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1 Bohm Chapter 9 problems.

Problems and additional details from reading of [Bohm(1989)|, chapter 9.

1.1 P1. Momentum wave function normalization.

Given a normalized wave function

.

P ()P (x)dx =1



Show that the wave function ¢(k) is also normalized, and find the normal-
ization factor for ®(p).
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Bohm defines ®(p) o ¢(k) with the normalization constant determined by
J |®(p)|dp = 1. Suppose we let ®(p) = a¢(k), then we have

1— /cp*(p)cp

= [ 9" ()9 (k)nak

So we want a?#1 = 1, and therefore ®(p) = ﬁ(j)(k).

In [McMahon(2005)], with followup in [Joot()] we've seen that an alternate
Fourier transform pair can be used in terms of momentum variables. That is

1 « —ipx

D(p) = \/Tﬁ/—oo p(x)e P Mdx
_ 1 o= pipx/h

v = o | @)

Observe that this is consistent with Bohm’s notation, since one can read off
®(p) in terms of ¢ (k). by inspection

e~ P/ Mgy =

1 © 1
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1.2 P2. Expectation of polynomial momentum function.

Given a function of momentum

p) =Y Cup"



Express the average, or expectation value of f(p). It is sufficient to consider
one of the monomial terms, say p". A translation to position basis via Fourier
transformation produces the desired result
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The k" can be reduced to differential form as Bohm did for the (p) case
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This leaves something that’s in shape for integration by parts

pt) = ///1,0 )elk* dx’ ( a:n e_ik"> P(x)dxdk
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This last integral is really a distribution, and can be identified with the delta
function §(x" — x) operating on, in this case, the preceding integral.
So we have

= (—ih)" //1,0 dxdx&( —x)

= (=in)” /lp ax"



We can put this into explicit operator form, nicely motivating the identifica-
tion of —ifid /dx with the momentum by virtue of the definition of the average
or expectation value.

o) = [ (-ings ) e

1.3 P3. Expectation of position in momentum space.

() = [ 9" (rp(xdx
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This is

()= [ ) (i) @)y

We see that expressing momentum in position space and position in mo-
mentum space both result in differential operator forms in calculations of ex-
pected values

. 0
p~ —lhg 1
. 0
X ~ Zh@ (2)

Observe the Hamiltonian and Poisson equation structure in these two sets
of operators.



1.4 P4. Expectation of polynomial position function.

This problem follows just as P2, and I'm not going to bother typing it up for
myself. For validity, we require x"¢(x) — 0 as x — =£oo, or equivalently that
I"P

0.
op" -

1.5 P5. Some commutator calculations.
1.5.1 P5. Position momentum moment commutators.

Evaluate

flx,p) = 2"p" = p"a”
Up to this point we’ve only seen operators in expectation values. Let’s look
the simplest case with n = m = 1 in that context

(1) =5 [ (xg2— o) wioix

= -2 [y @wax
=ih

So in the same way that the operator correspondence between momentum
and the derivative as summarized in|l} one can associate the commutator op-
erator with its action in the expectation value and say

xp — px ~ il ©)]

The higher order commutator expansions could also be evaluated this way,
but exploiting the operator nature directly makes this easier. For the first order
moment commutator above one can write

fxp)y(x) = (xp = px)y(x)

i (s 20
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So again we see that as a right acting operator the net effect on any wave
function is the following action

(xp — px)y = iy

If one starts from this point and then calculates the expectation value the
result will still be ifi, but working with the probability integrals from the get go
is just additional complication.

Building on this result we can then calculate the higher order moment dif-
ferences of the problem by using the commutator to change the order of oper-
ations

px ~ —ih+ xp
Let’s use this for a couple simple examples to start

xX’p — px? = x%p — (—ih + xp)x
= x*p + ihx — x(—il + xp)
= x2p 4 2ihx — x%p
= 2ihx

xp? — p*x = xp? — p(—ih + xp)
= xpz +ihp — pxp
= xp? +ihp + (+ih — xp)p
= 2ihp

Calculation of third powers shows a pattern, and one can guess at an in-
duction hypothesis

xp"

—px" = —x"p + nihx"

p"x + nihp" !

