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1 Worked calculus of variations problems.

Select problems from chapter II of [Byron and Fuller(1992)].

1.1 Problem 1. Shortest line between points in polar coordi-
nates.

Problem. Variational calculus exercise to find shortest distance between two
points using polar coordinates.

The line element is:
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ds2 = r2dθ2 + r′2

So, the integral to minimize is

I =
∫ √

r2 + r′2dθ

Application of the Euler-Lagrange equations yields

0 =
(

∂

∂r
− d

dθ

∂

∂r′

)√
r2 + r′2

=
r√

r′2 + r2
− d

dθ

(
r′√

r′2 + r2

)

Dividing through by r and writing v = u′ = r′/r this is

1√
v2 + 1

=
d
dθ

(
v√

v2 + 1

)
=

v′√
v2 + 1

− v2v′

(
√

v2 + 1)3

1 = v′
(

1− v2

v2 + 1

)
=

v′

v2 + 1

This is now separable, and can be integrated directly

θ − θ0 =
∫ dv

v2 + 1
= arctan(v)

tan(θ − θ0) =
r′

r

=
d ln(r)

dθ
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That solves the first of the second order differential equations resulting from
the Euler-Lagrange equations, and the last becomes

ln(r) =
∫

tan(θ − θ0)dθ

= − ln(cos(θ − θ0)) + ln(r0)

Finally a polar parametric equation is obtained

r
r0

cos(θ − θ0) = 1

If all went right, this should be the equation for a straight line in polar form.
It doesn’t look like one, but if the cosine is expanded

cos(θ − θ0) = <
(

eiθe−iθ0
)

= < ((cos θ + i sin θ)(cos θ0 − i sin θ0))
= cos θ cos θ0 + sin θ sin θ0

With x = r cos θ, and y = r sin θ this gives

r0 = r (cos θ cos θ0 + sin θ sin θ0)
= x cos θ0 + y sin θ0

So, sure enough, following the math gives an equation for a straight line in
a recognizable form.

1.2 Problem 2. Shortest line, in 3D.

Did this one in [Joot(a)]

1.3 Problem 3. Spherical geodesics.

First calculate the line element (this was given in the problem, but I feel like
working it out). The position vector with i = e1e2, is given by

r = a(sin θe1eiφ + e3 cos θ)

So, the differential given constant radius a is
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dr = aθ̇(cos θe1eiφ − e3 sin θ) + aφ̇(sin θe1e1e2eiφ)

= a
(
θ̇ cos θe1 + φ̇ sin θe2

)
eiφ − aθ̇e3 sin θ

And the square is

dr2 = a2
(

θ̇2 cos2 θ + φ̇2 sin2 θ + θ̇2 sin2 θ
)

= a2
(

θ̇2 + φ̇2 sin2 θ
)

Here the derivatives are with respect to some implicit variable that parametrizes
the differential displacement. This can be taken to be θ, which gives the dis-
tance along any two points on the sphere as

S = a2
∫

dθ

√
1 +

(
dφ

dθ

)2
sin2 θ

Writing f (θ, φ, φ̇) =
√

1 + φ̇2 sin2 θ, the Euler-Lagrange equations can be
applied

0 =
(

∂

∂φ
− d

dθ

∂

∂φ̇

)
f

= 0− d
dθ

(1/2)(2φ̇) sin2 θ√
1 + φ̇2 sin2 θ

Introducing an integration constant κ, this is

φ̇ sin2 θ = κ

√
1 + φ̇2 sin2 θ

squaring

φ̇2 sin4 θ = κ2
(

1 + φ̇2 sin2 θ
)

φ̇2 sin2 θ
(

sin2 θ − κ2
)

= κ2
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φ− φ0 = κ
∫ dθ

sin θ
√

sin2 θ − κ2

This doesn’t look particularly nice to integrate. Instead, let’s try writing the
arc length integral as

S
a2 =

∫
dφ

√
dθ

dφ

2
+ sin2 θ

0 =
(

∂

∂θ
− d

dφ

∂

∂θ̇

)√
θ̇2 + sin2 θ

=
sin θ cos θ√
θ̇2 + sin2 θ

− d
dφ

θ̇√
θ̇2 + sin2 θ

=
sin θ cos θ√
θ̇2 + sin2 θ

−
(

θ̈√
θ̇2 + sin2 θ

+
(−1/2)θ̇(2θ̇θ̈ + 2 sin θ cos θθ̇)

