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1 Motivation.

[McMahon(2005)] has a one dimensional treatment of Ehrenfest’s theorem,
that the expectation values of the position and momentum operators behave
like Newton’s law.

However, he makes use of commutator and braket notation before either is
defined.

That looks like a natural way to do the derivation easily, but let’s try this
using instead what is defined up to this point in the text.

2 Review. What do we know so far?

2.1 Position and momentum operators.

We have been given the definitions of two specific operators, position and mo-
mentum, whos action on a wave function is
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x̂ψ = xψ

p̂ψ =
(
−ih̄

∂

∂x

)
ψ

In operator form, with the omission of the explicit wave function being
operated on this is

x̂ ≡ x

p̂ ≡ −ih̄
∂

∂x

These are perfectly valid operator definitions, but the validity of using the
classical names for these really comes from this upcoming Ehrenfest result
where the average of the action of these operators on a wave function is ex-
amined.

2.2 Expectation (average) value of an operator.

We also have a definition for the expectation value of an operator Â, given its
specific action A. This is defined very much like a weighted inner product and
is essentially a field weighted average of the operators action

< Â >≡
∫

ψ∗(Aψ)

The braces show that the operator action A here applies to the rightmost
field variable ψ, and not to its conjugate.

For the position and momentum operators respectively, we have the expec-
tation values

< x̂ > ≡
∫

ψ∗(xψ)

< p̂ > ≡
∫

ψ∗
(
−ih̄

∂

∂x

)
ψ

2.3 Hermitian operator.

The notation of a Hermitian operator as also been introduced in terms of left
acting operators. That is, an operator Â is hermitian if

∫
ψ∗(Aψ) =

∫
(ψA)∗ψ (1)

2



This is a somewhat non-Demystified seeming definition to me since I’d seen
Hermitian defined more directly in terms of “normal” right acting expectation
integrals. That is, an operator Â is Hermitian if

< Â >∗=< Â >

The conjugate of an operator’s expectation value is(∫
ψ∗(Aψ)

)∗
=
∫

ψ(A∗ψ∗)

=
∫

(A∗ψ∗)ψ

So, this second Hermitian definition means that an operator is Hermitian if

∫
(A∗ψ∗)ψ =

∫
ψ∗(Aψ)

This highlights why the left acting operator notation is pretty reasonable
seeming. Allowing the conjugation operation to switch an operators action
from right acting to left acting makes the equation prettier, and recovers equa-
tion 1

(ψA)∗ ≡ (A∗ψ∗)

Here braces have been used to express the limitation of the scope of the
action of the operator.

Another way to express this is that one can say that a Hermitian operator
when put in its wave function sandwhich has a conjugate action acting to the
left on the conjugate wave function and a non-conjugate action to the right.
This allows for a final notation nicety, where one can omit the braces entirely
as in

∫
ψ∗(Aψ) ≡

∫
ψ∗Aψ ≡

∫
(A∗ψ∗)ψ

or in terms of right and left operator notation the equivalent∫
ψ∗(Aψ) ≡

∫
ψ∗Aψ ≡

∫
(ψA)∗ψ

And finally, there is one last way to express this the concept of Hermitian.
We have our definition of a left acting operator
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(ψA)∗ = A∗ψ∗

And can make the observation that conjugation of a product is the product
of the conjugates

(ψA)∗ = ψ∗A∗

So we must also have A = A∗ for a Hermitian operator.
From this one can observe that the position operator x̂ is Hermitian, but the

momentum operator is not (but p̂2 is ).

2.4 Variance and Heisenberg principle.

Various calculations have been done to calcualate expectation values.
In a few places we have had to show that the product of variances

∆A =
√

< A2 > − < A >2

for position and momentum all satisfy the famous Heisenberg uncertainty
principle

∆x∆p ≥ h̄/2

(in a couple places this formulation is a bit fuzzy since our squared momen-
tum variance (∆p)2 has been negative).

2.5 The wave equation.

We are also given Schrödinger equation in Hamiltonian form

Ĥψ = ih̄
∂ψ

∂t

and have worked with the specific form of the Hamiltonian that applies to
a non-relativistic particle (and not to photons).

Ĥ =
p̂2

2m
+ V = − h̄2

2m
∇2 + V

Most of the text up to this point has been about calculating and interpretting
specific solutions of this equation.
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2.6 Other stuff.

A number of other fundamental topics have been covered, probabilities, nor-
malization, probability current, energy, phase, orthogonality, and so forth. How-
ever, summarizing the rest of these in detail is not required as background for
the Ehrenfest result.

3 Ehrenfest theorem.

We want to calculate the time derivatives of the expectation values for position
and momentum OPERATORS, and show that these reproduce the familiar ve-
locity, momentum and force concepts from classical mechanics.

