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1 Motivation.

Continuing on with reading of [Pauli(1981)], having clarified aspects of the
four vector velocity in [Joot()], it is now time to move on to acceleration.

Do the chain rule calculations for the acceleration four vector equation given
in equation (193).

2 Compute it.

Compute the spatial and timelike components of the acceleration
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For µ ∈ {1, 2, 3}, the d2xµ/dt2 terms are the regular old spatial acceleration
components. , and dx4/dt = c. Writing u2 = ∑3

k=1(dxk/dt)2, and β2 = u2/c2,
we have
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1
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In both of these is the d2t/dτ2 term. Let’s expand that.

d2t
dτ2 =

d
dτ

(
1√

1− u2/c2

)
=

−1
c2

(−1/2)
(1− u2/c2)3/2

du2

dτ

=
1
c2

(1/2)
(1− u2/c2)3/2 2u · du

dτ

=
1
c2

1
(1− u2/c2)3/2 u · du

dt
dt
dτ

=
1
c2

1
(1− u2/c2)2 u · du

dt

In vector form, with a = du/dt, we now have the following

B = a
1

1− β2 + u(u · a)
1
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This reproduces the equation from the Pauli text (except for the imaginary
factor i due to the Minkowski notation).

3 Approximate expansion.

This relativistic acceleration should match the Newtonian acceleration for small
velocities. Lets expand it to verify and inspect the form. Taylor expansions of
the γ factors is required.
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This is convergent since β < 1, and for non-relativistic rates the higher
order terms die off very quickly.

For the γ4 term we want

1
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Again, this is convergent. Substuition back into 1 we have for the spatial
part
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Writing β = u/c, this is

B = a + β(β · a) + β2 (a + 2β(β · a)) + β4 (a + 3β(β · a)) + · · ·

for small |β| we have the Newtonian acceleration. Another case that kills
off terms is the circular motion condition β · a = 0, for which we have just

B = a
(

1 + β2 + β4 + β6 + · · ·
)

So for circular motion the first order of magnitude correction to the acceler-
ation is

B = a(1 + u4/c4)

On the other hand for non-circular motion the more general first adjustment
to the Newtonian acceleration is
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Or, putting back the explicit dot products
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We see here that we have a scale correction only in the direction of the pro-
jection of the accereration onto the direction of the velocity, and in the perpen-
dicular direction to the acceleration the components go untouched.
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