Graphical representation of the associated Legendre Polynomials for
[=1
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1. First observations.

In Bohm’s QT ([1], 14.17), the properties of I = 1 associated Legendre polynomials are exam-
ined under rotation.
Those eigenfunctions are the normalized versions of following

1 = sin fe'? (@))
o = cos 6 2)
P_1 =sin e~ (3)

The normalization is provided by a surface area inner product

T 2
(u,v) = / / uv”* sin 0d0d¢ 4)
6=0 Jp=0

With the normalization discarded, there is a direct relationship between these normal eigen-
functions with a triple of vectors associated with a point on the unit sphere. Referring to fig-
ure (1), observe the three doubled arrow vectors, all associated with a point on the unit sphere
x = (x,y,z) = (sin 6 cos ¢, sin 6 cos ¢, cos 0).

The normal to the x, y plane from x, designated n has the vectorial value

n = cosfes (5)

From the origin to the point of of the x, y plane intersection to the normal we have

p = sinf(cos pe; + sin pey) = e; sin He®1%2? (6)

and finally in the opposite direction also in the plane and mirroring p we have the last of this
triplet of vectors

p_ = sinf(cos pe; — sin pey) = ey sin fe *1%2% 7)

So, if we choose to use i = eje, (the bivector for the plane normal to the z-axis), then we
can in fact vectorize these eigenfunctions. The vectors p (i.e. 1), and p_ (i.e. ¥_1) are both
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Figure 1: Vectoring the I = 1 associated Legendre polynomials.

normal to n (i.e. ¥p), but while the vectors p and p_ are both in the plane one is produced with a
counterclockwise rotation of e; by ¢ in the plane and the other with an opposing rotation.
Summarizing, we can write the unnormalized vectors the relations

Y1 =ep =sinfetr®?
9 =en =cosb
Y1 =ep_ =sinfe a12?

I have no familiarity yet with the [ = 2 or higher Legendre eigenfunctions. Do they also admit
a geometric representation?

2. Expressing Legendre eigenfunctions using rotations.

We can express a point on a sphere with a pair of rotation operators. First rotating e3 towards
e in the z, x plane by 6, then in the x, y plane by ¢ we have the point x in figure (1)
Writing the result of the first rotation as e} we have

eé — e366319 — 679319/2e3ee319/2 (8)

One more rotation takes e/3 to x. That is

X = e—elz¢/2egeelz¢/2 )

All together, writing Ry = ¢%1%/2 and Ry = ¢®12¢/2, we have



X = R~4,R~983R9R¢ (10)

It's worth a quick verification that this produces the desired result.

R¢R~9€3R9R¢ = I{pEgEeMGR(P
= e~ ®2%/2(e3 cos 0 + ey sin B)e®129/2

= e3Cos 0 + e sin e
This is the expected result

X = e3cos 0 + sinf(eq sinf + ep cos 0) (11)

The projections onto the ez and the x, y plane are then, respectively,

x; = e3(e3 - x) = ez cos @ (12)
Xyy = e3(e3 Ax) = sinf(e; sinf + e, cos ) (13)

So if x4 is the point on the unit sphere associated with the rotation angles 6, ¢, then we have
for the I = 1 associated Legendre polynomials

o = e3- X (14)
P11 = ejez(ez Axs) (15)

Note that the + was omitted from x for ¢y since either produces the same e3 component. This
gives us a nice geometric interpretation of these eigenfunctions. We see that 1 is the biggest
when x is close to straight up, and when this occurs 11 are correspondingly reduced, but when
x is close to the x, y plane where 111 will be greatest the z-axis component is reduced.
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