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1. Motivation

The aim here is to extract the bivector grades of the squared angular momentum operator

〈
(x ∧∇)2〉

2
?= · · · (1)

I’d tried this before and believe gotten it wrong. Take it super slow and dumb and careful.

2. Non-operator expansion.

Suppose P is a bivector, P = (γk ∧ γm)Pkm, the grade two product with a different unit bivector
is

〈
(γa ∧ γb)(γk ∧ γm)

〉
2
Pkm =

〈
(γaγb − γa · γb)(γk ∧ γm)

〉
2
Pkm

=
〈

γa(γb · (γk ∧ γm))
〉

2
Pkm +

〈
γa(γb ∧ (γk ∧ γm))

〉
2
Pkm − (γa · γb)(γk ∧ γm)Pkm

= (γa ∧ γm)Pbm − (γa ∧ γk)Pkb − (γa · γb)(γk ∧ γm)Pkm

+ (γa · γb)(γk ∧ γm)Pkm − (γb ∧ γm)Pam + (γb ∧ γk)Pka

= (γa ∧ γc)(Pbc − Pcb) + (γb ∧ γc)(Pca − Pac)

This same procedure will be used for the operator square, but we have the complexity of
having the second angular momentum operator change the first bivector result.

3. Operator expansion.

In the first few lines of the bivector product expansion above, a blind replacement γa → x, and
γb → ∇ gives us

〈
(x ∧∇)(γk ∧ γm)

〉
2
Pkm =

〈
(x∇− x · ∇)(γk ∧ γm)

〉
2
Pkm

=
〈

x(∇ · (γk ∧ γm))
〉

2
Pkm +

〈
x(∇∧ (γk ∧ γm))

〉
2
Pkm − (x · ∇)(γk ∧ γm)Pkm

Using Pkm = xk∂m, eliminating the coordinate expansion we have an intermediate result that
gets us partway to the desired result
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〈
(x ∧∇)2〉

2 = 〈x(∇ · (x ∧∇))〉2 + 〈x(∇∧ (x ∧∇))〉2 − (x · ∇)(x ∧∇) (2)

An expansion of the first term should be easier than the second. Dropping back to coordinates
we have

〈x(∇ · (x ∧∇))〉2 =
〈

x(∇ · (γk ∧ γm))
〉

2
xk∂m

=
〈

x(γa∂a · (γk ∧ γm))
〉

2
xk∂m

=
〈

xγm∂k
〉

2
xk∂m −

〈
xγk∂m

〉
2
xk∂m

= x ∧ (∂kxkγm∂m)− x ∧ (∂mγkxk∂m)

Okay, a bit closer. Backpedaling with the reinsertion of the complete vector quantities we have

〈x(∇ · (x ∧∇))〉2 = x ∧ (∂kxk∇)− x ∧ (∂mx∂m) (3)

Expanding out these two will be conceptually easier if the functional operation is made ex-
plicit. For the first

x ∧ (∂kxk∇)φ = x ∧ xk∂k(∇φ) + x ∧ ((∂kxk)∇)φ

= x ∧ ((x · ∇)(∇φ)) + n(x ∧∇)φ

In operator form this is

x ∧ (∂kxk∇) = n(x ∧∇) + x ∧ ((x · ∇)∇) (4)

Now consider the second half of (3). For that we expand

x ∧ (∂mx∂m)φ = x ∧ (x∂m∂mφ) + x ∧ ((∂mx)∂mφ)

Since x ∧ x = 0, and ∂mx = ∂mxkγk = γm, we have

x ∧ (∂mx∂m)φ = x ∧ (γm∂m)φ

= (x ∧∇)φ

Putting things back together we have for (3)

〈x(∇ · (x ∧∇))〉2 = (n− 1)(x ∧∇) + x ∧ ((x · ∇)∇) (5)
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This now completes a fair amount of the bivector selection, and a substitution back into (2)
yields

