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1 Motivation.

I recently listened to Prof Brad Osgood’s lectures on distributions in Fourier
transform theory and read the associated lecture notes [Osgood.()]. Here is
an attempt to apply these ideas to solution of some of the common PDEs of
physics (wave and Poisson equations).

Some of these were tackled recently using “classical” Fourier methods in
[Joot()]. This requires ad-hoc PV associations of integrals with delta and step
functions. Such solutions do not inspire confidence. Without validation of the
solutions by substition back into the generating PDE or comparison to a known
solution one is left wondering if all the right fudges were actually performed
to get the answer.
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2 Conventions and definitions.

2.1 Transform pairs.

The form of the Fourier transform pairs used here will be

f̂ (k) =
1

(
√

2π)n

∫
f (x)e−ik·xdnx

f (x) =
1

(
√

2π)n

∫
f̂ (k)eik·xdnk

Of particular interest will be forward and inverse Fourier transforms of
functions in S , the space of Schwarz functions. These are defined more ex-
actly in Osgood’s notes, but in short have all the most desirable properties one
can imagine in a Fourier transformation context. Namely continuous, infinitely
differentiable, with the function and all derivatives rapidly decreasing (faster
than any polynomial).

3 1D first order homogeneous wave equation.

This is the simplest PDE that I can think of that one should be able to apply
Fourier techniques to. We seek solutions f (x, t) of

1
v

∂ f
∂t
− ∂ f

∂x
= 0 (1)

3.1 Setup.

Taking Fourier transforms of equation 1, and integration by parts, we have

F
(

1
v

∂ f
∂t
− ∂ f

∂x

)
=

1
v

1√
2π

∫
∂ f
∂t

e−ikxdx − 1√
2π

∫
∂ f
∂x

e−ikxdx

The second term can be integrated by parts

− 1√
2π

∫
∂ f
∂x

e−ikxdx = − 1√
2π

f e−ikx
∣∣∣∞
x=−∞

+
1√
2π

∫
f (−ik)e−ikxdx

Already we can see we are in some trouble here since we require f (x, t) van-
ish at ±∞. For now I close my eyes, and ignore the fact that the final solution
will be seen to be more general, and not neccessarily have such a restriction.

FIXME: continue reading osgood and figure out how to do this setup in the
distribution formalism? With a proper setup of this problem in the distribution
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formalism one should expect that this trouble will go away, since the function
f will be coupled with the Schwartz test function that vanishes satisfactorily at
the boundaries.

Again closing eyes, if one assumes that the order of integration and differ-
entiation in the time derivative term above can be reversed, then we have a
nice single variable first order LDE to solve for f̂

1
v

∂ f̂
∂t

(k, t) + (−ik) f̂ (k, t) = 0 (2)

Our solution in the wave number space is thus

f̂ (k, t) = A(k)eikvt = f̂ (k, 0)eikvt (3)

This will be the common starting point for both the classical and the distri-
bution approach below. Because of the integration by parts restriction and the
reversion of order of integration and time differentiation, this probably ought
not be the starting point for the distribution case. Let’s compromise and work
with what’s known so far one step at a time.

3.1.1 On reversal of the time derivative and integration order.

If one introduces a time variation in the integral bounds, but still have them go
to infinity based on some other limiting process, as in

∂

∂t

∫ b(R,t)

a(R,t)
f (x, t)dx =

∂ f
∂t

(x, t)
∣∣∣∣
x=b(R,t)

∂b
∂t

(R, t)− ∂ f
∂t

(x, t)
∣∣∣∣
x=a(R,t)

∂a
∂t

(R, t) +
∫ b(R,t)

a(R,t)

∂ f
∂t

(x, t)dx

then it appears the time derivative of f must vanish faster than the time
derivatives of the integral bounds go to infinity in order to fully justify the
switch of the order of differentiation and integration above. That’s a rather
loose statement, but probably a correct one. I expect that a complete formula-
tion of the problem in terms of distributions would also avoid this issue, since
the Schwarz functions and their derivatives have the desirable property of van-
ishing “rapidly”.