(
√

θ̇2 + sin2 θ)3

)

=
sin θ cos θ√
θ̇2 + sin2 θ

− θ̈√
θ̇2 + sin2 θ

+
θ̇2(θ̈ + sin θ cos θ)

(
√

θ̇2 + sin2 θ)3

Multiplying through by (
√

θ̇2 + sin2 θ)3, this is

0 = (sin θ cos θ − θ̈)(θ̇2 + sin2 θ) + θ̇2(θ̈ + sin θ cos θ)

= 2 sin θ cos θθ̇2 + sin θ cos θ sin2 θ − θ̈ sin2 θ

Or

θ̈ = 2(cot θ)θ̇2 + sin θ cos θ

Darn. That doesn’t look much easier to solve.
Looking back at the problem, I see that it was asked to prove that φ =

α − sin−1(k cot(θ)). So, instead of trying to solve the differential equation
above from scratch, verification that this given solution is probably all that
was desired.

− sin(φ− α) = k cot(θ)
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Or

θ = cot−1
(
−1

k
sin(φ− α)

)
Looks like derivatives of the above are required. ... An exercise for a differ-

ent night.

1.4 Problem 6. Action with second order derivatives.

Did this one in [Joot(a)].

1.5 Problem 7. Fermat’s principle, and Snell’s law.

1.5.1 part a.

Figure 1: Snell’s law. Position dependent velocity gradient.

This one is kind of cool. It will be interesting to eventually learn the QM
reasons why light takes the path of least time, but for now we can calculate
with that. The setup of the problem is depicted in figure 1.

For the time to be minimized along the path we need to describe that time.
From the figure, we have

ds
dt

= u
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Or,

t =
∫

dt =
∫ p2

p1

ds
u

It’s common to write ds2 in terms of dy/dx in many problems, as in

ds =

√
1 +

dy
dx

dx

but an attempt to use this in the minimization problem just produces a
mess. There’s no obvious conserved quantity and reducing the resulting dif-
ferential equations leads to a mess.

Instead we can write

ds =

√
1 +

(
dx
dy

)2
dy

and aim to minimize the integral

ds =

√
1 +

(
dx
dy

)2
dy

t =
∫ p2

p1

1
u(y)

√
1 +

(
dx
dy

)2
dy

This action now has no x dependence, so we have a cyclic variable and
conserved quantity. Writing

L(x, ẋ, y) =
1

u(y)

√
1 + ẋ2

The Euler-Lagrange equation evaluation gives us

∂L
∂x

= 0

∂L
∂ẋ

=
ẋ

u
√

1 + ẋ2

So, we have
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ẋ
u
√

1 + ẋ2
= const

In terms of the angle from the vertical α, we have

dx
dy

= tan α

So

1 + ẋ2 = 1 +
sin2 α

cos2 α

=
1

cos2 α

and we have

const =
tan α cos α

u

Which is the desired result

const =
sin α

u

1.5.2 Part b.

This part of the problem is to calculate the path if the speed of light in the
material varies in proportion to the position, say

u(y) = u0 + ay

Let

sin α

u0 + ay
= κ

(
dx
dy

)2
=

sin2 α

cos2 α

=
κ2(u0 + ay)2

1− κ2(u0 + ay)2
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Let w = u0/a + y, for

κ2a2w2 =
(

dx
dw

)2
(1− κ2a2w2)

x− x0 = ±κa
∫ wdw√

1− κ2a2w2

With v = κw

x− x0 = ± 1
κa

∫ vdv√
1− v2

= ∓ 1
κa

√
1− v2

= ∓ 1
κa

√
1− κ2a2w2

Or

1
κ2 (x− x0)

2 + a2
(u0

a
+ y
)2

=
1
κ2

This looks like an ellipse, not a circle which is what the problem asked for.
I’m guessing that the point of this linearly varying index of refraction ques-
tion is to model an abrupt change between two surfaces continuously, and
show that a complete change of direction is possible. In that case, the precise
parametrization that makes the ellipse a circle isn’t necessarily relevant.

1.6 Problem 9. Schrödinger Lagrangian.

Did this one in [Joot(a)].

