almost trivial.

While the stress vector T(γ0) is not itself a relativistic invariant, this divergence
equation is.
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Suppose we form a Lorentz transformation L(x) = RxR̃, applied to this
equation we have

F′ = (R∇R̃) ∧ (RAR̃)

=
〈

R∇R̃RAR̃
〉

2

=
〈

R∇AR̃
〉

2

= R(∇∧ A)R̃

= RFR̃

Transforming all the objects in the equation we have

∇′ ·
( cε0

2
F′γ′

0 F̃′
)

=
〈

J′γ′
0 F̃′

〉
(R∇R̃) ·

( cε0

2
RFR̃Rγ0RR̃(RFR̃)̃

)
=

〈
RJR̃Rγ0R̃(RFR̃)̃

〉

This is nothing more than the original untransformed quantity

∇ ·
( cε0

2
Fγ0 F̃

)
=

〈
Jγ0 F̃

〉

4 Validate with relativistic transformation.

As a relativistic quantity we should be able to verify the messy tensor relation-
ship by Lorentz transforming the energy density from a rest frame to a moving
frame.

Now let’s try the Lorentz transformation of the energy density.
FIXME: TODO.
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