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1 Motivation.

Both [Baylis et al.(2007)Baylis, Cabrera, and Keselica] and [Doran and Lasenby(2003)]
cover rotor formulations of the Lorentz force equation. Work through some of
this on my own to better understand it.

2 In terms of GA.

An active Lorentz transformation can be used to translate from the rest frame
of a particle with worldline x to an observer frame, as in

y = ΛxΛ̃ (1)
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Here Lorentz transformation is used in the general sense, and can include
both spatial rotation and boost effects, but satisfies ΛΛ̃ = 1. Taking proper
time derivatives we have

ẏ = Λ̇xΛ̃ + Λx ˜̇Λ

= Λ
(
Λ̃Λ̇

)
xΛ̃ + Λx

(
˜̇ΛΛ

)
Λ̃

Since Λ̃Λ = ΛΛ̃ = 1 we also have

0 = Λ̇Λ̃ + Λ ˜̇Λ

0 = Λ̃Λ̇ + ˜̇ΛΛ

Here’s where a bivector variable

Ω/2 = Λ̃Λ̇ (2)

is introduced, from which we have ˜̇ΛΛ = −Ω/2, and

ẏ =
1
2

(
ΛΩxΛ̃−ΛxΩΛ̃

)

Or

Λ̃ẏΛ =
1
2

(Ωx − xΩ)

The inclusion of the factor of two in the definition of Ω was cheating, so that
we get the bivector vector dot product above. Presuming Ω is really a bivector
(return to this in a bit), we then have

Λ̃ẏΛ = Ω · x (3)

We can express the time evolution of y using this as a stepping stone, since
we have

Λ̃yΛ = x
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Using this we have

0 =
〈
Λ̃ẏΛ−Ω · x

〉
1

=
〈
Λ̃ẏΛ−Ωx

〉
1

=
〈
Λ̃ẏΛ−ΩΛ̃yΛ

〉
1

=
〈(

Λ̃ẏ− Λ̃ΛΩΛ̃y
)

Λ
〉

1

=
〈
Λ̃

(
ẏ−ΛΩΛ̃y

)
Λ

〉
1

So we have the complete time evolution of our observer frame worldline for
the particle, as a sort of an eigenvalue equation for the proper time differential
operator

ẏ =
(
ΛΩΛ̃

)
· y =

(
2Λ̇Λ̃

)
· y

Now, what Baylis did in his lecture, and what Doran/Lasenby did as well
in the text (but I didn’t understand it then when I read it the first time) was
to identify this time evolution in terms of Lorentz transform change with the
Lorentz force.

Recall that the Lorentz force equation is

v̇ =
e

mc
F · v (4)

where F = E + icB, like Λ̇Λ̃ is also a bivector. If we write the velocity
worldline of the particle in the lab frame in terms of the rest frame particle
worldline as

v = Λctγ0Λ̃

Then for the field F observed in the lab frame we are left with a differen-
tial equation 2Λ̇Λ̃ = eF/mc for the Lorentz transformation that produces the
observed motion of the particle given the field that acts on it

Λ̇ =
e

2mc
FΛ (5)

Okay, good. I understand now well enough what they’ve done to repro-
duce the end result (with the exception of my result including a factor of c
since they’ve worked with c = 1).
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2.1 Omega bivector.

It’s been assumed above that Ω = 2Λ̃Λ̇ is a bivector. One way to confirm this
is by examining the grades of this product. Two bivectors, not neccessarily
related can only have grades 0, 2, and 4. Because Ω = −Ω̃, as seen above, it
can have no grade 0 or grade 4 parts.

While this is a powerful way to verify the bivector nature of this object it is
fairly abstract. To get a better feel for this, let’s consider this object in detail for
a purely spatial rotation, such as

Rθ(x) = ΛxΛ̃
Λ = exp(−inθ/2) = cos(θ/2)− in sin(θ/2)

where n is a spatial unit bivector, n2 = 1, in the span of {σk = γkγ0}.

2.1.1 Verify rotation form.

To verify that this has the appropriate action, by linearily two two cases must
be considered. First is the action on n or the components of any vector in this
direction.