The n = 1 cases follow from xp — px = i, leaving only the induction on 7.
For the momentum powers we have



xp"p = p"xp + nilp"
= p"(px +ih) + nihp"
=p"x + (n+1)ikp" O

For the position powers we have
—px"x = —x"px + nihx"
= x"(—xp + ih) 4 nihx"
= —x""p+ (n+1)ihx" O

This completes the proof for a first order version of the problem

xp" — p'x = nihp" !

X"p — px™ = nihx" !

Observe that working with the operator form changes the calculation of
derivatives problem in the original commutator evaluation to nothing more
than an algebraic exercise.

The general case still remains. Building up to that let’s do a couple exam-
ples

x"p? = (x"p)p
= (px" 4 nihx" " 1)p
= p(x"p) + nin(x""'p)
= p?x" + 2nihpx" 1 4 n(n — 1) (ik)2x" 2

x"p? = (x"p?)p
= (p2x" + 2nihpx™ 1 + n(n — 1) (ih)*x"2)p
= p?(px" + nikx™ 1) 4 2nilp (px™ L + (n — 1)ihx"2) + n(n — 1) (ih)?(px" 2 + (n — 2)ikx""3)

= p>x" 4 3n(ih) p?x" 1 + 3n(n — 1) (ih)?px" 2 + n(n — 1) (n — 2)(ih)>x" >

We see what looks like binomial coefficients, so a reasonable inductive hy-
pothesis, for m < n



Y ( ]. ) (i) " () (n — 1) -+~ (n— j+ 1) @

And in particular, form < n
N ( ]. ) (Y p" I () (1~ 1) (- 1) )
j:l

For m > n, let’s start with

p"x = xp™ — mihp™ 1
First do the x?
p"a? = xp™x — m(ih)p™x

= x(p"x) — m(in)(p"~"x)
= 2p™ — 2m(il)xp™ "t + m(m — 1) (ih)*p™ >

And for the cube x3
P = (")
= (x2p™ — 2m(ih)xp™t + m(m — 1) (ih)?p™2)x
— X2(p"x) — 2m(if)x(p"x) + m(m — 1) (i7)(p"2x)
= 2" — m(im)p" )
— 2111(1'751)x(xp’”_1 —(m— 1)(ih)pm_2)
+m(m — 1) (i) (xp™ > — (m = 2) (i) p" )
= x3pm — 3rrz(ih)x2pm_1 +3m(m — 1)(1'?1)2xpm_2 —m(m— 1)(ih)2(m — 2)(ih)pm_3

It appears that in this case with m > n, like [d} we want as the induction
statement

pet =3 () i mn = 1) =+ @

j=0

And for the commutator moment the expected result, pending induction
on the above, is

= ) ( ].) (=i T i (m)(m —1) - (m—j+1) ()



Summarizing, this is

i1 7)(ih)jpm’jx”’7(n)(n—1)---(n—j—|—1) ifm<n
=Y () (=ih)ixTpmi(m)(m —1) -+ (m—j+1) ifm>n

1.5.2 P5.b

eikxp _ peikx

Reversing the second term via power series expansion we have

i >, (ikx)"
e = p 5 )
n=0 ’
= ZO(Z:') (x"p — nihx" 1)
IKX - ikn : n—
ZEkP_,;l(”!) (nihx™ 1)
= (ikx)" 1
= e p — (ik) (ih (i
p= () 1

So we have
eikxp _ peikx — _(kh)eikx

1.6 P6. Hermitian operators. Powers of momentum operators.

Show that p" is Hermitian




Thus, by the definition of equation (13) in the text, this operator is Hermi-
tian.

Next is to show that

p) =Y A
k
is Hermitian, provided Ay are all real. This part is clear by inspection.

1.7 P7. Hermitian operators. Powers of position operators.

Want to show that the following is Hermitian

x) =Y Apx*

If the conjugate of the expectation equals itself we required only Ay = A},
so Ay must be strictly real, and we are done.