1.7 Problem 10. π-meson Lagrangian (Klein-Gordon).

1.7.1 Setup.

Charged scalar meson in two real fields is given in the Minkowski notation
xµ = (x, y, z, it), with c = h̄ = 1.

L = −1
2

(
∂φ1

∂xµ

∂φ1

∂xµ
+

∂φ2

∂xµ

∂φ2

∂xµ

)
+

1
2

(
φ1

2 + φ2
2
) (

e2 Aµ Aµ −m2
)

+ eAµ

(
φ2

∂φ1

∂xµ
− φ1

∂φ2

∂xµ

)
(1)
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With summation over repeated indexes.
I’m more comfortable with the upper and lower index notation used for

repeated indexes, and will switch to that for the remainder of the problem.
Translating with xµ = (x, y, z, t), xµ = (x, y, z,−t) (retaining the use of a + +
+− metric), we have

L = −1
2

(
∂φ1

∂xµ

∂φ1

∂xµ +
∂φ2

∂xµ

∂φ2

∂xµ

)
+

1
2

(
φ1

2 + φ2
2
) (

e2 Aµ Aµ −m2
)

+ eAµ

(
φ2

∂φ1

∂xµ − φ1
∂φ2

∂xµ

)
(2)

= −1
2
(
∂µφ1∂µφ1 + ∂µφ1∂µφ1

)
+

1
2

(
φ1

2 + φ2
2
) (

e2 Aµ Aµ −m2
)

+ eAµ
(
φ2∂µφ1 − φ1∂µφ2

)
(3)

In this last form with ∂µ ≡ ∂/∂xµ, and ∂µ ≡ ∂/∂xµ, we have this Lagrangian
density expressed nicely with balanced upper and lower indexes.

1.7.2 Euler-Lagrange evaluation.

Evaluating the Euler-Lagrange equations we have

∂L
∂φ1

=
(
−m2 + e2 Aµ Aµ

)
φ1 − eAµ∂µφ2

∂µ
∂L

∂(∂µφ1)
= ∂µ (−∂µφ1 + eAµφ2)

= −∂µ∂µφ1 + e(∂µ Aµ)φ2 + eAµ∂µφ2

Adding in the same calculation for variation of φ2 we have

(
∂µ∂µ −m2 + e2 Aµ Aµ

)
φ1 = e(∂µ Aµ)φ2 + 2e(Aµ∂µ)φ2(

∂µ∂µ −m2 + e2 Aµ Aµ

)
φ2 = −e(∂µ Aµ)φ1 − 2e(Aµ∂µ)φ1

1.7.3 Complexify the Euler-Lagrange solutions.

Writing

φ =
1√
2

(φ1 − iφ2)

φ∗ =
1√
2

(φ2 + iφ2)
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and by adding multiples of the Euler-Lagrange equation evaluations above
we have (

∂µ∂µ −m2 + e2 Aµ Aµ

)
φ = ie(∂µ Aµ)φ + 2ie(Aµ∂µ)φ (4)

Noting that �2 = ∂µ∂µ, this does obtain the desired result for the A = 0
case.

1.7.4 Complexify the density.

Part of the problem is also to put the density in complex form (albeit only for
the A = 0 case). We do this by expanding

= ∂µφ∗∂µφ

=
1
2
(
∂µ(φ1 + iφ2)∂µ(φ1 − iφ2)

)
=

1
2
(
∂µφ1∂µφ1 + ∂µφ2∂µφ2

)
and by evaluating

φ∗φ =
1
2
(φ1 + iφ2)(φ1 − iφ2)

=
1
2
(φ1

2 + φ2
2)

This leaves just the probability current term. We can get this by expanding

−iAµ
(
φ∗∂µφ− φ∂µφ∗

)
=
−i
2

Aµ
(
(φ1 + iφ2)∂µ(φ1 − iφ2)− (φ1 − iφ2)∂µ(φ1 + iφ2)

)
= Aµ

(
φ2∂µφ1 − φ1∂µφ2

)
So the density in terms of the complex field variable is
Or in index form

L = −∂µφ∗∂µφ +
(
−m2 + e2 Aµ Aµ

)
φ∗φ− ieAµ

(
φ∗∂µφ− φ∂µφ∗

)
(5)

Evaluating the Euler-Lagrange equations to verify that no sign errors were
made we have

∂L
∂φ∗

= ∂µ
∂L

∂(∂µφ∗)(
−m2 + e2 A2

)
φ− ieAµ∂µφ = ∂µ(−∂µφ + ieAµφ)
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Which gives(
−m2 + e2 A2 + ∂µ∂µ

)
φ = ie(∂µ Aµ + 2Aµ∂µ)φ (6)

This is consistent with the original result 4 based on the two real fields.