〈
(x ∧∇)2〉

2 = (n− 1− x · ∇)(x ∧∇) + x ∧ ((x · ∇)∇) + x · (∇∧ (x ∧∇)) (6)

The remaining task is to explicitly expand the last vector-trivector dot product. To do that we
use the basic alternation expansion identity

a · (b ∧ c ∧ d) = (a · b)(c ∧ d)− (a · c)(b ∧ d) + (a · d)(b ∧ c) (7)

To see how to apply this to the operator case lets write that explicitly but temporarily in coor-
dinates

x · ((∇∧ (x ∧∇))φ = (xµγµ) · ((γν∂ν) ∧ (xαγα ∧ (γβ∂β)))φ

= x · ∇(x ∧∇)φ− x · γα∇∧ xα∇φ + xµ∇∧ xγµ · γβ∂βφ

= x · ∇(x ∧∇)φ− xα∇∧ xα∇φ + xµ∇∧ x∂µφ

Considering this term by term starting with the second one we have

xα∇∧ xα∇φ = xα(γµ∂µ) ∧ xα∇φ

= xαγµ ∧ (∂µxα)∇φ + xαγµ ∧ xα∂µ∇φ

= xµγµ ∧∇φ + xαxαγµ ∧ ∂µ∇φ

= x ∧∇φ + x2∇∧∇φ

The curl of a gradient is zero, since summing over an product of antisymmetric and symmetric
indexes γµ ∧ γν∂µν is zero. Only one term remains to evaluate in the vector-trivector dot product
now

x · (∇∧ x ∧∇) = (−1 + x · ∇)(x ∧∇) + xµ∇∧ x∂µ (8)

Again, a completely dumb and brute force expansion of this is

xµ∇∧ x∂µφ = xµ(γν∂ν) ∧ (xαγα)∂µφ

= xµγν ∧ (∂ν(xαγα))∂µφ + xµγν ∧ (xαγα)∂ν∂µφ

= xµ(γα ∧ γα)∂µφ + xµγν ∧ x∂ν∂µφ

With γµ = ±γµ, the wedge in the first term is zero, leaving
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xµ∇∧ x∂µφ = −xµx ∧ γν∂ν∂µφ

= −xµx ∧ γν∂µ∂νφ

= −x ∧ xµ∂µγν∂νφ

In vector form we have finally

xµ∇∧ x∂µφ = −x ∧ (x · ∇)∇φ (9)

The final expansion of the vector-trivector dot product is now

x · (∇∧ x ∧∇) = (−1 + x · ∇)(x ∧∇)− x ∧ (x · ∇)∇φ (10)

This was the last piece we needed for the bivector grade selection. Incorporating this into (6),
both the x · ∇x ∧∇, and the x ∧ (x · ∇)∇ terms cancel leaving the surprising simple result

〈
(x ∧∇)2〉

2 = (n− 2)(x ∧∇) (11)

The power of this result is that it allows us to write the scalar angular momentum operator
from the Laplacian as

〈
(x ∧∇)2〉 = (x ∧∇)2 −

〈
(x ∧∇)2〉

2 − (x ∧∇) ∧ (x ∧∇)

= (x ∧∇)2 − (n− 2)(x ∧∇)− (x ∧∇) ∧ (x ∧∇)
= (−(n− 2) + (x ∧∇)− (x ∧∇)∧)(x ∧∇)

The complete Laplacian is

∇2 =
1
x2 (x · ∇)2 + (n− 2)

1
x
· ∇ − 1

x2

(
(x ∧∇)2 − (n− 2)(x ∧∇)− (x ∧∇) ∧ (x ∧∇)

)
(12)

In particular in less than four dimensions the quad-vector term is necessarily zero. The 3D
Laplacian becomes

∇2 =
1
x2 (1 + x ·∇)(x ·∇) +

1
x2 (1− x ∧∇)(x ∧∇) (13)

So any eigenfunction of the bivector angular momentum operator x∧∇ is necessarily a simul-
taneous eigenfunction of the scalar operator.
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