Rθ(n) = ΛnΛ̃

= (cos(θ/2)− in sin(θ/2)) nΛ̃

= n (cos(θ/2)− in sin(θ/2)) Λ̃

= nΛΛ̃
= n

The rotation operator does not change any vector colinear with the axis of
rotation (the normal). For a vector m that is perpendicular to axis of rotation n
(ie: 2(m · n) = mn + nm = 0), we have

Rθ(m) = ΛmΛ̃

= (cos(θ/2)− in sin(θ/2)) mΛ̃

= (m cos(θ/2)− i(nm) sin(θ/2)) Λ̃

= (m cos(θ/2) + i(mn) sin(θ/2)) Λ̃

= m(Λ̃)2

= m exp(inθ)

This is a rotation of the vector m that lies in the in plane by θ as desired.
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2.1.2 The rotation bivector.

We want derivatives of the Λ object.

Λ̇ =
θ̇

2
(− sin(θ/2)− in cos(θ/2))− iṅ cos(θ/2)

=
inθ̇

2
(in sin(θ/2)− cos(θ/2))− iṅ cos(θ/2)

= −1
2

exp(−inθ/2)inθ̇ − iṅ cos(θ/2)

So we have

Ω = 2Λ̃Λ̇

= −inθ̇ − 2 exp(inθ/2)iṅ cos(θ/2)

= −inθ̇ − 2 cos(θ/2) (cos(θ/2)− in sin(θ/2)) iṅ

= −inθ̇ − 2 cos(θ/2) (cos(θ/2)iṅ + nṅ sin(θ/2))

Since n · ṅ = 0, we have nṅ = n ∧ ṅ, and sure enough all the terms are
bivectors. Specifically we have

Ω = −θ̇(in)− (1 + cos θ)(iṅ)− sin θ(n ∧ ṅ)

2.2 Omega bivector for boost.

TODO.

3 Tensor variation of the Rotor Lorentz force result.

There isn’t anything in the initial Lorentz force rotor result that intrinsically
requires geometric algebra. At least until one actually wants to express the
Lorentz transformation consisely in terms of half angle or boost rapidity expo-
nentials.

In fact the logic above is not much different than the approach used in
[Tong()] for rigid body motion. Let’s try this in matrix or tensor form and see
how it looks.
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3.1 Tensor setup.

Before anything else some notation for the tensor work must be established.
Similar to 1 write a Lorentz transformed vector as a linear transformation.
Since we want only the matrix of this linear transformation with respect to
a specific observer frame, the details of the transformation can be omitted for
now. Write

y = L(x) (6)

and introduce an orthonormal frame {γµ}, and the corresponding recipro-
cal frame {γµ}, where γµ · γν = δµ

ν. In this basis, the relationship between the
vectors becomes

yµγµ = L(xνγν)

= xνL(γν)

Or

yµ = xνL(γν) · γµ

The matrix of the linear transformation can now be written as

Λν
µ = L(γν) · γµ (7)

and this can now be used to express the coordinate transformation in ab-
stract index notation

yµ = xνΛν
µ (8)

Similarily, for the inverse transformation, we can write

x = L−1(y) (9)

Πν
µ = L−1(γν) · γµ (10)

xµ = yνΠν
µ (11)

I’ve seen this expressed using primed indexes and the same symbol Λ used
for both the forward and inverse transformation ... lacking skill in tricky index
manipulation I’ve avoided such a notation because I’ll probably get it wrong.
Instead different symbols for the two different matrixes will be used here and
Π was picked for the inverse rather arbitrarily.
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With substitution

yµ = xνΛν
µ = (yαΠα

ν)Λν
µ

xµ = yνΠν
µ = (xαΛα

ν)Πν
µ

the pair of explicit inverse relationships between the two matrixes can be
read off as

δα
µ = Πα

νΛν
µ = Λα

νΠν
µ (12)

3.2 Lab frame velocity of particle in tensor form.

In tensor form we want to express the worldline of the particle in the lab frame
coordinates. That is

v = L(ctγ0)

= L(x0γ0)

= x0L(γ0)

Or

vµ = x0L(γ0) · γµ

= x0Λ0
µ

3.3 Lorentz force in tensor form.

The Lorentz force equation 4 in tensor form will also be needed. The bivector
F is

