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1 Motivation.
While working a problem with an induction requirement similar to but more compli-
cated than the binomial theorem, I steped back and thought I’d try this as an easier first
step. Had some trouble doing it, until I tried it explicitly with for the power of three
case. Ironically, working it out for an explicit index takes the abstraction out of the
problem, and generalizing further really only requires a search and replace.

1.1 Do it.
Want to prove

(t + x)k =
k∑

m=0

(
k
m

)
tmxk−m (1)

where

(
k
m

)
=

k!
(k −m)!m!

(2)

In particular want to prove this for the k + 1 case, given k.

1.1.1 step with k+1 = 3

Three isn’t actually the best way to start since it is almost too trivial, but one gets the
idea easily by doing it.
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(t + x)3 = (t + x)(t + x)2

= (t + x)
2∑

m=0

(
2
m

)
tmx2−m

=
2∑

m=0

(
2
m

)
tm+1x2−m +

2∑
m=0

(
2
m

)
tmx2−m+1

=
2+1∑
m=1

(
2

m − 1

)
tmx2−m+1 +

2∑
m=0

(
2
m

)
tmx2−m+1

Now pull the lowest and highest order terms out of the sums, and group the remain-
ing bits.

(t + x)3 =
(
2
0

)
t0x2−0+1 +

2∑
m=1

((
2
m

)
+

(
2

m − 1

))
tmx2−m+1 +

(
2

2 + 1 − 1

)
t2+1x2−(2+1)+1

Now, observe that in all the steps above everywhere if all places that 2, a nice easy
to think with and concrete number, we could have used some abstract index.

1.1.2 step with k+1

A straight text search and replace on 2 with k gives

(t + x)k+1 = (t + x)(t + x)k

= (t + x)
k∑

m=0

(
k
m

)
tmxk−m

=
k∑

m=0

(
k
m

)
tm+1xk−m +

k∑
m=0

(
k
m

)
tmxk−m+1

=
k+1∑
m=1

(
k

m − 1

)
tmxk−m+1 +

k∑
m=0

(
k
m

)
tmxk−m+1

=
(
k
0

)
t0xk−0+1 +

k∑
m=1

((
k
m

)
+

(
k

m − 1

))
tmxk−m+1 +

(
k

k + 1 − 1

)
tk+1xk−(k+1)+1

This is EXACTLY the same as above with k = 2 but it sure looks more complicated
with an an abstract index.
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To finish off we need a couple observations, that (k
0) = 1 = (k+1

0 ), and (k
k) = 1 =

(k+1
k+1). This leaves us with

(t + x)k+1 =
(
k + 1

0

)
t0xk+1 +

k∑
m=1

((
k
m

)
+

(
k

m − 1

))
tmxk−m+1 +

(
k + 1
k + 1

)
tk+1x0

So if we can show (
k
m

)
+

(
k

m − 1

)
=

(
k + 1

m

)
then we would have

(t + x)k+1 =
k+1∑
m=0

(
k + 1

m

)
tmxk+1−m

which is what was desired.

1.1.3 That last little piece.

To prove that last little piece, let’s do it again the dumb way, and let a regular expression
s/2/k/g in vim do the hard work.

(
2
m

)
+

(
2

m − 1

)
=

2!
(2 −m)!m!

+
2!

(2 −m + 1)!(m − 1)!

=
2!

(2 −m)!m(m − 1)!
+

2!
(3 −m)!(m − 1)!

=
2!

(2 −m)!m(m − 1)!
+

2!
(3 −m)(2 −m)!(m − 1)!

=
2!

(2 −m)!(m − 1)!

(
1
m

+
1

3 −m

)
=

2!
(2 −m)!(m − 1)!

3 −m + m
m(3 −m)

=
3!

(3 −m)!(m)!

So, generalizing the easy way with s/3/k + 1/g, we have
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(
k
m

)
+

(
k

m − 1

)
=

k!
(k −m)!m!

+
k!

(k −m + 1)!(m − 1)!

=
k!

(k −m)!m(m − 1)!
+

k!
((k + 1) −m)!(m − 1)!

=
k!

(k −m)!m(m − 1)!
+

k!
((k + 1) −m)(k −m)!(m − 1)!

=
k!