3.2 Classical way.

To complete the solution in terms of initial conditions we can inverse Fourier
transform equation 3

f (x, t) =
1√
2π

(
1√
2π

∫
f (x′, 0)e−ikx′dx′eikvt

)
eikxdk

Here’s where things get fishy. Reversing the order of integration, and per-
forming the k integration first we want to “integrate”
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I(x, t) =
1

2π

∫
eik((x−x′)+vt)dk

This we can fudge by saying taking the principle value integral (symmetric
about the origin)

I(x, t) = lim
R→∞

1
π

sin(R(x − x′ + vt))
(x − x′ + vt)

this is a nascent form of the delta function:

δ(x) ∼ lim
R→∞

sinc(Rx)
πx

So we have

I(x, t) = δ(x − x′ + vt)

f (x, t) =
∫

f (x′, 0)δ(x − x′ + vt)dx′

= f (x + vt, 0)

The first order advanced wave equation is thus solved by any function
g(x + vt). This is familar from [French(1971)] where it was stated (then demon-
strated correct) that solutions of the second order homogenous wave equation
in one dimension can be expressed in terms of any functions g(x ± vt).

By invoking just the right incantations we can pull the delta function out of
the magic hat and produce this expected result.

3.3 Using distributions.

Starting with 3 for now, we can form a functional pairing with a test function
ψ in the Schwartz function space S by integration. That is assume that our
function f̂ (k, t), or equivalently f (x, t) can be found for all test functions ψ(k) ∈
S as follows

∫
f̂ (k, t)ψ(k)dk =

∫
f̂ (k, 0)eikvtψ(k)dk

In terms of f this is

∫ ( 1
2π

∫
f (x, t)e−ikxdx

)
ψ(k)dk =

∫ ( 1
2π

∫
f (x, 0)e−ikxdx

)
eikvtψ(k)dk
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Reversing order of integration we have

∫
f (x, t)

(
1

2π

∫
ψ(k)e−ikxdk

)
dx =

∫
f (x, 0)

(
1

2π

∫
ψ(k)e−ik(x−vt)dk

)
dx

What we have left on both sides is a plain old fourier transform, which
exists since ψ(k) ∈ S . We can write

φ(x) =
1

2π

∫
ψ(k)e−ikxdk

which is

∫
f (x, t)φ(x)dx =

∫
f (x, 0)φ(x − vt)dx

With a change of variables on the right hand side we have

∫
f (x, t)φ(x)dx =

∫
f (x + vt, 0)φ(x)dx

Equivalently, for all φ(x) ∈ S , this is

∫
( f (x, t)− f (x + vt, 0)φ(x)dx = 0

Now that’s pretty slick, and we end up with the same result f (x, t) = f (x +
vt, 0) for any function(al) f. What was a delta function in the classical approach
became nothing more than variable substitution and evaluation at a point. The
work required to get to the end result is really no harder (at least in this case),
with the distribution approach, but just requires a different viewpoint.

What’s more, the only place where any sort of unjustified step was made
was the reversal of the order of integration. There the rapid decrease property
of the test function ψ can probably be used to make that more rigorous (FIXME:
have to think that through).

3.4 Setup take II. With distributions.

The pairing of the functional f with a function in S via integration was patched
in mid stream above after having already fourier transformed the original PDE.
How can this be done upfront?