F =
1
2

Fµνγµ ∧ γν

So we can write

F · v =
1
2

Fµν(γµ ∧ γν) · γαvα

=
1
2

Fµν(γµδν
α − γνδµ

α)vα

=
1
2
(vαFµαγµ − vαFανγν)
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And

v̇σ =
e

mc
(F · v) · γσ

=
e

2mc
(vαFµαγµ − vαFανγν) · γσ

=
e

2mc
vα(Fσα − Fασ)

=
e

mc
vαFσα

Or

v̇σ =
e

mc
vαFσ

α (13)

3.4 Evolution of Lab frame vector.

Given a lab frame vector with all the (proper) time evolution expressed via the
Lorentz transformation

yµ = xνΛν
µ

we want to calculate the derivatives as in the GA procedure

ẏµ = xνΛ̇µ
ν

= xαδα
νΛ̇µ

ν

= xαΛα
βΠβ

νΛ̇µ
ν

With y = v, this is

v̇σ = vαΠα
νΛ̇σ

ν

= vα e
mc

Fσ
α

So we can make the identification of the bivector field with the Lorentz
transformation matrix

Πα
νΛ̇σ

ν =
e

mc
Fσ

α
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With an additional summation to invert we have

Λβ
αΠα

νΛ̇σ
ν = Λβ

α e
mc

Fσ
α

This leaves a tensor differential equation that will provide the complete
time evolution of the lab frame worldline for the particle in the field

Λ̇ν
µ =

e
mc

Λµ
αFν

α (14)

This is the equivalent of the GA equation 5. However, while the GA equa-
tion is directly integrable for constant F, how to do this in the equivalent tensor
formulation is not so clear.

Want to revisit this, and try to perform this integral in both forms, ideally
for both the simpler constant field case, as well as for a more general field. Even
better would be to be able to express F in terms of the current density vector,
and then treat the proper interaction of two charged particles.

4 Gauge transformation for spin.

In the Baylis article 5 is transformed as Λ → Λω0 exp(−ie3ω0τ).
Using this we have

Λ̇ → d
dτ

(Λω0 exp(−ie3ω0τ))

= Λ̇ω0 exp(−ie3ω0τ)−Λω0(ie3ω0) exp(−ie3ω0τ)

For the transformed 5 this gives

Λ̇ω0 exp(−ie3ω0τ)−Λω0(ie3ω0) exp(−ie3ω0τ) =
e

2mc
FΛω0 exp(−ie3ω0τ)

Canceling the exponentials, and shuffling

Λ̇ω0 =
e

2mc
FΛω0 + Λω0(ie3ω0) (15)

How does he commute the ie3 term with the Lorentz transform? How
about instead transforming as Λ → exp(−ie3ω0τ)Λω0 .

Using this we have

Λ̇ → d
dτ

(exp(−ie3ω0τ)Λω0)

= exp(−ie3ω0τ)Λ̇ω0 − (ie3ω0) exp(−ie3ω0τ)Λω0
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then, the transformed 5 gives

exp(−ie3ω0τ)Λ̇ω0 − (ie3ω0) exp(−ie3ω0τ)Λω0 =
e

2mc
F exp(−ie3ω0τ)Λω0

Multiplying by the inverse exponential, and shuffling, noting that exp(ie3α)
commutes with ie3, we have

Λ̇ω0 = (ie3ω0)Λω0 +
e

2mc
exp(ie3ω0τ)F exp(−ie3ω0τ)Λω0

=
e

2mc

(
2mc

e
(ie3ω0) + exp(ie3ω0τ)F exp(−ie3ω0τ)

)
Λω0

So, if one writes Fω0 = exp(ie3ω0τ)F exp(−ie3ω0τ), then the transformed
differential equation for the Lorentz transformation takes the form

Λ̇ω0 =
e

2mc

(
2mc

e
(ie3ω0) + Fω0

)
Λω0

This is closer to Baylis’s equation 31. Dropping ω0 subscripts this is

Λ̇ =
e

2mc

(
2mc

e
(ie3ω0) + F

)
Λ

A phase change in the Lorentz transformation rotor has introduced an ad-
ditional term, one that Baylis appears to identify with the spin vector S. My
way of getting there seems fishy, so I think that I’m missing something.

Ah, I see. If we go back to 15, then with S = Λω0(ie3)Λ̃ω0 (an application
of a Lorentz transform to the unit bivector for the e2e3 plane), one has

Λ̇ω0 =
1
2

( e
mc

F + 2ω0S
)

Λω0
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