(k −m)!(m − 1)!

(
1
m

+
1

(k + 1) −m

)
=

k!
(k −m)!(m − 1)!

(k + 1) −m + m
m((k + 1) −m)

=
(k + 1)!

((k + 1) −m)!(m)!

Every step is EXACTLY the same as with k = 2, the only differences were straight
text substitution. That leaves us with

(
k
m

)
+

(
k

m − 1

)
=

(
k + 1

m

)
(3)

That’s all we needed to complete the proof.
I think this is a superior way to do inductive proofs. Just do the absolute easiest

case and do it with a number that is easy to think with. Search and replace in an editor
does all the bits that would make you look clever if you were to leave off the fact that
you were really only doing the easy version!

2 The original problem.
The original problem that I was trying to solve was problem (3.FIXME) from [Byron
and Fuller(1992)]. For an n-th degree polynomial f (t) show, with D = d/dt, that the
operator

T = I +
xD
1!

+ · · ·
(xD)n

n!

serves to shift the function T f (t) = f (t + x).

2.1 Inductive setup.
For the lower order cases, this is easy to show that the property holds, and for the zeroth
degree and first degree polynomial cases we have respectively for f (t) =

∑
aiti
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T0a0t0 = a0(t + x)0

T1(a0t0 + a1t1) = (a0t0 + a1t1) + xa1 = a0(t + x)0 + a1(t + x)1

2.2 Induction step.
Now, given this result for

Tk =
k∑

m=0

(xD)m

m!

fk(t) =
k∑

m=0

amtm

Let’s prove it for Tk+1. That is

Tk+1 fk+1(t) =
(
Tk +

(xD)k+1

(k + 1)!

) (
fk(t) + ak+1tk+1

)
= Tk fk(t) + Tkak+1tk+1 +

(xD)k+1

(k + 1)!
fk(t) +

(xD)k+1

(k + 1)!
ak+1tk+1

= fk(x + t) + Tkak+1tk+1 +
(xD)k+1

(k + 1)!
ak+1tk+1

Okay, that wasn’t so bad to setup. What remains is to compute, for m ≤ k + 1,

(xD)m

m!
tk+1

Let’s try this with search and replace induction using m = 3, and k = 7 to start.
This gives
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(xD)3

3!
t7+1 =

(xD)3−1

3!
xDt7+1

=
(xD)3−1

3!
x1(7 + 1)t7

=
(xD)3−2

3!
x2(7 + 1)(7)t7−1

= . . .

=
(xD)3−3

3!
x3(7 + 1)(7) · · · (7 − (3 − 2))t7−(3−1)

=
(xD)3−3

3!
x3 (7 + 1)!

(7 − (3 − 2) − 1)!
t7−(3−1)

Search and replace on three and seven, all steps remain valid and IDENTICAL, but
are “generalized”

(xD)m

m!
tk+1 =

(xD)m−1

m!
xDtk+1

=
(xD)m−1

m!
x1(k + 1)tk

=
(xD)m−2

m!
x2(k + 1)(k)tk−1

= . . .

=
(xD)m−m

m!
xm(k + 1)(k) · · · (k − (m − 2))tk−(m−1)

=
(xD)m−m

m!
xm (k + 1)!

(k − (m − 2) − 1)!
tk−(m−1)

And we are left with

(xD)m

m!
tk+1 =

(k + 1)!
(k + 1 −m)!m!

xmtk+1−m

=
(
k + 1

m

)
xmtk+1−m

Wrapping up, we now have
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Tk+1 fk+1(t) =
(
Tk +

(xD)k+1

(k + 1)!

) (
fk(t) + ak+1tk+1

)
= fk(x + t) + ak+1

(
Tktk+1 +

(xD)k+1

(k + 1)!
tk+1

)
= fk(x + t) + ak+1

 k∑
m=0

(xD)m

m!
tk+1 +

(xD)k+1

(k + 1)!
tk+1


= fk(x + t) + ak+1

k+1∑
m=0

(xD)m

m!
tk+1

= fk(x + t) + ak+1

k+1∑
m=0

(
k + 1

m

)
xmtk+1−m

= fk(x + t) + ak+1(x + t)k+1

= fk+1(x + t)

As desired.
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