1.7.5 Noether current for global gauge invariance.

To calculate the Noether current that results from a global gauge transforma-
tion by a complex phase factor, form

φ → φ′ = φe−ieθ

φ∗ → φ′
∗ = φ∗eieθ

L′0 = L0(φ′, φ′
∗, ∂µφ′, ∂µφ′

∗)

Then

dL′
dθ

=
∂L′
∂φ′

∂φ′

∂θ
+

∂L′
∂(∂µφ′)

∂∂µφ′

∂θ
+

∂L′
∂φ′∗

∂φ′∗

∂θ
+

∂L′

∂(∂µφ′)∗
∂∂µφ′∗

∂θ

=
∂L′
∂φ′

∂φ′

∂θ
+

∂L′
∂(∂µφ′)

∂µ
∂φ′

∂θ
+

∂L′
∂φ′∗

∂φ′∗

∂θ
+

∂L′

∂(∂µφ′)∗
∂µ

∂φ′∗

∂θ

= ∂µ
∂L′

∂(∂µφ′)
∂φ′

∂θ
+

∂L′
∂(∂µφ′)

∂µ
∂φ′

∂θ
+ ∂µ

∂L′
∂(∂µφ′∗)

∂φ′∗

∂θ
+

∂L′

∂(∂µφ′)∗
∂µ

∂φ′∗

∂θ

= ∂µ

(
∂L′

∂(∂µφ′)
∂φ′

∂θ
+

∂L′
∂(∂µφ′∗)

∂φ′∗

∂θ

)
Calculating these for the A = 0 Lagrangian we have

∂φ′

∂θ
=

∂

∂θ

(
φe−ieθ

)
= −ieφe−ieθ

and

∂L′
∂(∂µφ′)

= −∂µφ′
∗

∂L′
∂(∂µφ′∗)

= −∂µφ′
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Evaluation at θ = 0 for this zero potential Lagrangian we have the Noether
conservation statement

0 =
dL′
dθ

∣∣∣∣
θ=0

= −∂µ (∂µφ∗(−ieφ) + ∂µφ(ieφ∗))

Writing

Jµ ≡ i (φ∗∂µφ− φ∂µφ∗) (7)

this is

0 = −e∂µ Jµ

Or

∂µ Jµ = 0 (8)

Observe that this same probability current was in the original Lagrangian
(with potential), and with this definition one has a slightly tidier form for the
Lagrangian density 5

L = −∂µφ∗∂µφ +
(
−m2 + e2 Aµ Aµ

)
φ∗φ− eAµ Jµ (9)

1.7.6 Interaction via local gauge invariance.

In [Joot(b)] the Klein-Gordon equation of this problem was also explored, in-
cluding a derivation of the interaction terms by introducing a local gauge term.
Those results ended up different, and it appears that the difference from the in-
teraction terms given in this problem may be due to the choice of the sign of
the complex exponential. Also note that the KG notes mentioned above use the
GA notation with a +−−− metric, so comparing the two requires some care.

Let’s try this again, and see if at least results consistent with the original
Lagrangian of this problem can be obtained.

L′0 = −m2φ∗φ− ∂µ
(

φ∗eieθ
)

∂µ

(
φe−ieθ

)
= −m2φ∗φ− (∂µφ∗ + ie∂µθ) eieθ

(
∂µφ− ie∂µθ

)
e−ieθ

= −m2φ∗φ−
(

∂µφ∗∂µφ + ie
(

Aµφ∗∂µφ− Aµφ∂µφ∗
)
+ e2 Aµ Aµφφ∗

)

Here the usual identities Aµ ≡ ∂µθ and Aµ ≡ ∂µθ were used.
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This gives

L′0 =
(
−e2 Aµ Aµ −m2

)
φφ∗ − ∂µφ∗∂µφ− eAµ Jµ (10)

Note that the A2 sign ends up different than in potential included Lagrangian
9. Is the original Lagrangian of the problem wrong, or is this something that
I’ve done wrong?
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