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1 Bohm Chapter 10 problems.

Problems and additional details from reading of [Bohm(1989)|, chapter 10.

Differing from the text, the notation (O) has been used instead O mostly
due to not knowing how to format the a wide overbar, and getting peculiar
looking results.

1.1 P1. Uncertainty calculations.

Calculate AxAp for a few wave functions

1.1.1 Gaussian wave function.

lIJ _ lxleftxxz/Z

Normalization

1= |a1|2/e—axzdx

Position expectation is zero, since it is odd:

(x) o /xe*“xzdx =0

And the second power
(x%) = || / 2o Iy

- |o¢1|2/x(e”"x2/ —2a)’dx

= |a / (e /2a)dx
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For the first momentum expectation, we have zero again since we end up
with an odd integral:



(p) = —ih|t¥1\2/efo‘xz/z%e*“"z/zdx

= —ih|¢x1\2/e_"‘xz/z(—ocx)e_”‘xz/zdx
=0

And for the second power
(1) = Wl [ 2 (a)e e 2)ax
32 2 ' —axz/Zi —ax2/2
= h*|aq| oc/e dx(xe )dx
= —h2|a1|2a/ (;xe“xz/2> (xef“x2/2)dx

= 7242 |le|2/x2e*”‘x2dx

(x2)=1/2a
1
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This is the expected result since equality with 71/2 occurs only with the
Gaussian.

1.1.2 Absolute valued exponential wave function.

P = ape 2

Normalization




(x) =0
(0dd).

For the momentum we need derivatives

ie,m‘ _ L x>0

dx A (e x <0
_f —ale™ x>0
T a(et* x<0
= —asgn(x)e P

(p) = ih|a2|2a/sgn(x)e—2“\x\dx
=0

(odd)

<P2> = (—ih)2|a2\2az/(sgn(x))zgfzp‘\ﬂdx
= —2(h)2|a2|2a2 ‘/Ooo e 200x]

1
2
= 21 as a5

Same as in the Gaussian.



1.1.3 Squared polynomial.

_ a3
=1

a2 4 x2)2

For this one, the integrals were evaluated with Mathematica online integra-
tor, where the contributions at co were scaled arctan(x/a) values.
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1.2 P2. Correlation coefficients.

It is noted that a classical correlation coefficient for random variables x, and p
has the form

Com = (x"p") = (") (p")
However, for operator expectation values and average of both orderings is
more reasonable

Com = % ((p™) = () (p") + (p"a") = (p") (27))
= % (("p™) + (p"a™)) = () {p™)

With the operator substitution p — —ifid /dx this provides equation (7) in
the text.
1.2.1 first correlations.

Calculate C; 1, and Cy; for

lp _ [Xeflxxz/Z

First the normalization and first and second order expectations.

1= aZ/e*"‘xzdx

= a?V7/u
-

x = l/3



And in particular

1.2.2

second correlations.

(x?)



2
) = _wzhz/ew%/z%ewﬁ/zdx

_ azhz/%e*“z/z%e*“z”dx
= a2h2/(—txx)ze*‘”2dx

= o*n? / x2e™ dx

= oc4h2/xxe*“2dx

= 1x4h2/x(e_”2/ —a)'dx

= rx3h2/ef“x2dx

32 1

20
24,2

=

=
— 2332

(PP (%) = Rt

For the first terms we want

2 dx? dx?

_ —Flzzlxz / (ddxzz(e_axz/zxz)e_axz/z +e_ax2/2;ijz(xze—ax2/2)) dx

2.2 —ax?/2 dz —ax2/2.2
=—ha"[e W(e x%)dx

= *a? / (;ie—“m) (;ic(e—“xz/zxz)) dx

= H2a? /(—ocx)ef""‘2 (2x 4 x%(—ax))dx

420 2 2
%(<x2p2>+<p2x2>) _ ha /(ezxxz/Zde(eax2/2)+eax2/2d(xzeax2/2)) dx

= h%a® / xze*’”‘z(—Z + x%a)dx
= 1?1/

S

This leaves



Cz,z = —712 (71? + 7‘[2/3)

1.3 P3. First correlations zero for real wave function.

Show that the first correlation coefficient is zero for any real wave function.

Cra = 5 (xp) + (p2)) = ()(p)

Calculate instead the equivalent problem

261/ (i) = () + (3200 ) ~209(70)

For the anti-commutator part we have

d d / ,
() + (o) =[xy + 9 (xp)
=[xy —¢'xy
=0

and for the remainder if one is zero then the sum is. In particular

(= [ axpy
=5 [y
=5

Provided the wave function vanishes in the square at +-co, then we are done.