3.1 Velocity from the derivative of the position operator ex-
pectation.

Diving straight in we have

∂< x̂ >

∂t
=

∂

∂t

(∫
ψ∗xψ

)
=
∫

∂ψ∗

∂t
xψ +

∫
ψ∗x

∂ψ

∂t

Now, here the Hamiltonian can be introduced, replacing the time deriva-
tives.

We have

∂ψ

∂t
= − i

h̄
Hψ

∂ψ∗

∂t
=

i
h̄

Hψ∗

So we have

∂< x̂ >

∂t
=

i
h̄

∫
ψxHψ∗ − i

h̄

∫
ψ∗xHψ

For the Schrödinger Hamiltonian we have

Hψ = − h̄2

2m
∂2ψ

∂x2 + Vψ

Hψ∗ = − h̄2

2m
∂2ψ∗

∂x2 + Vψ∗
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Combining these we have

∂< x̂ >

∂t
=

i
h̄

∫
ψx

(
− h̄2

2m
∂2ψ∗

∂x2 + Vψ∗
)
− i

h̄

∫
ψ∗x

(
− h̄2

2m
∂2ψ

∂x2 + Vψ

)

=
ih̄
2m

∫ (
ψ∗x

∂2ψ

∂x2 − ψx
∂2ψ∗

∂x2

)
+

i
h̄

∫
(ψxVψ∗ − ψ∗xVψ)

The second term is zero, and by integrating the first term by parts twice we
have

∂< x̂ >

∂t
=

ih̄
2m

∫
ψ∗
(

x
∂2ψ

∂x2 −
∂2(ψx)

∂x2

)
=

ih̄
2m

∫
ψ∗
(

x
∂2ψ

∂x2 −
∂

∂x

(
x

∂ψ

∂x
+ ψ

))
=
−ih̄
2m

(2)
∫

ψ∗
∂ψ

∂x

=
1
m

∫
ψ∗
(
−ih̄

∂

∂x

)
ψ

So we now have the QM equivalent of p = mv, directly from the Schödinger
equation and the definition of expectation values of operators.

∂< x̂ >

∂t
=

< p >

m
(2)

This is the first inkling that it makes sense to assign the names position and
momentum to the corresponding operators of QM! Now the QMD derivation
is way shorter and tidier, but this needed only integration by parts. We really
don’t need the more advanced operator concepts to get this important result.

3.2 Force from the derivative of the momentum operator ex-
pectation.

Now lets calculate the momentum expectation change with time.
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∂< p >

∂t
=

∂

∂t

∫
ψ∗
(
−ih̄

∂

∂x

)
ψ

= −ih̄
∫

∂ψ∗

∂t
∂ψ

∂x
+ ψ∗

∂

∂t
∂ψ

∂x

= −ih̄
∫

∂ψ∗

∂t
∂ψ

∂x
+ ψ∗

∂

∂x
∂ψ

∂t

=
∫

∂ψ

∂x
Hψ∗ − ψ∗

∂

∂x
Hψ

=
∫

∂ψ

∂x
Hψ∗ +

∂ψ∗

∂x
Hψ

=
∫

∂ψ

∂x

(
− h̄2

2m
∂2ψ∗

∂x2 + Vψ∗
)

+
∂ψ∗

∂x

(
− h̄2

2m
∂2ψ

∂x2 + Vψ

)

= − h̄2

2m

∫
∂ψ

∂x
∂2ψ∗

∂x2 +
∂ψ∗

∂x
∂2ψ

∂x2 +
∫

∂ψ

∂x
Vψ∗ +

∂ψ∗

∂x
Vψ

= − h̄2

2m

∫
∂

∂x

(
∂ψ

∂x
∂ψ∗

∂x

)
+
∫

∂

∂x
(ψVψ∗)−

∫
ψ

∂V
∂x

ψ∗

Now, again with the assumption that ψ and its derivatives are sufficiently
small to vanish at the boundaries of the integration (this was also done in the
integration by parts above), the first two terms are zero, and the last is an ex-
pectation value. Specifically, we then have

∂< p >

∂t
= −

〈
∂V
∂x

〉
(3)

... which appears to be the QM equivalent to the one dimensional version
of F = −∇V, instead all defined in terms of expectation values.

Very cool! Now, before learning the Lagrangian formalism, I would have
been satisfied with this. We can replace Newton’s law with Schrödinger’s
equation, and logically everything else will follow from that. Can we apply
a procedure like this to the Lagrangian for the wave equation, and find an ex-
pectation equivalent to the classical L = mv2/2−V?

An additional obvious question is how to express the expectation value in
the three dimensional case instead of the one dimensional case?
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