1.8 P8. Non Hermitian momentum power operators if deriva-
tive doesn’t vanish.

Show that if 9" /dx" doesn’t vanish then (—if)"*19"*1/9x"*+1 is not Hermi-
tian.

We want to evaluate the following and compare it to its conjugate
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So we have

] n akl[J* an—k¢7 e
n+ly _ ontlye o H n+1 1 k
(") = (p"th) = (~in) k;o( )" S 3k N

If p”” is Hermitian, then this difference should be zero, but if the indicated
partial doesn’t vanish this remainder bit can be non-zero.

1.9 P9. m, n’th moment is Hermitian.

Consider the operator

n m+ m,n
ZM(w)

Show that this is Hermitian if all A, are real.
Consider first one specific term with A, calculate the conjugate of the
expectation value, and integrate by parts

(1) [ 9" + "y
d?l M 4 14% d}’l *
(lh)n/ll)< (;anll] ) +xm d;/il )
. di’l d}’l m
(7lh)n/xm¢* (d;f +¢* E;;nlp))

1
=3[9y

*1 n,m m._,n :
(/wz(Px +xp)¢> =

NI—= NI—= NI-

This shows that (p"x™ + x™p")/2 is Hermitian, and the conjugation re-
quires Ay, to be real for the product of the two to be Hermitian.

1.10 P10. Hermitizing Classical operator (px)>.
Show that

(x2p2 + p2x2>

N —

and
3 (p + p)?

lead to results that differ by a factor of 1%,

11



To do so consider the difference of the expectation of this operator, first
calculating this difference. We will want to use the commutator relation, in a
few equivalent forms

xp —px =ih
xp = px +ih
px = xp —i
xp+ px =2px +ih
=2xp —

This gives us
1 2 1 ) .
1 (xp+px)” = Z(pr+ ih)(2xp — ih)
= Px2p+ih%(xp— px) + %FF
1 1
o2y 321 L2
=px“p—n > +4h

1
2 2
=pxp—h-—
px'p 1
For the other operator, reduction to a form that also contains px?p, we have

(2 + p2x2> = 5 (x(xp)p+ p(px)x)

N =

(x(px +ih)p + p(xp — if)x)
((xp)xp + px(px) + i(xp — px))

( px +ih)xp + px(xp —ih) + (ih)z)

\HN\»—\NM—\I\)M—*N\»—\

(pr p+ih(xp — px) + hz)
= pxPp+ -1’
So now, if we take the difference
1 1 1
5 (22 + p2?) — 1 (P p0)? = (pxPp + =1%) = (pPp — 7))

3.2
—
4
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The difference of the expectation values of these operators is thus of the
order 71* as was to be calculated.

1.11 P11. An explicit calculation of a Hermitian operator.

Show by integration by parts that (xp)" = px.
The defining relation for the Hermitian conjugation operation is equation
16 in the text.

[ ©"p)x = [ 90"y )dx

For the operator xp, we have

[ Gxp)tydx = [ g(ep)yrax
. oy’
= (—1h)*/¢x ali dx
- —ih/aax—xlplp*dx

= [ (p)yax

So we have, as desired

(xp)" = px

1.12 P12. Hermitian operator from antisymmetric difference.

Show that H = i(O — O") is a Hermitian operator.
This follows directly from the definition, calculating the expectation

(H) = [ 4"(i(0~0")y)
=i [y 0p)—i [y*(O'y)
—i [y ©0p)~i [ y(O'y")

Taking conjugates we have

13



() = =i [9(0"y*) +i [y (Oy)
— (H)

1.13 P13. When product of operators is Hermitian.

What relation must exist between Hermitian B and A must exist for AB to be
Hermitian.

TODO: Am guessing that this has something to do with the commutator of
the operators. This one I don’t have a check mark besides in my text, so did I
ever figure it out?

1.14 P14. Show directly that i(p?>x — xp?) is Hermitian
This follows from (AB)' = BA in the text above. We have

(i(pPx —xp?))t = (<" p'p" — pTpTah) (i)
= —i(xp* — p’x)
= i(pPx — xp?) O
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