14 P4
1.5 P5.
1.6 Pe.

The phase space text on this page is not clear to me. Revisit after study of phase
space, Poisson brackets, and Liouville’s theorem in a classical context.



1.7 P7. wave function for the position and momentum opera-
tors for the equality uncertainty case.

Note that in the definitions of « and B right before equation (25) in the text, the
symbols are reversed. For consistency with condition (1) this should be

p=(x-1x)
a=(p-p)
Where condition (1) for equality in the Schwartz inequality for this gener-
alized uncertainty principle is

ap = Cpy
Putting the two together for this problem one has

(p—pP)p=Clx—2)p
—

py = pyp + Clx — 2)p

or

ndy o
T py+C(x —x)p

Integrating, as was done in the X = p = 0 case in the text, one has
Iny = %(ﬁx +C(x —%)?/2)+InD

or
P = Deipx/heic(x—x)z/zh

Note that this shows there is a typo in equation (26) in the text too (ipx
needs the 1/ factor). References to C in the text preceding this should be C/#
in a few cases too.

It was shown above that real wave functions have the vanishing C; ; coef-
ficient required for uncorrelated operators, and if that’s the case iC /%, must be
a real negative constant. Denoting that as —a as in the text one has

P P/ N ,—a(x—%)*/2
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1.8 P8. Calculate uncertainty for the initially Gaussian wave
function.

Wave function for the problem is

P = aexp (—(A —iB)x22>

a4 (Ak)?
14 22 (Ak)4
B = (Ak)4y+
M1+ L8 (Ak)

The normalization is

1= |a|2/exp (—Ax2>
= 1\

(x)=0

First moment

Second moment
<ﬂ>:|M2/x%xp(—Aﬁ)
= laf? [ x(exp (~A%) /(~24))’
_ |¢x|2/exp (—ax?) 124

_ el T
=l 4\ 2

_ b
T 24

2,2
11+ T (Ak)!
T2 (a2

1( 1 |
= | 5 + —5(B8k)?
2 ((Ak)2+ i (BK) )
For the momentum expectation
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So we have

But

A%+ B* =

- / dx(—(A — iB)x) exp ((A ~iB) S
—/ﬁPMfBﬂﬁx(%A%Mi
— / x2dx(A% + B%)exp | —(A — iB)x2>

—/xzdx(A2+B2)exp —sz)

—(A% 4+ B?) /x(exp <7Ax2) /(=2A))

2 2
—7A Z—ZB exp (—sz)
A?+ B2
2\ _ 22
1 ht
R iy (AR (A7 <m
(1+ W(Ak) )

1 ht
(1+ 2 (Ak)+)?
(8k)*
:1ﬂ%mw

= (AK)%A

(Akf(1+(Am4(
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)2>
")
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So we have the constant second moment as desired

(p?) = 1 (8k)%/2

4 (Ak)Z2  m2
2 242
— (Z) <1 + F;;(Akﬁ)

This matches all the expectations. Att = 0 we have equality for the mini-
mum uncertainty, and it grows as time increases.

(AxAp)? = h2% (1 + W(Ak)2>

1.9 P9. (first P9 of the chapter.)

if P4(x7) and Pp(x2) are independent, then the probability integral over all
space is
/P(Xl, xz)dxldxz = / ¢A(X1)¢B(X2)dX1dX2
= /¢A(x1)dx1/¢3(xz)dxz

So, if they are also separately normalized then so is this one.

1.10 P9. (second P9 of the chapter.)

Prove, “It may be shown that if ¢ is not an eigenfunction of the operator O
must show some fluctuation.”

By fluctuation, I assume he means deviation of the moments, as in the vari-
ational differences

(0") = ((0))"

How to prove this? Suppose that the wave function is almost an eigenfunc-
tion differing by a bit

OYp=Ap+e

Then we have for the moments

13



=(0)* - /4’ €(O (/4] €—( )/e*d)%—/e*e
o= ([ers [we) | ford + [e

So we have

= ’/1/)*6 2+/e*62<O>§R/e*¢

There’s no good reason to assume that this RHS should be zero in general,
so at least for the second order moment this shows that we have the fluctuation
when the wave function isn’t an eigenfunction.

1.11 P10.

(x — x0)% + (Ax)?