Suppose instead of the differential equation 1, we couple this entire equa-
tion using integration to a function in S . That is

∫ (1
v

∂ f
∂t
− ∂ f

∂x

)
φ(x)dx = 0
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and look for functional solutions f of this equation that hold for all φ ∈ S .
In particular we can write φ as a Fourier transform

φ(x) =
1√
2π

∫
ψ(k)e−ikxdk

which gives us

∫ (1
v

∂ f
∂t
− ∂ f

∂x

)
1√
2π

∫
ψ(k)e−ikxdk = 0

Now (again omitting the justification for switching order of integration) we
have

∫ ( 1√
2π

∫ (1
v

∂ f
∂t
− ∂ f

∂x

)
e−ikxdx

)
ψ(k)dk = 0

Now we have a better justification for the integration by parts. Even if f
and ∂ f /∂t do not vanish at infinity, we have a pairing with ψ(k) which does,
and in a handwaving fashion can feel a bit better with having done that in
the first place. Some additional thought about the rigor for these operations
is definitely warrented, but that also unfortunately likely involves a serious
study about Lebegue integration and sets of measure zero and all that jazz. I’d
prefer not to go there, at least notime soon.

Doing the final integration by parts and reversing the order of integration
and differentiation takes us very close to the original starting point

∫ (1
v

∂ f̂
∂t

(k, t) + (−ik) f̂ (k, t)

)
ψ(k)dk = 0

We want this to be true for all ψ(k) ∈ S , so we want functional solutions of
the single variable LDE

1
v

∂ f̂
∂t

(k, t) + (−ik) f̂ (k, t) = 0

This is exactly our original starting point. Was much gained here by starting
from a distribution point of view from the get go? Not too much, at least given
the fact that only vague justification of the integration and differentiation order
switching was given. That wasn’t even handwaving, but more like a vague
statement that it looks like handwaving is possible.

The fact that this can be expressed entirely in terms of functionals it worth
observing. However, when it comes to practical matters, lets take a lazy Engi-
neer’s view ... use the parts of the formalism that seem reasonable, and make
life easier, but leave the rest for others to worry about.
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4 Second order wave equation.

Now, let’s tackle the second order homogeneous equation

1
v2

∂2 f
∂t2 −∑

j

∂2 f
∂xj

2 = 0 (4)

Again Fourier transform the equation

1
(
√

2π)n

∫ ( 1
v2

∂2 f
∂t2 −∑

j

∂2 f
∂xj

2

)
e−ik·xdnx

From this we get

1
v2

∂2 f̂
∂t2 (k, t)−∑

j
(−ik j)2 f̂ (k, t) = 0

Or

∂2 f̂
∂t2 (k, t) = −k2v2 f̂ (k, t)

With solutions of the form

f̂ (k, t) = A(k)ei|k|vt = f̂ (k, 0)ei|k|vt

Here we can allow v to be positive or negative since solutions of either
±i|vk|t are allowed.

Now let’s switch gears and make the functional nature of f̂ explicit. For
ψ(k) ∈ S , we want solutions of

∫
f̂ (k, t)ψ(k)dnk =

∫
f̂ (k, 0)ei|k|vtψ(k)dnk

As in the first order wave equation, ψ can be written as a Fourier transform

ψ(k) =
1

(
√

2π)n

∫
φ(x)eik·xdnx (5)
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This gives us∫
f (x, t)φ(x)dnx =

1
(
√

2π)n

∫
f (x′, 0)ei|k|vt−ik·x′ψ(k)dnkdnx′

=
∫

f (x′, 0)

(
1

(
√

2π)n
ψ(k)ei|k|vt−ik·x′dnk

)
dnx′

In the classical Fourier treatment we end up with a Green’s function of the
form

G(x, t) =
1

(2π)n

∫
ei|k|vt−ik·x′dnk

And to solve the problem we have to somehow evaluate such an integral
to get something delta function like. In the distribution formalism we see the
equivalent problem is one of evaluating something that is structurally quite
similar to a Fourier transform

I(x′, t) =
1

(
√

2π)n

∫
ψ(k)ei|k|vt−ik·x′dnk

This is a much more well defined looking problem. It is not obvious how-
ever how exactly one can relate this to φ(x) as defined above in 5? One could
also go around in circles here because attempting to reduce this integral could
end up going straight back to the dubious “integration” methods for the origi-
nal Green’s function.

My conclusion is that I have to study more of Osgood’s notes before going
further.

5 Poisson equation.

TODO.

6 Non-homogeneous wave equation.

TODO.
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