Graphical representation of the associated Legendre Polynomials for $l=1\,$

Originally appeared at:

http://sites.google.com/site/peeterjoot/math2009/L1Associated.pdf

Peeter Joot — peeter.joot@gmail.com

Aug 16, 2009 RCS file: L1Associated.ltx, v Last Revision: 1.4 Date: 2009/08/1704: 12: 59

1. First observations.

In Bohm's QT ([1], 14.17), the properties of l=1 associated Legendre polynomials are examined under rotation.

Those eigenfunctions are the normalized versions of following

$$\psi_1 = \sin \theta e^{i\phi} \tag{1}$$

$$\psi_0 = \cos \theta \tag{2}$$

$$\psi_{-1} = \sin \theta e^{-i\phi} \tag{3}$$

The normalization is provided by a surface area inner product

$$(u,v) = \int_{\theta=0}^{\pi} \int_{\phi=0}^{2\pi} uv^* \sin\theta d\theta d\phi \tag{4}$$

With the normalization discarded, there is a direct relationship between these normal eigenfunctions with a triple of vectors associated with a point on the unit sphere. Referring to figure (1), observe the three doubled arrow vectors, all associated with a point on the unit sphere $\mathbf{x} = (x, y, z) = (\sin\theta\cos\phi, \sin\theta\cos\phi, \cos\phi)$.

The normal to the x, y plane from x, designated n has the vectorial value

$$\mathbf{n} = \cos \theta \mathbf{e}_3 \tag{5}$$

From the origin to the point of the *x*, *y* plane intersection to the normal we have

$$\rho = \sin \theta (\cos \phi \mathbf{e}_1 + \sin \phi \mathbf{e}_2) = \mathbf{e}_1 \sin \theta e^{\mathbf{e}_1 \mathbf{e}_2 \phi}$$
 (6)

and finally in the opposite direction also in the plane and mirroring ho we have the last of this triplet of vectors

$$\rho_{-} = \sin \theta (\cos \phi \mathbf{e}_{1} - \sin \phi \mathbf{e}_{2}) = \mathbf{e}_{1} \sin \theta e^{-\mathbf{e}_{1} \mathbf{e}_{2} \phi}$$
(7)

So, if we choose to use $i = \mathbf{e}_1 \mathbf{e}_2$ (the bivector for the plane normal to the z-axis), then we can in fact vectorize these eigenfunctions. The vectors $\boldsymbol{\rho}$ (i.e. ψ_1), and ρ_- (i.e. ψ_{-1}) are both

Figure 1: Vectoring the l = 1 associated Legendre polynomials.

normal to **n** (i.e. ψ_0), but while the vectors ρ and ρ_- are both in the plane one is produced with a counterclockwise rotation of \mathbf{e}_1 by ϕ in the plane and the other with an opposing rotation.

Summarizing, we can write the unnormalized vectors the relations

$$\begin{array}{lll} \psi_1 &= \mathbf{e}_1 \boldsymbol{\rho} &= \sin \theta e^{\mathbf{e}_1 \mathbf{e}_2 \phi} \\ \psi_0 &= \mathbf{e}_3 \mathbf{n} &= \cos \theta \\ \psi_{-1} &= \mathbf{e}_1 \boldsymbol{\rho}_- &= \sin \theta e^{-\mathbf{e}_1 \mathbf{e}_2 \phi} \end{array}$$

I have no familiarity yet with the l=2 or higher Legendre eigenfunctions. Do they also admit a geometric representation?

2. Expressing Legendre eigenfunctions using rotations.

We can express a point on a sphere with a pair of rotation operators. First rotating \mathbf{e}_3 towards \mathbf{e}_1 in the z, x plane by θ , then in the x, y plane by ϕ we have the point \mathbf{x} in figure (1)

Writing the result of the first rotation as \mathbf{e}_3' we have

$$\mathbf{e}_{3}' = \mathbf{e}_{3}e^{\mathbf{e}_{31}\theta} = e^{-\mathbf{e}_{31}\theta/2}\mathbf{e}_{3}e^{\mathbf{e}_{31}\theta/2}$$
 (8)

One more rotation takes e_3' to x. That is

$$\mathbf{x} = e^{-\mathbf{e}_{12}\phi/2} \mathbf{e}_{3}' e^{\mathbf{e}_{12}\phi/2} \tag{9}$$

All together, writing $R_{\theta} = e^{\mathbf{e}_{31}\theta/2}$, and $R_{\phi} = e^{\mathbf{e}_{12}\phi/2}$, we have

$$\mathbf{x} = \tilde{R_{\theta}}\tilde{R_{\theta}}\mathbf{e}_{3}R_{\theta}R_{\phi} \tag{10}$$

It's worth a quick verification that this produces the desired result.

$$\begin{split} \tilde{R_{\phi}}\tilde{R_{\theta}}\mathbf{e}_{3}R_{\theta}R_{\phi} &= \tilde{R_{\phi}}\mathbf{e}_{3}e^{\mathbf{e}_{31}\theta}R_{\phi} \\ &= e^{-\mathbf{e}_{12}\phi/2}(\mathbf{e}_{3}\cos\theta + \mathbf{e}_{1}\sin\theta)e^{\mathbf{e}_{12}\phi/2} \\ &= \mathbf{e}_{3}\cos\theta + \mathbf{e}_{1}\sin\theta e^{\mathbf{e}_{12}\phi} \end{split}$$

This is the expected result

$$\mathbf{x} = \mathbf{e}_3 \cos \theta + \sin \theta (\mathbf{e}_1 \sin \theta + \mathbf{e}_2 \cos \theta) \tag{11}$$

The projections onto the e_3 and the x, y plane are then, respectively,

$$\mathbf{x}_z = \mathbf{e}_3(\mathbf{e}_3 \cdot \mathbf{x}) = \mathbf{e}_3 \cos \theta \tag{12}$$

$$\mathbf{x}_{\mathbf{x},\mathbf{y}} = \mathbf{e}_3(\mathbf{e}_3 \wedge \mathbf{x}) = \sin\theta(\mathbf{e}_1 \sin\theta + \mathbf{e}_2 \cos\theta) \tag{13}$$

So if \mathbf{x}_{\pm} is the point on the unit sphere associated with the rotation angles θ , $\pm \phi$, then we have for the l=1 associated Legendre polynomials

$$\psi_0 = \mathbf{e}_3 \cdot \mathbf{x} \tag{14}$$

$$\psi_{\pm 1} = \mathbf{e}_1 \mathbf{e}_3 (\mathbf{e}_3 \wedge \mathbf{x}_{\pm}) \tag{15}$$

Note that the \pm was omitted from ${\bf x}$ for ψ_0 since either produces the same ${\bf e}_3$ component. This gives us a nice geometric interpretation of these eigenfunctions. We see that ψ_0 is the biggest when ${\bf x}$ is close to straight up, and when this occurs $\psi_{\pm 1}$ are correspondingly reduced, but when ${\bf x}$ is close to the x,y plane where $\psi_{\pm 1}$ will be greatest the z-axis component is reduced.

References

[1] D. Bohm. Quantum Theory. Courier Dover Publications, 1989.