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1 Motivation.
Chapter II of [Pauli(2000)] expresses the delta function in terms of orthonormal basis
functions, but the treatment is slightly hard to follow. Reexpress some of this in my
own words the slow and dumb way to get an understanding of the ideas. Also explore
the summation representation of the delta function and use it to relate Fourier series
and transforms.

2 Fourier coefficients.
Given an orthonormal basis

∫
u∗m(x)un(x) = δmn

For a function that can be expressed entirely in this basis, such as

f (x) =
∑

k

akuk(x)

We can then compute the Fourier coefficients ak in the normal fashion

∫
u∗k(x) f (x)dx =

∑
n

an

∫
u∗k(x)un(x)dx

=
∑

n
anδkn

= ak

So we have

f (x) =
∑

k

akuk(x) =
∑

k

uk(x)
∫

u∗k(x′) f (x′)dx′
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2.1 Mean square convergence.
How good of a match is a subset of such a sum? Pauli considers a mean convergence.

0 = lim
N→∞

∫ ∣∣∣∣∣∣∣ f (x′) −
N∑

k=1

akuk(x′)

∣∣∣∣∣∣∣
2

dx′

=
∫  f ∗(x′) −

N∑
k=1

a∗ku∗k(x′)


 f (x′) −

N∑
m=1

amum(x′)

 dx′

=
∫  f ∗(x′) f (x′) − f ∗(x′)

N∑
m=1

amum(x′) −
N∑

k=1

a∗ku∗k(x′) f (x′) +
N∑

m=1

amum(x′)
N∑

k=1

a∗ku∗k(x′)

 dx′

=
∫

f ∗(x′) f (x′)dx′ −
N∑

m=1

ama∗m −
N∑

k=1

a∗kak +
N∑

m=1

N∑
k=1

ama∗kδkm

=
∫ ∣∣∣ f (x′)

∣∣∣2dx′ −
N∑

m=1

|am|
2

So if we have mean square equality in the limit as N → ∞, then it must also be true
that

∫ ∣∣∣ f (x′)
∣∣∣2dx′ =

∞∑
m=1

|am|
2

He calls this the completeness relation. If the orthonormal basis is sufficient to
express the set of desired functions, then the squared absolute value of such functions
can be expressed entirely in terms of the fourier coefficients. The mean square equality
is weaker in the sense that a function can be mismatched to its fourier representation at
a set (of “measure zero”) points, and still meet the mean square equality statement.

2.2 Generalizing the inner product.
Pauli next introduces the an inner product on functions (without calling it that) in a
somewhat indirect fashion (ie: in terms of fourier components instead of by definition).

Supposing that one has two functions built up by Fourier components

f (x) =
∑

k

akuk(x)

g(x) =
∑

k

bkuk(x)
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Then we have∫
f ∗(x)g(x) =

∑
k,m

a∗kbm

∫
u∗k(x)um(x) =

∑
k

a∗kbk∫
g∗(x) f (x) =

∑
k,m

akb∗m

∫
u∗m(x)uk(x) =

∑
k

b∗kak

This is something that is familar to anybody who has taken a linear algebra course,
but perhaps had to be motivated when he wrote the book?

2.3 Delta function as a sum.
Perhaps Pauli wrote this general function inner product that way to show a natural way
that a sum of the form

∑
u∗m(x)uk(x)

arises in use, because he now writes the completeness relation using a sum similar
to that above

∑
k

u∗k(x′)uk(x) ≡ δ(x − x′) (1)

I’d seen this in bra ket notation, in Susskind’s lectures as noted in [Joot()], and also
in [McMahon(2005)] as the identity operator

∑
k

|k〉〈k| ≡ δ(x − x′) (2)

From neither of those two sources did I understand where it came from (in Susskind’s
lectures it appeared to be related to Fourier transforms). As Pauli did, let’s verify that
this works, and try to relate this to a few specific choices of inner products (covering at
least classical Fourier series and the Fourier transform).

The relation of equation 1 can be shown to have delta function behaviour by inte-
gration

∫ ∑
k

u∗k(x′)uk(x) f (x′)dx′ =
∑
k,m

uk(x)am

∫
u∗k(x′)um(x′)dx′

=
∑
k,m

uk(x)amδkm

=
∑

k

uk(x)ak

= f (x)
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Strictly speaking this ought to be formulated in terms of mean square convergence
since an arbitrary function f(x) may differ from its Fourier sum at specific points (for
example at points of discontinuity).

