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1. First observations.

In Bohm’s QT ([1], 14.17), the properties of l = 1 associated Legendre polynomials are exam-
ined under rotation.

Those eigenfunctions are the normalized versions of following

ψ1 = sin θeiφ (1)
ψ0 = cos θ (2)

ψ−1 = sin θe−iφ (3)

The normalization is provided by a surface area inner product

(u, v) =
∫ π

θ=0

∫ 2π

φ=0
uv∗ sin θdθdφ (4)

With the normalization discarded, there is a direct relationship between these normal eigen-
functions with a triple of vectors associated with a point on the unit sphere. Referring to fig-
ure (1), observe the three doubled arrow vectors, all associated with a point on the unit sphere
x = (x, y, z) = (sin θ cos φ, sin θ cos φ, cos θ).

The normal to the x, y plane from x, designated n has the vectorial value

n = cos θe3 (5)

From the origin to the point of of the x, y plane intersection to the normal we have

ρ = sin θ(cos φe1 + sin φe2) = e1 sin θee1e2φ (6)

and finally in the opposite direction also in the plane and mirroring ρ we have the last of this
triplet of vectors

ρ− = sin θ(cos φe1 − sin φe2) = e1 sin θe−e1e2φ (7)

So, if we choose to use i = e1e2 (the bivector for the plane normal to the z-axis), then we
can in fact vectorize these eigenfunctions. The vectors ρ (i.e. ψ1), and ρ− (i.e. ψ−1) are both
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Figure 1: Vectoring the l = 1 associated Legendre polynomials.

normal to n (i.e. ψ0), but while the vectors ρ and ρ− are both in the plane one is produced with a
counterclockwise rotation of e1 by φ in the plane and the other with an opposing rotation.

Summarizing, we can write the unnormalized vectors the relations

ψ1 = e1ρ = sin θee1e2φ

ψ0 = e3n = cos θ
ψ−1 = e1ρ− = sin θe−e1e2φ

I have no familiarity yet with the l = 2 or higher Legendre eigenfunctions. Do they also admit
a geometric representation?

2. Expressing Legendre eigenfunctions using rotations.

We can express a point on a sphere with a pair of rotation operators. First rotating e3 towards
e1 in the z, x plane by θ, then in the x, y plane by φ we have the point x in figure (1)

Writing the result of the first rotation as e′3 we have

e′3 = e3ee31θ = e−e31θ/2e3ee31θ/2 (8)

One more rotation takes e′3 to x. That is

x = e−e12φ/2e′3ee12φ/2 (9)

All together, writing Rθ = ee31θ/2, and Rφ = ee12φ/2, we have
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x = R̃φR̃θe3Rθ Rφ (10)

It’s worth a quick verification that this produces the desired result.

R̃φR̃θe3Rθ Rφ = R̃φe3ee31θ Rφ

= e−e12φ/2(e3 cos θ + e1 sin θ)ee12φ/2

= e3 cos θ + e1 sin θee12φ

This is the expected result

x = e3 cos θ + sin θ(e1 sin θ + e2 cos θ) (11)

The projections onto the e3 and the x, y plane are then, respectively,

xz = e3(e3 · x) = e3 cos θ (12)
xx,y = e3(e3 ∧ x) = sin θ(e1 sin θ + e2 cos θ) (13)

So if x± is the point on the unit sphere associated with the rotation angles θ,±φ, then we have
for the l = 1 associated Legendre polynomials

ψ0 = e3 · x (14)
ψ±1 = e1e3(e3 ∧ x±) (15)

Note that the ± was omitted from x for ψ0 since either produces the same e3 component. This
gives us a nice geometric interpretation of these eigenfunctions. We see that ψ0 is the biggest
when x is close to straight up, and when this occurs ψ±1 are correspondingly reduced, but when
x is close to the x, y plane where ψ±1 will be greatest the z-axis component is reduced.
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