14



Normalizing, picking the upper plane contour around iAx, we have

1= [y
2 ™ dx
=4 /700 (x — x0)% + (Ax)?
o2 [® dx
=4 /700 x2 + (AX)z

- Az/ dx
N —oo (x +iAx)(x — iAX)
27i
— A2
2iAx
T
= A2
Ax

So we have the desired normalization

A=y
T

So how do you show that the now normalized wave function is an eigen-
function of x

[ Ax
v= T (x —x0)2 + (Ax)2

Would a calculation of the expectation value for the position operator be
sufficient? That is

(x) a2 /°° xdx

—oo (x — x0)% + (Ax)?
_ A2 /oo (M+X0>du
—co U2+ (Ax)?
du

— A2 /oo | wew
o + —o0 u2 + (AX)Z

Now u/(u? + &%) has antiderivative In(x? + a?) /2, so the PV value of this
integral for Ax # 0is

15



o du Ax [®  udu 1 Ax R? + (Ax)?
PVAZ/ uiPV—/ - = lim —In| —5———5
o2+ (A2 T ) BT (A2 T 2R%0 7 D\ (ZR)Z+ (Ax)?
=0
So, for all Ax # 0 (where that PV integral goes messy), we have
(x) =xo

Is this sufficient to show that this wave function approaches an eigenfunc-
tion as Ax — 0. I suppose that one could loosely argue that the A2 term kills
off the log term at the limit of Ax = 0 (if you are careful in the argument about
how exactly Ax — 0 with R — o).

1.12 P11. Delta function example as limit.
1.12.1 The problem.
Show that for
A
fse(x - xO) - (X — xO)Z T e2

The limit has a delta function action
S(x — xp) = lim b¢(x — xp)
e—0
Calculate A, and explain why it’s different than A in problem 10.

1.12.2 Normalization.

First for the constant

1:/ dxde(x — xp)
©  dx
_A/foox2+€2

:A/wggf@;gf
—oo (x +i€)(x —i€)
27ti
— AZ
2ie
A
€
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So we have

3o

This constant is necessarily different from the eigenfunction normalization,
since that involved normalization in the square. The resulting nascent delta
function is

€ 1
de(x = x0) = 7 (x — x0)% + €2

1.12.3 Delta function action.

How do we show that J. behaves as a delta function in the limit? The delta
function is really defined by how it acts on a test function in an integration
operation, so let’s calculate

/oo 5€(x — XO)f(x)dx — E /-oo f(x)dx

—oo 7T J—oo (x — x0)% + €2
€ [* f(u+xp)du
T )0 u2+62

€ [*  f(u+xo)du

) —co (u+ie)(u— i€)

An upper half plane contour, assuming that f(xq + i€) is a regular point
(and that f(z) has no poles in the upper half plane) gives us

/oo Je(x — x0) f(x)dx = —2 M

o 2ie
= f(ze + x0)

So in the limit if f(x) is regular all the way down the xo + i€ trajectory, we
have

lim o;ée(x —x0)f(x)dx = f(xp)

e—0.J—

which is precisely the operational definition of the delta function.

17



1.13 P12. Delta function differentiation.

Prove by successive differentiation that

X0

dxh —00

d"f(x) _ /°° 5(x_xO)d"£(xo)de

Doing the integration by parts, and change of variables for the delta func-
tion derivatives:

T = [ o,
= [T T30 gy )y
—o0 0
oo An—1
— 7(71)11/ d (S(X — xO) df(xo)de

—00 dngl de

= (_1)2(_1)n /oo dn—2§(x — xO) dzf(xO)

de
n—2 2
—o0 dxo dxo

o @n=(=D§(x — xp) d" 1 f (x0)

= (-1)"1(-1)" d
(o [ o
_ ® dé(x —x0) d" 1 f(x0)
_ (_1\n—1/_1\n
= (=D ./—oo dx dxf~! 4o

= (1) [ o ) T g

X0

= [Z&(x - xo)dndfx%o)dxo

1.14 P13. Eigenfunctions for particle in one dimensional box.

Box of side L. Eigenfunction of p are given as exponentials in the problem.
Stepping back slightly to see where these come from consider the operator
eigenvalue statement itself. This will in fact indirectly solve the problem

18



This can be integrated

(Iny,)" = iA/h
—

Iny, = Z)%x +InA

=

iAx
Py = Aexp <h>

Considering two such eigenfunctions (normalization omitted) with an or-
thogonality requirement in the [0, L] interval we have for A # u

Foroes- [on () on (')
= [ e (11512

So, for orthogonality we need AL/% = 27tn,, or more simply

v *Lex (27rinx>
n \/Z 1% 1

It is interesting to see that the one dimensional particle in a box can be
reduced to a first order differential equation or eigenvalue problem, instead of
looking for solutions to the energy operator equation (p?/2m)p = Eip.

1.15 P14. Fourier series representation of delta function.
TODO.

1.16 P15.

This one has a prereq on the ch3 problems, which I didn’t do. Revisit.
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