2.3.1 Fourier series example.

Suppose the inner product is defined for the range I = [a, a + T ].

〈 f , g〉 =
∫
∂I

f ∗(x)g(x)dx

What is the identity operator representation in the Fourier series basis u′k(x) =
e2πikx/T ? First the normalization is required.

〈
u′k, u′m

〉
=

∫
∂I

e2πi(m−k)x/T dx

= δkmT

So our orthonormalized basis is

uk(x) =
1
√

T
e2πikx/T

Given this orthonormal basis we can write

f (x) =
∑

k

akuk(x)

ak =
∫
∂I

u∗k(x) f (x)dx =
〈
uk(x), f (x)

〉

Or in a vector like notation

f (x) =
∑

k

uk(x)
〈
uk(x), f (x)

〉
In this basis the delta function (identity operator) form of equation 1 becomes

δ(x − x′) =
1
T

∑
k

e2πik(x−x′)/T
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2.3.2 Fourier transform innerproduct.

For the Fourier transform we have an infinite range inner product

〈 f , g〉 =
∫ ∞

−∞

f ∗(x)g(x)dx

With a fourier transform pair

f̂ (k) =
1
√

2π

∫
f (x)e−ikxdx

f (x) =
1
√

2π

∫
f̂ (k)eikxdk

It appears that a natural choice of basis functions is actually uk from the Fourier
series above with T = 2π. That is

uk =
1
√

2π
eikx

Our fourier coefficients are now continuous and we have a form that is very close
to the discrete fourier series

f (x) =
∫

dkakuk

ak =
∫

u∗k(x) f (x)dx =
〈
uk(x), f (x)

〉

Besides the inner product range difference from the discrete frequency case the
only other difference in this formulation is that we have a

∑
k →

∫
dk replacement.

What is the delta function representation in this inner product space?
A continuous variation of the summation delta function representation in the Fourier

series basis is

∫
dku∗k(x)uk(x′) =

∫
dk

1
2π

eik(x′−x)

Okay, cool. The principle value of this integral is the sinc function that is the
familiar limiting form of the delta function.

This is an interesting and unifying way of expressing these Fourier relationships.
The inner product is seen here to provide a more general structure that is common
to both the Fourier series and Fourier transform. It isn’t suprising that the physicists
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rightly pick the algebraic orthonormal function representation as fundamental ... too
bad they do it all with the braket notation that automatically obfuscates the subject.

This also clarifies for me what Susskind did in his QM lectures. There he used the
identity operator representation to express the Fourier transform without ever touching
on the tricky aspects of Fourier inversion. That’s a tricky but interesting approach.

2.3.3 Legendre polynomials

Let’s see how one non-Fourier like inner product function space representation works
out this way.

Using the Legrendre inner product

〈 f , g〉 =
∫ 1

−1
f (x)g(x)dx

An orthonormal basis can be had by normalizing the Legendre polynomials. Wol-
fram’s Legendre Polynomial page lists these in a number of closed forms

Pn(x) =
1

2πi

�
dt

tn+1
√

1 − 2tx + t2

=
1
2n

n∑
k=0

(
n
k

)2

(x − 1)n−k(x + 1)k

The first of these uses a closed contour around the origin.
These polynomials aren’t orthonormal, having

〈Pn, Pm〉 =
2

2n + 1
δmn

So we have an orthonormal basis if we pick

un(x) = Pn(x)
√

n + 1/2

Our delta function representation in this basis becomes

δ(x − x′) ∼
∞∑

n=0

(
n +

1
2

)
Pn(x′)Pn(x)

= −
1

4π2

∞∑
n=0

(
n +

1
2

)�
du

un+1
√

1 − 2ux′ + u2

�
dt

tn+1
√

1 − 2tx + t2

=
∞∑

n=0

n∑
m=0

n∑
k=0

n + 1
2

22n

(
n
m

)2

(x′ − 1)n−m(x′ + 1)m
(
n
k

)2

(x − 1)n−k(x + 1)k

Neither of these are familiar looking to me, but I was mostly curious to see one of
these delta representations for a non-Fourier-ish basis. A number of other orthogonal
polynomials can be found detailed in Wolfram’s orthogonal polynomial article.
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